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The transition metal-based layered double hydroxides (LDHs) for high-performance
supercapacitor applications were synthesized by the double hydrolysis dropping
method. We found that the dropping sequence of the cation and anion solutions has a
strong influence on the microstructural and electrochemical properties of LDHs. The NiAl
LDHs obtained by dropping the Ni2+ solution into the AlO2- solution have obvious layered
structures with a particle size of the order of micrometers. They are different from those
LDHs prepared by the conventional double hydrolysis method and hydrothermal method.
The specific capacity of the NiAl LDHs is about 615 C g−1 at 0.5 A g−1, which is almost
twice that of the sample synthesized by the traditional double hydrolysis method
(339 C g−1). It is indicated that the performance of the NiAl LDHs is improved by the
dropping method. Moreover, an excellent cyclic stability of 83.3% capacitance retention
after 1000 cycles at 3 A g−1 was achieved. In addition, the trimetallic NiCoAl LDHs have
been synthesized successfully by the dropping method. The results showed that the
addition of Co effectively enhanced the electrochemical properties of LDHs. The optimal
NiCoAl LDHs display an excellent specific capacity of 990 C g−1 at 0.5 A g−1. This work
offers an efficient and facile route, without hydrothermal treatment or adscititious alkali
sources, to fabricating LDHs for boosting energy storage capabilities.
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INTRODUCTION

For the past few decades, electrochemical supercapacitors have attracted worldwide research interest
due to the wide applications in small and medium electronics (Theiss et al., 2016; Yang et al., 2017;
Huang et al., 2018). Electrode materials are considered to be the key factors affecting the performance
of supercapacitors (Zhang et al., 2017). The morphology, size, porosity, and conductivity of electrode
materials have a great influence on the rate capability, discharge/charge rates, and cycling stability of
supercapacitors (Patil et al., 2017). Many kinds of materials, including carbon materials (Lee et al.,
2013; Bashid, et al., 2017), conducting polymers (Dubal et al., 2012; Tan et al., 2018), and transitional
metal oxides (Kim et al., 2012; Gopalakrishnan et al., 2017), have been developed for the application
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of electrodes. However, the preparation of these materials
requires expensive raw materials and/or complicated
manufacturing techniques.

Recently, layered double hydroxides (LDHs) have attracted
much more attention in design of electrodes (Li et al., 2016; Tyagi
et al., 2019). The structural formula of LDHs is [M1-x

2+ Mx
3+

(OH)2] (Ax/n
n−·mH2O), of which M2+ is the divalent metallic

cation (such as Co2+, Zn2+, Ni2+, etc.), M3+ is the trivalent metallic
cation (such as Al3+, Mg3+, Fe3+, etc.), and An− is the anion (such
as Cl−, OH−, SO4

2-, CO3
2-, etc.) arranged in the interlayer (Wang

X. et al., 2017; Shang et al., 2019). Among these LDHs, Ni- and/or
Co-based LDHs exhibit excellent electrochemical performance
due to their high specific capacity, good cycling stability, and rate
capability (Li et al., 2018). Meanwhile, the trimetallic LDHs
composed of two kinds of transition metals exhibit higher
electrochemical and electrocatalytic performances compared
with the bimetallic counterparts (Gonçalves et al., 2020). Ding
et al. reported that doping Co species could effectively enhance
the electronic and ionic conductivity and deprotonation of NiAl-
LDHs (Ding t al., 2018). Gupta et al. also found that the specific
capacity of NiCoAl LDHs was higher than those of NiAl LDHs
and CoAl LDHs (Gupta et al., 2009).

LDHs can be synthesized by many methods, such as co-
precipitation, urea hydrolysis, sol-gel methods, hydrothermal
methods, and chemical stripping methods (Wang et al., 2015;
Wang et al., 2017b; Hou et al., 2018; Sokol et al., 2019). However,
most of the methods require high-temperature, high-pressure
environments and adscititious alkali sources. As a low-cost,
environmentally friendly, safe, and feasible method, the double
hydrolysis method was used to synthesize composite hydroxides
without any adscititious alkali sources and heat-treatment
processes (Gu et al., 2015; Yang et al., 2016). However, the
hydroxides with layered structures have not been reported by
using the double hydrolysis method.

