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Electricity markets are currently experiencing a period of rapid change. The intermittent
nature of renewable energy is disrupting the conventional methods used in operational
planning of the electrical grid, causing a shift from a day-ahead forecast policy to a real-
time pricing of delivered electric power. A path towards a more renewable, robust and
intelligent energy system is inevitable but poses many challenges to researchers and
industry. In the field of process industry, strategies based on demand side response are
receiving attention and could represent a partial solution for this challenge. Coordination
between production scheduling and procurement of electric power is of high importance
and can contribute to reducing cost and emissions associated with production. A
methodology to quantify such benefits is presented here with a case study, which reveals
the potential benefits of flexible operation. In this case, the minimum compensation
for flexibility services ranges between 5 and 20 € per unit (MWh) of restricted power.
However, such a compensation depends on geographic location (electricity prices) and
the frequency of restrictions. The method follows a rolling scheduling approach that
provides optimization of the short-term schedule. This work introduces the concept of
representing flexible processes as ‘equivalent batteries’ which store electricity from low-
cost periods as intermediate products and consume the embedded energy during high-
cost periods. Cost related to providing flexibility combined with the profits from optimized
process scheduling contribute toward monetization of flexibility as an ancillary service for
the grid. Balancing this service with the cost of implementing DSR solutions provides a
means for calculating a pricing strategy for grid flexibility.

Keywords: demand side response, real-time scheduling, optimization, industrial scheduling, flexible operations,
energy compensation policy

1 INTRODUCTION AND CONTRIBUTION

Renewable technologies have seen a considerablemarket penetration in the past few years, translated
by a decrease in 5% of the carbon dioxide (CO2)-equivalent intensity, from 308 to 290 gCO2-eq.
per kWhel, between 2017 and 2018 (ENTSO-E, 2019). Deep electrification paired with renewable-
based generation has been identified by Europe as the main pathway for achieving a climate neutral
economy by 2050. Future outlooks show that the share of electricity in final energy demand will at
least double by the same year, reaching 53%, and electricity production will increase by up to 2.5
times current levels, depending on the options selected for the energy transition (EUR-Lex, 2018).
Reliable operation of the electricity grid is a fundamental requirement for this transition, but the
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conventional approach is constantly embattled by developments
in variable generation, distribution outages and unexpected
load changes (Albadi and El-Saadany, 2008). Reliable power
systems must guarantee a constant balance between supply
and demand, which is achievable by efficient communication
and flexible relations between suppliers and consumers
(Alizadeh et al., 2016). In this regard, demand side response
(DSR) can play a significant role in handling variability of
electricity systems and therefore contribute towards balancing
the grid. Moreover, the progressive electrification of numerous
sectors could trigger competitive markets in ancillary services
and encourage industry to provide responsive loads. Fair
remuneration strategies should be identified to balance the
incremental operating cost and open the door to flexible
industrial consumers.

Recently, the allowance of unconventional grid resources such
as demand response (DR) (Ela et al., 2016) contributed to grid
balancing and improved the quality of the supplied electric power.
Grid customers can benefit from lower wholesale market prices,
increased reliability and system security (Siano, 2014), while
guaranteeing favorable conditions to the grid operator. Peak load
reduction translates into reducing requirements for expensive
generation reserves and avoided capacity costs, such as the
need for distribution and transmission infrastructure upgrades
(Aghaei and Alizadeh, 2013). DR techniques based on real-
time load shifting can additionally support variable generation
(Denholm and Hand, 2011), fostering the proliferation of
distributed renewable energy resources as power generation
devices connect to the grid.

DSR studies are oftentimes linked with grid management
and planning strategies, particularly on the power and thermal
nexus. Numerous studies are focused on urban design and
scheduling which is, among all society sectors, the one showing
the largest demand flexibility (Golmohamadi, 2022). However,
problems frequently faced in managing and balancing the grid
at urban level are similar to those faced at industrial scale, both
amplified by the recent increase in renewable energy penetration.
A common challenge is to shift flexible loads to periods with
high-renewable generation share, when the price and associated
grid emissions are lower, simultaneously decreasing the need for
storage capacity. Although a few industrial sectors possess hard
constraints on operation, due to interdependent processes that
do not allow interruption, some others are able to accommodate
changes, hence potentially providing ancillary services to the
power grid. This industrial demand response feature is a
complex task, not only because it demands the ability to store
(intermediate) products but also because it requires changes in
production patterns as frequently as changes in grid demand,
triggered by price signals. However, being able to do it can
have a large impact in reducing demand on request (Otashu
and Baldea, 2020), due high power consumption and lack of
some limitations (e.g., comfort constraints), which restrain the
applicability of some DR solutions in other sectors such as the
residential one.

