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The development of grid-connected renewable energy sources and the widespread use of
power electronic devices have exacerbated the uncertain, time-varying, and non-linear
characteristics of power systems, making accurate and real-time model design
challenging. Modeling for unmodeled dynamics and random characteristics has
inherent disadvantages in power system simulation. Conventional converter valve
modeling ignores the high-frequency switching condition. This study aims to provide
an effective modeling strategy that can accurately characterize the unmodeled dynamics
and uncertainty of AC/DC hybrid interconnection systems with significant grid-connected
renewable energy capacity. The model-data hybrid-driven modeling concept based on
digital twin (DT) enhances the technique’s effectiveness. It models the proportional-integral
control link of a voltage source converter (VSC). The time convolution neural network (TCN)
algorithm can describe accurately the high-frequency switching state of the switching
device and the operation state of renewable energy units that changes dynamically with
weather conditions and other variables. The simulation experiments on a real-world power
grid demonstrate the proposed modeling method’s efficiency and the hybrid-driven
model’s performance.

Keywords: hybrid AC/DC, renewable energy, digital twin, hybrid-driven model, time convolution neural
network (TCN)

1 INTRODUCTION

Environmental issues such as climate change and global warming are compelling all countries to
pursue a clean, low-carbon development path (Gi et al., 2020). Amongst them, the growth of China’s
renewable energy industry has garnered global interest. China has formally determined to achieve
carbon neutrality by 2060 and peak carbon dioxide emissions by 2030 (Duan et al., 2021). The power
system’s supply structure has changed dramatically as renewable energy’s grid-connected capacity
grows. Many ultra-high-voltage direct current (UHVDC) transmission projects have been launched
across China, strengthening the “strong DC and weak AC” characteristics of power system. Actually,
China’s power system can be characterized by two essential properties: the high proportion of
renewable energy sources (RES) and the AC/DC hybrid interconnection. The RES’ outputs are
inherently variable and intermittent. Beyond that, the wide utilization of power electronic devices
with high voltage and large capacity increases the time-varying complexity and uncertainty of the
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power system, resulting in considerable challenges to the secure
and stable operation of the power system.

Therefore, it is extremely essential to construct an accurate
model of the physical power system for evaluating its operating
status to study the dynamic characteristics precisely and verify the
corresponding control strategy effectively. Up until now, an
immense amount of work has been carried out on the topic of
power system model construction. Generally, the approaches to
construct the power system model can be roughly grouped into
two categories, that is, the model-driven method and data-driven
method. Note that the model-driven method depends on the
fundamental physical knowledge of the artificial system to obtain
the differential–algebraic equations with accurate physical
concepts and clear mathematical logic. For instance, Ding
et al. (2017) proposed a practical method for modeling a VSC-
HVDC system in large-scale electromechanical transient
simulation. Since this method ignores the high-frequency
switching status of power electronic devices, the dynamic
characteristics of the model constructed by this method is
different from the actual situation. Grdeni et al. (2020)
introduced an AC network modeling method for the small-
signal stability analysis of an AC system with VSC-HVDC
converters, which combines the static and dynamic models of
AC network together. Du et al. (2019) established the small-signal
mathematical model of VSC converter including the phase-
locked loop (PLL), voltage feed-forward control, and other
links to analyze the key factors which affect the sub-
synchronous oscillation stability. Similarly, Zhang and Chen
(2018) established the global small-signal model of the power
system for adjusting the controller parameters quantitatively and
analyzing the effect of the external AC system on the controller
parameter tuning. Except for the small-signal stability study
mentioned previously, the model-driven method has been
widely used in other application fields. Therein, the major
scenarios include the energy management in energy Internet
(Li et al., 2020; Li et al., 2021) and the economic
environmental dispatch of microgrid (Liu and Yang, 2021).