Nowadays, in order to control the size, microstructure, and
morphology of materials, great efforts have been made in

synthesizing nanomaterials by the dropping method (Bashiri-
Shahroodi et al., 2008; Sharonova et al., 2016; Li et al., 2019). By
controlling the Ni2+ concentration and the precursor solution
addition, the diameter of Ni nanowires has been tuned from 85 to
350 nm (Xiang et al., 2017). Kumar et al. reported that the
morphology and particle size of high energetic compounds can
be effectively controlled by using drop-by-drop and drop-to-drop
solvent–antisolvent interaction methods (Raj et al., 2019).

In this paper, combined with the advantages of the double
hydrolysis method and dropping method, the micron-sized NiAl/
NiCoAl LDHs were synthesized by a dropping double hydrolysis
process. The effect of the dropping sequence of solutions on the
microstructural and electrochemical properties of LDHs has been
investigated. The optimal NiAl LDHs have a remarkable specific
capacity of 615 C g−1 at 0.5 A g−1. Moreover, they retain 83.3% of
the original specific capacity even after 1000 cycles. In addition,
the specific capacity of the NiCoAl LDHs was up to 990 C g−1 at
0.5 A g−1.

EXPERIMENTAL

Materials Synthesis
Nickel chloride (NiCl2.6H2O), sodium metaaluminate (NaAlO2),
cobalt chloride (CoCl2.6H2O), graphite, and
polytetrafluoroethylene (PTFE, 60 wt%) were purchased from
Shanghai Chemical Co., Ltd., China. All chemicals were of
analytical grade and used as received without any purification.
The NiAl and NiCoAl LDHs were synthesized by the dropping
double hydrolysis method. First, 0.02 mol NaAlO2 and 0.01 mol
NiCl2.6H2O were dissolved in 400 and 100 ml distilled water
under continuous magnetic stirring to form solution A and
solution B, respectively. Then, the NiAl LDHs were prepared
by using the dropping method with two different adding
sequences of reactants. When solution A was added dropwise
into solution B, the products were denoted as NA-1. Conversely,
the products were denoted as NA-2 when solution B was added
dropwise into solution A. In addition, the control sample was
synthesized by the traditional method. For the trimetallic NiCoAl
LDH synthesis, solution B was prepared with the mixture of
NiCl2.6H2O and CoCl2.6H2O with the volume ratio of 1:1, and
the products were denoted as NCA-3. At the same time, the CoAl
LDHs were synthesized, denoted as CA-4. It should be noted that
solution B was added dropwise into solution A in their synthesis
processes. Finally, all the mixed solutions were continuously
stirred for 24 h at room temperature. After filtration and
vacuum drying at 40°C for 10 h, the powder products were
collected.

Physical and Electrochemical
Characterization Techniques
X-ray powder diffraction (XRD) measurements were conducted
by using a Bruker D8 diffractometer. Scanning electron
microscopy (SEM, ZEISS, SIGMA 500, GER) and the
corresponding energy-dispersive X-ray spectrometry (EDS,
Bruker, GER) were used to characterize the microstructure

FIGURE 1 | XRD patterns of the control, NA-1, and NA-2 samples.
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and element distribution of the products at 10 kV. All
electrochemical measurements were performed using an
electrochemistry workstation (CHI660E, Chenhua, Shanghai,
China). The electrochemical measurements were made in 6 M
NaOH electrolyte at room temperature. A standard three-
electrode system was used, which included the NiAl/NiCoAl
LDH-coated Ni foam as the working electrode, a saturated
Hg/HgO electrode as the reference electrode, and a platinum
plate as the counter electrode. To prepare the working electrode,
NiAl/NiCoAl LDHs, graphite, and PTFE were mixed with a
weight ratio of 7:2:1 in absolute ethyl alcohol, and then the
mixture was smeared onto a 1 cm × 1 cm Ni-foam substrate.
After drying at 40°C for 2 h, the electrode was pressed with a
pressure of 2 MPa. The mass loading of NiAl LDHs/NiCoAl
LDHs on the Ni-foam substrate was 5 mg/cm2. Cyclic
voltammetry (CV) curves were measured within a potential
region of 0–0.6 V with the scanning rates of 5, 10, 20, 50, and