As pointed out by (Shahnewaz Siddiquee et al., 2021),
multiple industrial demand response studies have been
carried out to promote a more sustainable industrial

sector and potentially reduce production associated costs.
(Summerbell et al., 1972017) showed the financial and
environmental savings in using a flexible schedule in the
cement industry, reducing costs and emissions by close to 4%,
whereas (Ma et al., 2020) incorporated uncertainty in price
signaling by developing a robust mixed-integer quadratic
program cement plant self-scheduling operation, showing the
importance of material flows storage in providing flexibility
to the power system. (Bao et al., 2020) applied a hierarchical
model predictive strategy to an aluminium plant, using a
mixed integer quadratic formulation, highlighting the potential
benefits of participating in an ancillary services framework.
(Alarfaj and Bhattacharya, 2019) developed a mixed integer
nonlinear programming structure to address an oil refining
energy management system, showing that participating in a
DR provisioning system significantly reduces peak demand as
the system is more resilient and able to respond faster to grid
signaling.

(Zhang et al., 2018) showed how ancillary services are
provided by industrial power load coordination and energy
storage features. Real-time and day-ahead operations are tackled
by a model predictive control determining hourly operation and
an optimal scheduling approach for daily operation, respectively.
(Kelley et al., 2019) addressed a scheduling production based on
time-dependent grid emissions. The model, a simplified mixed-
integer linear programming (MILP) representation, embedded
dynamic features directly on the scheduling procedure,
consistently yielding savings on costs and emissions when
compared with constant production strategy. More recently,
(Vergara-Fernandez et al., 2022), developed a MILP approach
capable of scheduling a water supply system based on two major
decisions: optimal hourly operating load and optimal electricity
use with hourly consumption profile. However, no storage or
buffer units are used, jeopardizing the enhanced feature of a
rolling scheduling approach.

Contingency services are based on contracts between utility
providers and customers (Tuan and Bhattacharya, 2001), which
stipulate payments for load interruption using peak load
reduction programs. Attempts have been made by researchers to
formulate methods for designing such contracts, starting from
the application of non-linear models based on Game Theory
(Fahrioglu and Alvarado, 2000), to more recent solutions that
exploit pool-based mechanisms for market clearing, aiming
at maximising the social welfare of the participants through
reschedulable demand (Samadi et al., 2010; Papadaskalopoulos
and Strbac, 2013; Luo et al., 2019), or by a coordinated electricity-
heat auction as proposed by (Wang et al., 2019). Although
such methods provide effective pricing techniques in flexible
power systems (for instance (Wang et al., 2019) showed average
energy cost savings of 20%, while guaranteeing adequately
supply levels), they do not use realistic models for quantifying
consumer marginal costs due to power restrictions. This
lack of complete methods for ensuring fair sharing of costs
and benefits among stakeholders has motivated the research
presented in this work. Our method allows quantification of the
minimum financial compensation for industrial consumers to
provide flexible load shifting services. Such results could either
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represent a starting value for the stipulation of fair contracts
between stakeholders, or a minimum bid in a competitive
and liberalized market of ancillary services that might be
incorporated in industrial business model plans, as discussed in
(Behrangrad, 2015).

In this work, we investigate the effect of responsive loads on
marginal cost due to power restrictions imposed on industrial
consumers by the grid operator. The method follows a demand
side response strategy for optimal operations scheduling with
corrective actions when unexpected events occur, i.e. power
restrictions. A prediction-based optimizer with a 24-h time
horizon is applied to an industrial batch process and simulated
over 1 month with hourly shifts of the rolling window. A
scheduling model is embedded in the controller using a MILP
formulation and solved at each iteration of the algorithm.
Restrictions on the power consumption are simulated using the
Monte Carlo method with pseudo-random drawings from a
Sobol sequence, and implemented as operating constraints. The
intensities of the power restrictions are calculated as percentage
deviation from the optimal power profile, which is obtained by
operating the process in unperturbed state.We also introduce the
concept of industrial processes as equivalent batteries that allow
flexible operation by storing electricity as intermediate product
during certain periods and consuming it in others. Finally, we
analyse the effect of power constraints on process performance
and investigate the influence of their intensity and frequency on
themarginal cost by simulating the process in different European
countries.