Of note, the aforementioned research studies mainly focus on
solving the model construction problem by the model-driven
method based on the existing mature physical knowledge, which
cannot effectively describe the unmodeled and uncertain dynamic
characteristics of the power system with fluctuated renewable
energy and large-scale power electronic devices (Xie et al., 2017;
Xiao et al., 2018). To overcome these deficiencies, the data-driven
methods mainly concentrate on depicting unmodeled and
uncertain characteristics precisely and solving the dimension
disaster problem faced by the model-driven method by
utilizing power system massive operation data collected by a
wide area measurement system (WAMS) (Cui et al., 2019).
Nowadays, the data-driven method has become an important
modeling method and can be seen as a promising alternative. Cai
et al. (2020) proposed a data-driven equivalent modeling method
for microgrid based on long short-term memory (LSTM)
recurrent neural network, which simplifies the grid-connected
model of microgrid in the power system stability study. Kong
et al. (2019) also put forward an LSTM recurrent neural network-
base framework to forecast the electric load of a single energy

user, which plays an essential role in future grid planning and
operation. Cai et al. (2016) presented an equivalent modeling
method for power system analysis with a DC microgrid
connected. The equivalent model was based on fuzzy
clustering radial basis function (FRBF) and improved bacterial
foraging algorithm. However, every data-driven method is
generally appropriate for its own specific scenarios and
domains, which needs to be further improved with its
robustness and universality. Meanwhile, the interpretability of
the data-driven method in terms of mathematical and physical
principles has not been solved well, resulting in devastating
consequences on the widespread use of the data-driven
method. In conclusion, it is highly critical to investigate a new
modeling method for describing the non-linear, uncertain, and
time-varying characteristics of an AC/DC power system with
fluctuated renewable energy.

As the next-generation simulation modeling technology, the
digital twin (DT) has attracted extensive attention in recent years
(Shen et al., 2020; Market Research Future, 2019). The DT
concept was proposed in 2002 (Grieves and Vickers, 2017) to
realize the simulation process of multi-fields, multi-
measurements, multi-intervals, and multi-calculations.
Compared with other conventional modeling methods, the
core thought of DT is to construct a high-fidelity model of
simulated objects in the virtual space by combining the
differential–algebraic equation-based model with the statistical
data-based model effectively, which just overcomes those
intrinsic deficiencies of the model-driven and data-driven
methods. Therefore, this study will utilize the DT technology
to propose an effective modeling method for describing the
unmodeled and uncertain characteristics of an AC/DC power
system with random renewable energies accurately. Actually, the
application scenarios of DT have included the manufacturing,
automobile, and petrochemical fields (Enders and Hobbach,
2019). The DT can cover the full life cycle of physical objects,
that is, from the design tomaintenance (Zhuang et al., 2017). First
of all, the DT could be used in the design stage to improve the
product design level and validate the performance in the real
world. A three-dimensional virtual representation of a physical
object can be constructed, and the product’s performance and
flexibility are tested in various contexts (Huang et al., 2018; Li K.
et al., 2018; Liu et al., 2019; Xiong et al., 2019; Zhang et al., 2019;
Zhao et al., 2019). Second, the manufacturing stage is the most
collaborative. The DT model of the product is tightly coupled
with the DT of the manufacturing equipment and process.
Productivity can be improved by using simulation, key index
monitoring, and process capability evaluation (Fei and Zhang,
2017; Tao et al., 2017; Chen et al., 2018; Guo et al., 2018; Zhu et al.,
2018). Third, the maintenance stage collects device parameters
with multiple sensors. Data analysis and optimization can
perform remote monitoring, predictive maintenance, demand
feedback, and other activities (Wang, 2018; Li B. S. et al., 2018).

Although the DT has already been used in some industries, it is
still in the early application stage in the power system field. Zhou
et al. (2019) used DT to analyze the electricity grid online. The
electrical grid can be monitored and analyzed in real time, allowing
for the early warning and proactive maintenance. Tao et al. (2018)
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utilized DT to build an intelligent health management system for
power plants, realizing the realistic perspective monitoring, accurate
fault warning, continuous iterative optimization of operation state,
and accurate verification of the maintenance strategy. Christoph
et al. (2018) presented a novel control center architecture based on
DT to characterize the current and future operating status of the
power system and to improve power grid monitoring. Except for
these applications, DT has been effectively used in transmission
channel planning, intelligent substation modeling, and other areas.
However, DT has yet to be used and verified in the AC/DC power
system with high-penetration renewable energy.