100 mV s−1. The galvanostatic charge–discharge (GCD) curves
were measured from 0 to 0.5 V with different current densities.
The cycle-life test was performed by the GCD measurement
between 0 and 0.5 V with a current density of 3 A g−1 for 1000
cycles. Electrochemical impedance spectroscopy (EIS) was
conducted under an AC voltage of 5 mV with the frequency
range from 10−2 to 105 Hz. The specific capacity (SC) of the active
material was calculated through the CV curves using the
following equation (Brousse, et al., 2015; Zhang et al., 2019):

SC1 �
∫idV
mv

(1)

where i is the current density (A g
−1
), V is the voltage (V), v is the

scanning rate (mV/s), and m (g) is the mass of the electrode
material. In addition, GCD curves were also used to calculate the
SC by the equation

FIGURE 2 | SEM images of the (A,D) control, (B,E) NA-1, and (C,F) NA-2 samples.
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SC2 � IΔt
m

(2)

where I is the discharge current, Δt (s) is the discharge time, and
m (g) is the mass of the electrode material.

RESULTS AND DISCUSSION

The Structural and Electrochemical
Properties of the NiAl LDHs
Figure 1 shows the XRD patterns of the NiAl LDHs. The
diffraction peaks at 2θ = 11.6°, 23.4°, 34.4°, and 60.5° can be
assigned to the (003), (006), (012), and (110) reflections of LDHs,
respectively, which are consistent with the standard card JCPDS-
40-0216. The coexistence of the (003) and (006) diffraction peaks
indicates that the NiAl LDHs are a layered structure (He et al.,
2015; Pan et al., 2018). Specially, the diffraction peak intensity of
the NA-2 sample is higher than that of the NA-1 and control
samples, indicating that the NA-2 sample has better crystallinity.
In addition, the Al(OH)3 diffraction peaks occurred in the
patterns, suggesting that there is a small amount of Al(OH)3
impurities in samples besides the LDH phase.

Figures 2A–C show the SEM images of the samples. The
particle sizes of all samples are similar, and the largest particle size
is ~4 μm. As discerned from the magnification SEM images
shown in Figures 2D,E, no clearly layered structures were

found for the control and NA-1 samples; however, the NA-2
sample has a distinctive layered structure with a layer thickness of
24 nm (Figure 2F), which is in agreement with the results of
XRD. It can be found that from Figures 3B–D, the atomic species
in the NA-2 sample are uniformly distributed. Figures 3E,F show
that only the Ni, Al, and O elements were observed. Moreover, the
molar ratio of Ni to Al for the NA-1 and NA-2 samples is 1:2.68
and 1:2.16, respectively.

The typical CV curves with different scanning rates are shown
in Figures 4A–C. A set of intense redox peaks were found for all
samples, implying that the NiAl LDH electrodes have typical
battery-type electrochemical characteristics. At the scanning rate
of 5 mV s−1, the anodic oxidation peaks and cathodic reduction
peaks located at 0.2–0.3 V and 0.4–0.5 V are observed,
respectively. Moreover, the anodic peaks shift further toward
the negative side as the scanning rate increases. On the contrary,
the cathodic peaks shift toward the positive side. It is indicated
that a reversible Faradic process occurred. As shown in
Figure 4D, the SC values of the control, NA-1, and NA-2
samples calculated from CV curves are 831, 993, and
1124 C g−1 at a scanning rate of 5 mV s−1, respectively. With
the increase of scanning rate, the value of SC decreased. When the
scanning rate rose to 100 mV s−1, the SC values of the three
samples went down to 162, 173, and 149 C g−1, respectively. In
addition, the retention rate of the three samples is 20, 17, and
13%, respectively.

FIGURE 3 | (A) SEM imaging and (B–D) EDS mapping of the NA-2 sample and EDS patterns of the (E) NA-1 and (F) NA-2 samples.
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Figures 5A–C show the GCD curves of the samples. The
charge/discharge curves were nonlinear, which further confirms
that the redox reaction occurs during the process. Moreover, a
voltage platform at 0.3–0.4 V in figures is observed. The discharge
time of the control, NA-1, and NA-2 samples at 0.5 A g−1 is 1700,
1900, and 2400 s, respectively. It can be found that the NA-2
sample possesses the longest discharge time, that is, the NA-2
sample has a good charge-storage performance compared to the
other two samples. Figure 5D presents the calculated SC values of
the three samples at various discharge current densities. The
values of SC are 339, 483, and 615 C g−1 at a current density of
0.5 A g−1, respectively. Compared to the control sample, the SC of
the NA-1 and NA-2 samples is increased by 43 and 81%,
respectively. With the increase of the current density, the SC
of all samples decreased. When the current density increased to
5 A g−1, the values of SC decreased to 230, 341, and 403 C g−1,
respectively. The retentions of the three samples reached up to
67.8%, 70.4% and 65.7% as the current density increased from 0.5
to 5 A g−1, respectively. Based on the results of CV and GCD
curves, we found that the SC values of the samples synthesized by
the dropping method were higher than that of the control sample.
Moreover, the NA-2 sample exhibits a higher SC among the three
samples.