2 ROLLING SCHEDULING MODEL

The process is divided into two sub-systems producing different
types of final products, A and B. Each product is characterized by
its sequence that uses only one raw material (raw A and raw B),
as shown in Figure 1. Raw materials are converted to products

TABLE 1 | Power demand (kW) and processing time (in no. of time slots)
operations in sub-system A.

Jobs Required Power demand Processing time
operations (kW) (no. time slots)

A job 1.1 A op 1.1.1 24.0 2
A op 1.1.2 25.5 2
A op 1.1.3 44.0 1

A job 1.2 A op 1.2.1 24.0 2
A op 1.2.2 25.4 2
A op 1.2.3 34.0 3

A job 2.1 A op 2.1.1 115.3 2
A op 2.1.2 205.5 1

A job 3.1 A op 3.1.1 95.2 3

A job 4.1 A op 4.1.1 117.0 3

through a number of independent jobs which comprise single or
multiple operations, each of them requiring only electricity. In
total, there are 17 operations to be accounted for, belonging to
10 jobs (details provided in Tables 1 and 2). The intermediates
produced by each job can either be stored or directly sent to the
next job in the sequence, with instantaneous material transfer.
The batch size is fixed and equal among all operations, leading to
a constant batch processing time. Changeovers are disregarded.
A total of five production lines can be used for scheduling the
operations. The process runs at 70% (production requirements
provided in Table 3) of its full load capacity reflecting real
operating conditions of the case study: the industrial production
of shower gel (product A) and conditioner (product B).

The formulation of the scheduling problem is based on
a discrete time representation. The time window is divided
into intervals of equal duration (20 min). Each iteration of the
algorithm therefore involves solving the scheduling problem over

FIGURE 1 | Scheme of the use case batch process, comprising 10 jobs and 17 operations (Tables 1 and 2). Intermediates have dedicated storage units with finite
capacity.

Frontiers in Energy Research | www.frontiersin.org 3 April 2022 | Volume 10 | Article 831462

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Santecchia et al. Enhanced Industrial Flexbility

TABLE 2 | Power demand [kW] and processing time (in no. of time slots) of
operations in sub-system B.

Jobs Required Power demand Processing time
operations (kW) (no. time slots)

B job 1.1 B op 1.1.1 20.0 2
B op 1.1.2 28.7 4

B job 1.2 B op 1.2.1 58.0 2
B job 1.3 B op 1.3.1 57.6 2
B job 2.1 B op 1.2.1 4.8 8
B job 3.1 B op 3.1.1 57.1 8

B op 3.1.2 69.0 4

a single day rolling window for a total of 72 time slots. The
duration of the time step was selected as the smallest common
factor among all processing times required by the operations.
Based on this representation of the time horizon, the following
variables 1 are introduced:

• xt,r,j,p binary variable
1 if operation p of job j is scheduled in

resource r at time t, 0 otherwise.
• Im,t continuous variable representing the level of inventory

of material m at time t. m is defined within M, a set that
contains all materials involved in the system (raw materials,
intermediates and final products).

The two variables x and I are subject to constraints that
represent process requirements and external impositions such
as deliveries of raw materials and demand satisfaction. The
constraints (1–12) can be identified:

1. Not allowed resources: Eq. 1 restricts the usage of resources
for operation p, excluding those which cannot process job j.

∑
t∈T
∑

r∈R∶ r∉ARj

xt,r,j,p = 0 ∀ j ∈ J,p ∈Oj (1)

where ARj is the set of the allowed resources and Oj is the
sequence of ordered operations, also denoted as ⟨p1,…,pu⟩j
with pu being the last operation of j. T is also defined as an
ordered sequence and it can be written as ⟨t1,…, tn⟩ with n
equal to the number of time slots in the rolling window.

2. Allocation constraints: Ensures that at most one operation
is scheduled in production line r at time t, as expressed in
(Eq. 2).

∑
j∈J
∑
p∈Oj

xt,r,j,p ≤ 1 ∀ t ∈ T, r ∈ R (2)

Additionally, a second relation should ensure a proper
duration of the scheduled operations. This is achieved by
preventing an operation from starting before the end of the
previous operation on the same production line (Eq. 3).