To address these challenges in model construction problems,
this article proposes a new modeling method for the AC/DC
power system with high-penetration renewable energy based on
DT technology. The major contributions of this study are
summarized as follows:

1) A model-data hybrid-driven modeling idea based on DT
technology is proposed to accurately describe the
unmodeled and uncertain dynamic characteristics of the
AC/DC power system with high-penetration renewable
energy

2) Taking the modeling process of the PWM loop and the high-
frequency switching state of power electronic devices into
account simultaneously, an equivalent model of MMC which
combines the linearized model with the deep learning
algorithm is constructed to further improve the accuracy
and generalization of the MMC model.

3) In order to overcome the deficiencies of conventional modeling
methods based on the physical mechanism, a data-driven
model of the renewable energy grid-connected system is
established and trained by the time convolution neural
network algorithm, which can describe accurately the
operation state of the renewable energy unit that changes
dynamically with weather conditions and other random factors.

2 THEORETICAL BASIS OF DIGITAL TWIN
MODEL CONSTRUCTION

According to the consensus of domestic and foreign research
institutions, the DT model can be defined as a simulation model
which makes full use of the physical model, sensor update,
operation history, and other data to integrate the multi-
disciplinary, multi-physical quantity, multi-scale, and multi-
probability simulation process, completing mapping in virtual
space so as to reflect the whole life cycle of the corresponding
physical equipment. Actually, the DT model construction is to
realize the digital modeling of properties, methods, and behaviors
of physical entities and its processes in digital space. From the
perspective of granularity or hierarchy of work, the digital twin
model is not only the basic unit model construction but also needs
to realize the model construction of more complex objects by
model assembly from spatial dimension. Also, the model fusion
from the perspective of multi-fields and multi-disciplines can
realize the comprehensive characterization of various domain
characteristics of complex physical objects (Tao et al., 2021).

Model construction refers to the basic unit model building of
physical objects. The digital twin model building process can be
carried out from two aspects: multi-domain model construction
and multi-dimensional model construction of
“geometry—physics—action—rule.” In detail, the
“geometry—physics—action—rule” model can describe the
geometric characteristics, physical characteristics, behavior
coupling relation, and evolution law of physical objects; the
multi-domain model can describe the thermal and mechanical
characteristics of physical objects comprehensively by constructing
the models of each domain involved in physical objects. Through
multi-dimensional and multi-domain model constructions, the
accurate construction of the digital twin model is realized.
Ideally, the digital twin model should cover multi-dimensional
and multi-domain models, so as to achieve a comprehensive and
real description of physical objects. However, from the perspective
of practical application, the digital twin model does not necessarily
need to cover all dimensions and domains. Therefore, it can be
adjusted according to the actual demand and actual objects, that is,
to build a partial domain and partial dimension model (Tao et al.,
2020).

Under the background of AC/DC hybrid interconnection and
high-penetration renewable energy, the network topology and
operation mode of the power system are becoming more and
more complicated. The conventional model construction methods
based on high-order differential–algebraic equations are only
applicable to some standard or classical operation scenarios.
Therefore, the accuracy of the model-driven method in a
complex and dynamic external environment may be much
different from the real operation state of the power system. In
this study, the DT technology is utilized to construct a high-fidelity
dynamic model of the real-world physical power system including
the MMC-HVDC project and grid-connected system of renewable
energy. Figure 1 shows a brief introduction for the theoretical
foundation of DT model construction of the power system.

3 MODELING OF THE AC/DC HYBRID
INTERCONNECTION SYSTEM WITH
HIGH-PENETRATION RENEWABLE
ENERGY BASED ON DIGITAL TWIN

3.1 Construction Process of the
Hybrid-Driven Model
Conventional power system modeling focuses on solving high-
order differential–algebraic equations to build mathematical
models and simulate full time domains. As the grid-connected
scale of renewable energy and the transmission capacity of MMC-
HVDC increase year by year, the conventional modeling methods
are facing lots of difficulties, such as the random characteristics of
renewable energy units, large-scale modeling of power electronic
devices, and complex system control procedures. Due to the rapid
expansion of the power system model, the “dimension disaster”
problem is becoming more and more prominent. Moreover, the
balancing between computation accuracy and efficiency should
also be considered seriously.
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Therefore, a hybrid-driven model which combines the model-
driven theory with the data-driven method is proposed in this
study. Figure 2 shows a DT model construction process of a real-
world power system. Specifically, the model-data hybrid-driven
model of a real power system is constructed by combining the
linearized mathematical model of MMC’s PI control loop with
the data-driven models ofMMC’s PWM loop and grid-connected
system of renewable energies.