Figure 6 presents the SC retention of the three samples with
1000 cycles at a current density of 3 A g−1. The SC retention
change of the NA-1 and NA-2 samples is evidently different from
that of the control sample. With the increase of cycling number,
the SC values of the NA-1 and NA-2 samples increase initially
and then gradually decrease, indicating that the two samples have
an activation process. During the activation process, the number
of the available active sites is increased. With the increase of
cycling number, many available active sites were gradually
trapped (Zheng et al., 2016). For the control sample, the SC
decreases with the increasing cycling numbers, but the decrement
is diminishing. In addition, the SC retention of the NA-2 sample
is 83.3% after 1000 cycles, which is better than that of the control
(66.7%) and NA-1 (74.4%) samples. In addition, Supplementary
Table S1 in the Supporting Information shows the comparison of
the electrochemical properties of NiAl and NiCoAl LDHs
synthesized by different methods. It can be seen that the NA-2
sample has a higher SC and a brilliant SC retention.

Based on these above results, it can be found that the
supercapacitive performance of the samples synthesized by the
dropping method is evidently greater than that of the control
sample. It mainly results from their different microstructures. As
shown in Figure 2, the NA-2 sample has a clearly layered

FIGURE 4 | CV curves at the scanning rate of 5–100 mV s−1 of the (A) control, (B) NA-1, and (C) NA-2 samples and (D) scanning rate dependence of specific
capacity for the control, NA-1, and NA-2 samples.
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structure compared to the control sample. In the layered
structure, the ions can be quickly transported by the interlayer
spacing. Therefore, the ion-exchange capability and large-current

discharging performance of the samples are improved (Gao et al.,
2019). In addition, the performance of the NA-2 sample is better
than that of the NA-1 sample. This is to say, the dropping

FIGURE 5 |GCD curves of the (A) control, (B)NA-1, and (C)NA-2 samples and (D) specific capacity of the control, NA-1, and NA-2 samples versus the current densities.

FIGURE 6 | Long-term cycling stability determined a current density
of 3 A g−1 for the control, NA-1, and NA-2 samples. FIGURE 7 | XRD patterns of the NA-2, NCA-3, and CA-4 samples.
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sequence of the solvent has an effective influence on the
properties of the samples, which possibly results from the
difference of Al content in both samples. The EDS
measurements showed that the content of Al of the NA-1
sample is slightly larger than that of the NA-2 sample. Since
Al is not electroactive, it has not a direct impact on Faradic redox
reaction (Gao et al., 2019). The increase of Al content may
decrease the number of surface active sites and hinder the
redox reaction (Wang et al., 2017a).

The Structural and Electrochemical
Properties of NiCoAl LDHs
Figure 7 shows XRD patterns of the NCA-3 and CA-4 samples.
The diffraction patterns of the samples are similar to that of the
NA-2 sample. The increase of diffraction peak intensity with the
addition of Co content indicated that the crystallinity of the
samples was improved. Surface morphologies of the samples are
investigated in Figure 8. Similarly, the microstructures of the
NCA-3 sample are the micron-size particles with a layered
structure. It is interesting to note that the structure of the CA-
4 sample is evidently different from that of the NA-2 and NCA-3
samples. It is a nanosheet structure with a diameter of ~100 nm
(Figures 8B,D), which is similar to that synthesized by the
hydrothermal method (Su et al., 2019). The results indicated
that the synthesis mechanism of the CA-4 sample is completely
different from that of the NA-2 and NCA-3 samples.

The CV curves of the NCA-3 and CA-4 samples with different
scanning rates are shown in Figures 9A,B, respectively. There are
two anodic oxidation peaks and two cathodic reduction peaks for

the NCA-3 sample observed at a scanning rate of 5 mV s−1. It
indicated that both Ni(OH)2 and Co(OH)2 were involved in the
Faradaic reactions. However, only one anodic oxidation peak and
one cathodic reduction peak occurred for the CA-4 sample. The
SC of the NCA-3 sample at a scanning rate of 5 mV s−1 is
1743 C g−1, which is higher than that of the CA-4 sample
(1354 C g−1).