∑
g∈J
∑
v∈Og

∑
h∈T′

xh,r,g ,v − 1 ≤ Z(1− xt,r,j,p)

∀ t ∈ T, j ∈ J,p ∈Oj, r ∈ ARj (3)

1Variables are expressed using italic font while roman font is used for parameters.

TABLE 3 | Delivery schedule (April 2018) in number of batches of raw
materials and final products (production demand).

Dates Raw materials Final products

A B A B

1 16 5 0 0
72 11 5 10 2
144 12 8 10 5
216 11 7 7 3
288 9 5 8 5
360 11 5 8 7
432 13 2 7 5
504 12 4 13 0
576 16 3 9 6
648 9 4 11 3
720 9 9 4 3
792 5 7 9 4
864 9 6 1 4
936 11 7 8 3
1,008 5 6 9 3
1,152 12 7 8 4
1,224 8 6 7 5
1,296 7 5 3 3
1,368 9 6 10 5
1,440 8 4 2 3
1,512 15 5 16 8
1,584 14 3 9 3
1,656 8 6 8 6
1728 11 6 11 6
1800 9 8 10 3
1872 13 4 12 5
1944 11 9 10 5
2016 9 5 6 6
2088 14 6 7 2
2,160 0 0 10 3

with T′ = ⟨t,… ,t + RTj,p − 1 ∶ h ≤ tn⟩ and Z a sufficiently
large positive number calculated reflecting the problem size:
Z = ∑j∈J∑p∈Oj

1.
3. Initialisation constraints: These constraints simplify the

problem in the early time slots. Three main constraints can
be defined. The first (Eq. 4) avoids scheduling an operation
if insufficient time has passed to conclude all previous
operations within the same job. This constraint accounts for
the schedule of the previous iteration and avoids re-scheduling
jobs that have already started.

xt,r,j,p = 0 ∀ j ∈ J, r ∈ ARj,p ∈ ⟨Oj ∶ p ≠ p1⟩,

t ∈ ⟨t1,…, ∑
v∈⟨p1,…,p̂⟩

RTj, v ∶ ∑
g∈J
∑
v∈Og

Cr, g, v = 0⟩ (4)

where RTj,v is the required processing time in number of
time slots, ̂p is the previous operation of p in the sequence
Oj and Cr,j,p is an auxiliary parameter used for transferring
information from one iteration of the algorithm to the next
one. Cr,j,p indicates whether an operation is currently being
processed: it is equal to 0 if the operation is not yet started,
or it assumes an integer value equal to the number of time
slots already spent processing p otherwise. This constraint
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is taken into account only if condition ∑g∈J∑v∈Og
Cr, g, v = 0

is satisfied, meaning that Eq. 4 is added to the optimization
problem only if no job is scheduled in the first time slot.
Conversely, if an operation is not concluded at the end of an
iteration, it is carried over to the next schedule as formulated
by Eq. 5.

∑
g∈J
∑
v∈Og

∑
t∈T″

xt,r,g ,v = 0 if 1 ≤ Cr, j, p ≤ RTj, p − 1

∀ j ∈ J, r ∈ ARj,p ∈Oj (5)

where T′′ = ⟨t1,…,RTj,p −Cr,j,p⟩ are the first RTj,p −Cr,j,p time
slots allocated to operation p of job j. Moreover, to ensure
proper sequencing in the early time slots, a third constraint
must be added,

xRTj,p̂−Cr, j, ̂p+1,r,j,p = 1 ∀ j ∈ J, r ∈ ARj,p ∈ ⟨Oj ∶ p ≠ p1⟩ (6)

that is valid only if Cr, j,p̂ ≥ 1 and Cr,j,p = 0, conditions meaning
that the previous operation of p ( ̂p) in the sequence was not
concluded during the previous iteration.