3.2 Model-Data Hybrid-Driven Model
of MMC
Modular multi-level converter (MMC) current vector control can be
divided into inner loop control and outer loop control, respectively.
The inner loop control is mainly current control, and the outer loop

control is mainly power control (Fei and Zhang, 2017; Tao et al.,
2017). The control principles are shown in Figure 3.

The specific process of PWM is shown in Figure 4. The output
signals [Vref

cd ;Vref
cq ] of the PI control loop are used as the input

signals of PWM. Three-phase AC reference signals
[Varef;Vbref;Vcref] are first obtained through the reference
voltage generation module. Then, the reference voltages are
put into the pulse generation module to obtain IGBT control
signals g1, g2, ..., gn (n is the number of input sub-modules).
Furthermore, the output of the IGBT bridge circuit module is the
serrated three-phase voltage signal, which is controlled by the
valve-level control signals. Lastly, the three-phase AC signals
[Vca;Vcb;Vcc] on the grid side are updated through filtering.

On account of the complicated internal structure and the
massive power electronic devices, MMC has to control hundreds
of switching devices simultaneously with good accuracy and
efficiency. Therefore, the modeling of its control system is
more difficult than other types of converter models (Zhu
et al., 2018). Actually, the conventional converter valve
modeling generally ignores the PWM loop and the switching
device’s high-frequency state. As a result, the modeling
requirements for describing the switching characteristics of
bridge arm sub-modules accurately are violated. This study
presents a new MMC modeling method based on a hybrid-
driven theory to improve the model’s accuracy and validity. In
detail, the MMC hybrid-driven model combines the mechanism
of linearized modeling with the deep learning method, describing
the internal and exterior response features of MMC accurately.

As shown in Figure 4, those data variables enter the PI control
loop and PWM loop, both of which have the reference tracking
concerns. Based on Figure 3, the PI control loop’s linearized
mathematical model can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PIdout � (Kp id + Ki id

S
)(Irefd − Id)

PIqout � (Kp iq + Ki iq

S
)(Irefq − Iq)

Irefd � (Kp vdc + Ki vdc

S
)(Vref

dc − Vdc)
Irefq � (Kp Q + Ki Q

S
)(Qref

s − Qs)

, (1)

where PIdout, PIqout are the d–q-axis components of the output
signals of the PI control loop; Irefd , Irefq , and Id, Iq are the

FIGURE 1 | Principle of digital twin simulation modeling of the power system.

FIGURE 2 | Construction process of the hybrid-driven model of a real
power system.
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reference values and actual values of d–q-axis components of
current signals, respectively; Vref

dc , Vdc denote the reference value
and actual value of DC voltage, respectively; Qref

s , Qs are the
reference value and actual value of reactive power, respectively;
Kp id, Ki id and Kp vdc, Ki vdc are the proportion and integral
coefficients of inner loop control and outer loop control of active
power class physical quantities, respectively; Kp iq, Ki iq and
Kp Q,Ki Q are the proportion and integral coefficients of
inner loop control and outer loop control of reactive power
class physical quantities, respectively; and S represents the
complex parameter in the complex frequency domain.

The input signals of the PWMmodel are the reference voltages
Vref

cd , Vref
cq obtained after mathematical addition and subtraction

between the output signals of the PI control loop and the feedback
signals from the AC side:

{Vref
cd � Vd + PIdout −XfIq

Vref
cq � Vq + PIqout −XfId

, (2)

whereVd, Vq are the actual values of d–q-axis components of grid
side voltage; Id, Iq are the actual values of d–q-axis components of
grid side current; and Xf represents the grid side impedance.