Figures 9C,D show the GCD curves with different discharge
current densities. At the current density of 0.5 A g−1, the SC
values of the NCA-3 and CA-4 samples were determined to be
990 and 854 C g−1, respectively. It can be seen that the SC of the
NCA-3 sample is higher than that of the NA-2 and CA-4 samples,
which might be attributed to the addition of Co. Compared to the
NiAl LDHs, the interlayer spacing of the NiCoAl LDHs was
enlarged, which induced a fast diffusion rate of OH− ions during
the charging/discharging process (Ding et al., 2018). In addition,
it is pointed out that the SC of the NCA-3 sample is obviously
larger than that of other NiCoAl LDHs reported in the literature
concerned, as shown in Supplementary Table S1 in the
Supporting Information. It possibly results from the distinctive
layered structures of the NCA-3 sample. When the current
density rises to 5 A g−1, the specific capacity and the
capacitance retention of the NCA-3 sample are 122 C g−1 and
12.3%, respectively. The retention rate of the NCA-3 sample is
slightly lower than those reported by other groups (Xu et al., 2014;
Bai et al., 2017; Tian et al., 2020), which possibly results from the
low conductivity of the electrodes. In our experiments, the
electrodes were fabricated by the pure NiCoAl LDHs. It has a
low conductivity compared to the electrodes mixed by the
NiCoAl LDHs and reduced graphene oxide, 3D graphene, and

FIGURE 8 | SEM images of the (A,C) NCA-3 and (B,D) CA-4 samples.
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graphene nanosheets (Guo et al., 2019). Therefore, a greater
diffusion resistance in the intercalation or deintercalation
processes leads to a lower SC retention rate.

EIS was adopted to investigate the kinetic properties of electrodes.
As shown in Figure 10, two distinct parts including a semicircle in
the high-frequency region (charge-transfer process) and a sloped
straight line in the low-frequency region (diffusion-limited process)

FIGURE 9 | CV curves of the (A) NCA-3 and (B) CA-4 samples with different scanning rates and GCD curves of the (C) NCA-3 and (D) CA-4 samples.

FIGURE 10 | Nyquist plots of the EIS data for the NA-2 and NCA-3
samples.

FIGURE 11 | Long-term cycling stability under a current density of
3 A g−1 for the NA-2, NCA-3, and CA-4 samples.
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were found. In terms of the intercept with the real axis of plots, two
electrodes possess a relatively low equivalent series resistance. In
comparison with the NA-2 sample, the NCA-3 sample has a smaller
semicircle diameter. It suggested that the addition of Co decreases
the charge-transfer resistances. Figure 11 displays the test results of
1000 charge/discharge cycles for the NCA-3, CA-4, and NA-2
samples at the current density of 3 A g−1. The capacity retentions
of these samples were 73.5, 75.4 and 83.3%, respectively. It can be
seen that the capacity retentions of theNCA-3 andCA-4 samples are
slightly smaller than that of the NA-2 sample.

CONCLUSION

We have successfully synthesized the micron-sized NiAl and
NiCoAl LDHs for supercapacitors by the double hydrolysis
dropping method. The microstructures of NiAl and NiCoAl
LDHs are obviously different from that synthesized by the
conventional double hydrolysis methods. Moreover, the
electrochemical performances of LDHs were improved. The
NA-2 sample has a superb capacity performance of 615 C g−1

at 0.5 A g−1 and excellent cycling performance (a capacity
retention of 83.3%) due to its the uniform and ultra-thin
layered structures with a layer thickness of 24 nm. The
microstructural and electrochemical properties of LDHs have
been influenced by the dropping sequence of the cation and anion
solutions. The electrochemical performance of the NA-2 sample
is distinctively different from that of the NA-1 sample. The SC of
the NCA-3 sample was improved by the addition of Co. However,
the capacity retention decreased. In addition, the nanosheet
structure of the CA-4 sample is different from the micron-
sized layer structure of the NA-2 and NCA-3 samples, which
indicated that the synthesis mechanism is different. This

improved synthesis method shows a great potential value
to synthesized LDHs with excellent supercapacitive
performance.
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