4. Operations precedence:The constraint in Eq. 7 stipulates that
an operation cannot start if the previous one within the same
job has not been scheduled.

xt,r,j,p ≤ xt−RTj, ̂p,r,j,p̂ ∀ j ∈ J,p ∈ 〈Oj ∶ p ≠ p1〉, r ∈ ARj,

t ∈ 〈T ∶ t −RTj,p̂ ≥ t1〉 (7)

5. Operations sequence: Job operations must be performed
sequentially and without stops since storage is not available
between operations of the same job (Eq. 8). This constraint
can be formulated similarly to Eq. 7 with the difference being
that an operation is set to 1 if its previous one in the sequence
( ̂p) is scheduled at time t −RTj,p̂.

xt,r,j,p ≥ xt−RTj, ̂p,r,j,p̂ ∀ j ∈ J,p ∈ 〈Oj ∶ p ≠ p1〉, r ∈ ARj,

t ∈ 〈T ∶ t −RTj,p̂ ≥ t1〉 (8)

6. Material sufficiency: Eq. 9 ensures that a job cannot start
processing if the level of inventory of a material Im, t is
insufficient.The constraint is formulated by introducing a new
set JRm denoting all the jobs requiring m and defined as a
proper subset of J (JR ⊂ J).

∑
j∈JRm

∑
r∈ARj

xt,r,j,p1 ≤ {
Im, if t = 1
Im,t−1, if t > 1

+{DSt, m, if t ∈DD andm ∈ RM
0, otherwise ∀ t ∈ T,m ∈ RI

(9)

Iim = {
0, if i = 1
I i−1m,s , if i > 1 ∀ m ∈ RI (10)

where Im is the level of inventory at the beginning of the
schedule (Eq. 10). This parameter is initialized to the level of
inventory at the step length s (Im,s) of the previous iteration,
where s is equal to the number of time slots shifted at each

iteration of the rolling window. RI is the raw materials and
intermediates set contained inM (RI ⊂M).The other two sets
introduced in Eq. 9,DD and RM, represent the delivery dates
and rawmaterial sets (RM ⊂ RI), respectively. Finally, DSt,m is
the delivery size, in number of batches, of material m at the
start of time slot t.

7. Inventory balance: This constraint ensures the mass balance
in each inventory of material m. It is constructed as a sum of
contributions as shown in Eq. 11.

Im,t = {
Im, if t = 1
Im,t−1, otherwise −{

∑j∈JRm∑r∈ARjxt,r,j,p1 , ifm ∈ RI
0, otherwise

+{
∑j∈JP∑r∈ARj1, ifm ∈ PI and∑p∈OjCr, j, p ≠ 0 and t = RTj −∑p∈OjCr, j, p

0, otherwise

+{
∑j∈JP∑r∈ARjxt−RTj+1,r,j,p1 , ifm ∈ PI and t −RTj ≥ 0
0, otherwise

+{∑d∈DDDSd,m, ifm ∈ RM and d = t
0, otherwise

−{∑d∈DDDSd,m, ifm ∈ P and d = t
0, otherwise ∀ m ∈M, t ∈ T (11)

where RTj is the total time required by job j (∑p∈Oj
RTj, p). Each

inventory Im,t describes the quantity ofmaterialm stored at the
end of each discrete time slot t. It is calculated as the sum of
the previous inventory Im,t−1 (first term) and additional terms
representing the consumption of material (second term) and
the production of intermediates and final products (third
and fourth terms), with JRm and JPm being the sets of jobs
requiring and producingmaterialm, respectively.The balance
also accounts for the deliveries of raw materials (fifth term)
and demand requirements (sixth term). Note that since Im,t is
always greater than or equal to 0, the production demand of
the process is satisfied for each delivery date d of size DSd,m.

8. Maximum storage capacity: Allows the storage capacity to
be constrained for each intermediate m in the intermediates
set I (m ∈ I). This constraint (Eq. 12) can be written in the
optimization problem as:

Im,t ≤ SCm ∀ m ∈ I, t ∈ T (12)

where SCm is a parameter representing the maximum storage
capacity ofm.

The auxiliary parameter Cr,j,p is used to link two consecutive
iterations. The results of the optimized schedule at iteration i are
passed to the next iteration i+ 1 by setting C of iteration i+ 1 (for
simplicity called Ci+1), equal to an additional auxiliary variable
(y) that is calculated once the optimal schedule of iteration i is
found. yi allows the identification of the operations that are not
ended at iteration i and must be considered in the next moving
window, i+ 1. This variable has the same structure as C and its
value depends on the step length s. Since this method considers
day-ahead spot-electricity prices and a time-slot duration (w) of
20 min, the step length is set to three. The relations (13–16) can
then be identified:

Ci+1
r, j, p = y

i
r,j,p (13)
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yir,j,p = {
A, if RTj −∑v∈Oj