The PWM generates the pulse control signal of each sub-
module of MMC and finally generates the d–q-axis voltage
components of three-phase AC signals on the grid side. By
defining the mapping relationship between PWM input and
output as fPWM(·), the d–q-axis voltage components Vcd, Vcq

can be expressed as follows:

⎧⎨⎩ Vcd � fPWM1(Vref
cd , Vref

cq )
Vcq � fPWM2(Vref

cd , Vref
cq ) . (3)

FIGURE 3 | Schematic diagram of the MMC-HVDC outer and inner loop control principle.

FIGURE 4 | PWM loop of MMC.
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The data-driven PWM model fPWM(·) can be obtained
through machine learning algorithm by taking the PWM
reference voltage signal Vref

cd , Vref
cq as the input signals and the

modulated d–q-axis voltage components Vcd, Vcq as the output
signals.

By synthesizing (Eqs 1–3), the equivalent mathematical model
of MMC based on model-data hybrid drive can be obtained as
follows:

⎧⎨⎩ Vcd � fPWM1(Cd•IMMC,Cq•IMMC)
Vcq � fPWM2(Cd•IMMC,Cq•IMMC) , (4)

where IMMC � [Vref
dc , Q

ref, Vdc, Q, Vd, Vq, Id, Iq]T is composed of
input signals of the MMC hybrid-driven mathematical model. It
contains the setting values of physical quantities Vref

dc , Q
ref,

which are determined at the system level, and the measured
signals Vdc, Q, Vd, Vq, Id, Iq are fed back from the AC and DC
sides. Cd,Cq are the row vectors composed of each coefficient in
the PI control loop of MMC active and reactive power class,
respectively. The output signals of the MMC hybrid-driven
equivalent model are the d–q-axis components of three-phase
AC voltage Vcd, Vcq.

In this study, the time convolution neural (TCN) network
which features extended causal convolution and residual
connection is more suitable for developing the data-driven
model of PWM than back propagation (BP) networks and
other approaches. Actually, the input and output signals can
be obtained by using the historical and operational data of the
power system. The hybrid-driven equivalent dynamic model of
MMC can be constructed by building the linearized model of the
PI control loop and utilizing TCN algorithm to learn the mapping
relationship between PWM input and output signals.

3.3 Equivalent Model of Renewable Energy
Grid-Connected System-Based Data Drive
The state analysis of the renewable energy grid-connected system
is generally based on the model-driven method, and the full time-
domain simulation is performed by solving high-order non-linear
differential–algebraic equations. However, the order of the power
system model has increased dramatically with the high
penetration of renewable energy and massive power electronic
devices in use. Furthermore, the conventional mathematical
model is only applicable in some typical operational states and
not able to accurately describe the dynamic characteristics of the
renewable energy grid-connected system, which changes with the
weather conditions and other random factors.

In addition, the high-frequency switching state of the
semiconductor switch is hard to be described by the conventional
modeling method of the renewable energy grid-connected system,
and the PWM loop is also generally ignored. Therefore, the TCN
algorithm is utilized in this study to match the non-linear mapping
relationship between the input and output signals of the renewable
energy grid-connected system, breaking through the limitations of
the conventional model-driven modeling method.

Figure 5 shows the schematic diagram of the renewable energy
grid-connected system. In detail, G1, G2 . . .GN represent N

power generation equipment in the power system, including
the synchronous generators and wind/photovoltaic power
units. Moreover, the access point of the renewable energy
grid-connected system is connected to the external AC system
through the point of common coupling (PCC).

For the signal selection problem of the proposed data-driven
model, the input signals of the data-driven model of a wind
generator include the PCC voltage, capacitor voltage, and wind
speed, while the light intensity and ambient temperature are
chosen as the input signals of the photovoltaic generator
equivalent model. Finally, no matter for wind or the
photovoltaic power unit, the PCC active and reactive power
are selected as the output signals of the renewable energy grid-
connected system.