Cr, j, v ≥ s+ 1 and∑v∈Oj
Cr, j, v ≠ 0

0, otherwise

+{B, if∑t∈ ̃Txt,r,j,p1 = 1 and t +RTj − 1 > s
0, otherwise ∀ r ∈ R, j ∈ J,p ∈Oj

(14)

with ̃T = ⟨T ∶ t ≤ s⟩ and the two termsA and B accounting for the
jobs that require more time than the step length s. More precisely,
while A (Eq. 15) represents the operations that started in the
previous iteration, B (Eq. 16) refers to the jobs starting in the
current window. Any job outside these two categories does not
require tracking into the next iteration.

A = Cr, j, p

+{s, if Cr, j, p + s < RTj, p andCr, j, p ≠ 0
0, otherwise

+{RTj, p −Cr, j, p, if RTj, p −Cr, j, p ≤ s andCr, j, p ≠ 0
0, otherwise

+{∑t∈ ̃Txt,r,j,pRTj, p, if t +RTj, p − 1 < s
0, otherwise

+{∑t∈ ̃Txt,r,j,p (s− t + 1) , if t +RTj, p − 1 ≥ s
0, otherwise (15)

B = {
∑t∈T̃xt,r,j,pRTj, p, if t +RTj, p − 1 < s and∑v∈⟨p,…,pu⟩jRTj, v > s− t + 1
0, otherwise

+{∑t∈ ̃Txt,r,j,p (s− t + 1) , if t +RTj, p − 1 ≥ s
0, otherwise (16)

Finally, the scheduling variable x allows the calculation of
the total electricity power consumption at time t, denoted by Pt,
through the relation expressed in Eq. 17.
Pt =∑

j∈J
∑
p∈Oj

∑
q∈T′′′
∑

r∈ARj

ej, p xq,r,j,p

+{
∑j∈J∑p∈Oj

∑r∈ARj
ej, p, if t ≤ RTj, p −Cr, j, p andCr, j, p ≠ 0

0, otherwise
∀ t ∈ T

(17)

where T‴ = ⟨t−RTj,p + 1,…, t ∶ q ≥ t1⟩ and ej,p is the power
required by p. The minimization of the operating cost can be
finally expressed using the variable Pt as shown in Eq. 18:

min
x
∑
t∈T
Pt

w
60

ct (18)

where ct is the electricity price at time t.

3 DISCRETE ROLLING SCHEDULING
ALGORITHM

The rolling scheduling model is solved on an hourly basis with
continuity between iterations. The day-ahead electricity price
forecasts are queried from the ENTSO-E API at the end of each
hour (i) and converted into input data for the next iteration
(i+ 1). The operation scheduling problem is then solved and the
optimal decision variable x is found to schedule the operations on
the available production lines for the next hour. The procedure
(Figure 2A) is repeated until the iteration counter reaches its
maximumallowed valueN, namely the total number of simulated
hours. At the end of each iteration, the scheduling variable x is
used to derive variables I and y as provided in Eqs. (11), (14).
These two variables are converted into parameters and injected
again into the model by means of the relations expressed in
Eqs. (10), (13).The algorithm is run for the considered countries
allowing the identification of the optimal power consumption
profile. N is set to 720 for a single month simulation or to 4,344
for a 6-month simulation. The obtained profiles represent the
best-case scenarios, in which operations can be scheduled under
optimal operating conditions. Deviations from such profiles
constitute sub-optimal solutions and are due to the introduction
of external perturbations.

FIGURE 2 | Flow diagram of the on-line scheduling algorithm with rolling window approach. (A) Rolling process. (B) Modified rolling process.
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Power limitations imposed by the grid operator are simulated
and their effect on the systemperformance is quantified regarding
additional operating costs incurred by the process. Given the
optimal power consumption profile Popt

t over the considered time
span of duration s×N, the power constraint can be written
as in Eq. 19.

Pt ≤ λtP
opt
t ∀ t ∈ TC (19)

where λt, within the interval [0,1], is the power factor
representing the intensity of the restriction and TC is a proper
subset of T (TC ⊂ T) containing the time slots for which a
power constraint is imposed. The newly defined constraint is
added to the scheduling problem and the rolling process model
modified as depicted in Figure 2B.The parameter tstart, within the
interval [1, s×N], represents the initial time slot of the rolling
window that is randomly selected for the power restriction.
Together with TC and λt, t

start constitutes a 3-dimensional space
in which power curtailments can be applied to the process for
different times and variable intensities. A Sobol sequence is used
to draw samples and simulate the process with a Monte Carlo
approach that ensures low discrepancy of the explored space.
After each draw the variables are fed into themodified scheduling
problem that is solved for a total of Nmin iterations. The latter
parameter Nmin represents the minimum number of iterations
required by the controller before converging to the unperturbed
state Popt.

The execution of the modified algorithm enables analysis
of system behaviour when unforeseen events such as power
restrictions occur, causing operations re-scheduling and
therefore deviations from the optimal profile. Balancing the
increased operating cost due to the implementation of such a
DSR-based control strategy and the grid service offered by the
process, will promote the definition of a methodology for pricing
electrical flexibility related to the severity of the power restriction
(EUR/MWh). Finally, the effect of restriction frequency on the
incurred cost can be investigated by testing different sizes of the
set TC.

4 RESULTS AND DISCUSSION

Figure 3A shows the concept of the process as an equivalent
battery plotted together with the electricity prices for Germany
in the month of April 2018. The state of charge is defined as
the cumulative electrical energy that is consumed to produce
intermediates which are stored in buffers. The results show that
the buffers are either charged or discharged during times of low
electricity prices and kept constant in high-cost periods. Flat
segments in the equivalent battery profile do not necessarily
indicate a complete production stop but simply that the produced
intermediates are directly sent to the next job in the sequence
instead of being stored. In such time periods, the process
runs at the lowest possible capacity to minimize the operating
cost, while still meeting the delivery schedule (according to
Table 3).

Power restrictions from the grid operator would be expected
either during periods of high price (reflecting high demand) or
low renewable generation; however, a relationship between price
and restriction could not be established from existing literature.
Therefore, restrictions on power consumption are simulated by
assuming random behaviour of the grid operator. The latter
can require the process to completely or partially cut its power
demand at any time of the schedule with notification ranging
from one to 24 hours. Whenever the process is required to
decrease its consumption, the schedule is completely updated and
the process incurs some operating losses when compared to the
optimal schedule. Figure 3B shows the deviation of the modified
power profile (in red) from the optimal one (in blue) due to
four restrictions with hourly duration for a total of 1.9 MWh.
The convergence to the optimal consumption profile is reached
after approximately 73 iterations of the modified rolling process
(Figure 2B) as shown by the vertical dashed line inFigure 3B. All
electricity demand restrictions simulated in this study are found
to converge in less than 80 iterations; therefore, Nmin was set to
this value.

The same procedure is repeated several times using different
frequencies and restriction intensities. The results of the
simulations for Germany are illustrated in Figure 4, which

FIGURE 3 | Results of the rolling process (A) and simulation of power restrictions (B).
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FIGURE 4 | Marginal operating costs due to power restrictions (Germany). Correlations are denoted in the upper left corner. y and x represent cost variation and
curtailed power, respectively. The slope is the remuneration (EUR/MWh) required by the showcased industry to behave as an equivalent battery or, otherwise stated,
the minimum bid in a liberalized market of ancillary services. The value in brackets () is the curtailment frequency, f. (A) April 2018. (B) January–june 2018.

shows the incremental operating costs associated to electricity
consumption in Euros per MWh of constrained electrical energy.
Each point in the plot represents a simulation and different
colors are used for each tested frequency f, measured in
restrictions per day. Linear trends were identified in the results
with increasing slope related to restriction frequency, meaning
that the number of power constraints imposed on the process
impacts marginal operating cost. Moreover, it is observed that
the obtained linear relations divide the graphs into two parts.The
unfavourable zone is located in the lower side of the plot and
represents situations that are likely unprofitable for the industrial
customer. Any financial compensation placed in this zone and
paid by the grid operator to the service provider would often
be insufficient to compensate financial losses incurred by the
consumer. Conversely, contracts for provision of a flexibility
service that are placed above themarginal cost line can be defined
as potentially favourable. Here, industry can either profit from
providing grid services or potentially incur financial losses if load
shifting techniques, such as the one presented in thiswork, are not
adopted.

Moreover, Figure 4 shows that the maximum admissible
severity of a single restriction depends on f. This effect is
represented by the different lengths of the marginal cost lines.
Indeed, each single restriction cannot exceed a maximum

threshold to avoid infeasible solutions of the schedule and to
allow the process to meet its delivery requirements.

By comparing Figures 4A,B, it is also noticeable that the
correlations do not vary considerably for different durations of
the time horizon. Similar slopes of the linear fits are obtained
by constricting the power over a single month (April 2018) or a
6-month period (January - June 2018). The relative differences
between linear correlations of same frequency in the two
periods reach a maximum value of 3.3% for f = 7. It can be
concluded therefore, that results are relatively independent of
the time horizon and are thus applicable throughout the year
with little to be gained from examining extended periods of
time.

A similar effect to the influence of frequency f on the
maximum admissible severity of a restriction is observed on
the standard deviation of the simulated points (Table 4). The
results reveal more scatter around the average values, identified
by the marginal cost lines, at lower frequencies. Furthermore, the
probability that a power restriction strategywould generate either
very high or very low marginal cost is inversely proportional to
the number of restrictions per day.This effect is demonstrated by
the decreasing standard deviations of distributions associated to
the tested frequencies. Table 4 gathers all the results obtained by
testing themethod in seven countries of the Euro zone forwhich a

TABLE 4 | Simulation results for each country as of April 2018. The number of simulations is given between brackets in superscript. f, the curtailment frequency, is
measured in power restrictions per day.

Country Marginal cost [ EUR
MWh
] Standard deviation [ EUR

MWh
]

f = 2 f = 4 f = 7 f = 2 f = 4 f = 7

Germany 10.11(182)a 11.06(208) 12.22(315) 1.64 1.09 0.79
France 10.32(178) 11.08(243) 12.24(341) 1.57 1.16 0.95
Italy 12.63(165) 14.09(239) 16.63(238) 2.29 1.53 1.49
Spain 7.59(204) 8.63(232) 10.56(289) 1.30 1.16 1.09
Great Britain 10.75(155) 12.99(198) 14.55(341) 2.25 1.60 1.13
Poland 9.83(108) 10.25(111) 10.80(186) 1.54 1.08 0.95
Switzerland 9.92(173) 10.75(270) 11.83(397) 1.89 1.08 1.02

aNumber of simulations.
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total of 4,773 simulations are collected. A similar behavior to that
obtained for Germany can be deduced. Although the minimum
compensation for flexibility services is dependent on the user
case, it ranges between 5 and 20 €/MWhof restricted power (as of
April 2018) for the set of European countries considered, further
highlighting the dependency on geographic location (electricity
prices) as well as the strategy adopted concerning the frequency
of restrictions.

5 CONCLUSION

In this work, we propose a new methodology for pricing
industrial flexibility as an ancillary service for electrical grids.
Such a compensation is calculated in terms of service marginal
cost per unit of restricted electrical energy and it represents
the minimum indemnity that would encourage an industrial
consumer to participate in grid balancing by load shifting.
The service is achieved by implementing a demand side
response strategy that minimizes the incremental cost through
reactive response. Similar DSR solutions could be either used
to shift energy consumption to off-peak hours or to aid grid
operators in balancing variable generation from renewable
sources.

Additionally, we introduce the concept of industrial processes
as flexible storage solutions for demand response with respect
to the electrical grid. From the perspective of the electrical grid,
the processes can be regarded as a battery with capacity related
to their buffer capacity. Decoupled process operations, as in the
case study used herein, can thereforemimic storage by temporally
displacing operations with large energy requirements. Overall,
only electricity consumption was considered, discarding other
energy demands such as thermal needs.However, in the contest of
electrification of end-use sectors,DSR strategies based on reactive
load allocation, such as the one here proposed, become key for the
reliability of the power system.

The findings of this work show that the minimum bid to
participate in a competitive andliberalized market of ancillary

services varies depending on the intensity and frequency of
power restrictions. Similar marginal cost relations are found for
almost all of the European countries considered. The proposed
method provides a new quantitative approach to estimate
costs associated with industrial flexibility for providing grid
services and is applicable for any industrial batch process. The
concept of industrial processes as equivalent batteries introduces
possibilities to extend the work for optimal scheduling and
resource sharing between partners in an industrial cluster.
This framework also provides the basis for equitable contract
negotiation between partners and with grid operators, which
should be explored further in future work. Sensitivity of the
impact of schedule capacity on marginal cost should also be
investigated.
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