4 DATA-DRIVEN MODEL BASED ON TIME
CONVOLUTION NEURAL NETWORK

In general, TCN algorithm outperforms other neural network
algorithms for the physical simulation modeling with time series
characteristics. For example, the long short-term memory
(LSTM) (Chen and Sun, 2018; Kim et al., 2018), deep belief
network (DBN) (Liang et al., 2018), recurrent neural network
(RNN) (Yu et al., 2019), and other methods have the time series
characteristics in the prediction process, resulting in the
impossibility of massively parallel processing. On the contrary,
TCN algorithm not only can realize the massively parallel
processing but also get the upper hand in terms of running
efficiency and accuracy. In essence, TCN algorithm can be
regarded as a combination of one-dimensional full convolution
network and causal convolution. Instead of the conventional
convolution layer, the TCN network uses an extended causal
convolution network (ECCN).

Actually, the most important feature of the ECCN is that the
output at time t is only related to the input signals at time t and
several previous moments, and the future data after time t are not
used for model construction. In other words, TCN algorithm can

FIGURE 5 | Schematic diagram of the renewable energy grid-connected
system.
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make sure that the future information will not leak to the current
time to be predicted. Therefore, there is no information leakage
problem in TCN. The causal convolution F(t) at any time t in the
data sequence can be defined as follows:

F(t) � (Ypf)(t) � ∑k−1
i�0

f(i)•Y[t−i], (5)

where f represents the convolution kernel; k is the size of the
convolution kernel; i is the element of the convolution kernel; t
represents the time t in the data sequence; and Y[t−i] shows the
data value at time t − i when the operation is performed with the
convolution kernel.

Although the causal convolution can effectively model the
time series, the extracted features only consider the information
of several adjacent moments, which has the problem of
insufficient receptive field. By injecting “holes” into causal
convolution, the data information can go back much further.
Therefore, the extended causal convolution at Y is defined as
follows:

F(t) � (Yp
df)(t) � ∑k−1

i�0
f(i)•Y[t−di], (6)

where d and k represent the expansion coefficient and the size of
the convolution kernel, respectively. When d � 1, the extended
convolution degenerates into ordinary convolution. By adjusting
the value of d, the receptive field can be widened under the
premise of constant computation.

In order to avoid the gradient explosion or disappearance and
reduce the learning complexity further in practical application
processes, it is necessary to add a residual connection to the
output of each TCN block. Also, the convolution network is used
for connecting the input and output in Eq. 7. After adding the
residual connection, the TCNmodule can be expressed as follows:

Zi � F(Zi−1, {Wi}) + Conv1*1(Zi−1), (7)
where Zi and Zi−1 represent the output and input signal of the
residual block, respectively;Wi is the convolution operation; F(·)
is the directly mapped part of the residual block; andConv1*1(·) is
the 1*1 convolution operation used in ascending and descending
dimensions.

5 EXPERIMENTAL VERIFICATION OF A
REAL POWER SYSTEM HYBRID-DRIVEN
MODEL
In the real-world power system used for simulation, the nominal
voltage and transmission capacity of the back-to-back MMC-
HVDC project are ±420 kV and 1,000 MW, respectively. There is
a large number of power electronic devices used in the MMC
converter stations.

According to actual project plan, the MMC-HVDC will build
two back-to-back converter stations in the north and south
separately. In Figure 6, the converter station in the north is
located and built together with substation 4. The converter station

with a capacity of 2 × 1,000 MW is connected with the line
between substation 2 and substation 4 by the type of access of PI.
There are four 500 kVAC outgoing lines, including two lines with
a length of 226 km to substation 2 and two lines to substation 4. A
brief diagram of the north channel of the MMC-HVDC project is
shown in Figure 6.

Actually, the renewable energies such as wind or photovoltaic
power in the real-world power system mentioned above are
characterized by “decentralized development and local
consumption.” Until 2021, it is expected that the load power
and renewable energy capacity will increase to 2,130 and
590 MW, respectively, making the penetration of renewable
energy reach 27.7%. With the booming development of
renewable energy and the commissioning of the MMC-HVDC
project, the real-world power system shown in Figure 6 has
preliminarily formed an AC/DC hybrid interconnection system
with high-penetration renewable energy.

5.1 Real Power System Parameter
In this study, a model-data hybrid-driven model of the real-world
power system in Figure 6 is constructed by DT technology. In
order to verify the accuracy and effectiveness of the proposed
modeling method, a conventional model-driven model based on
physical mechanism is built in the PSCAD software. The main
parameters of the AC power grid, MMC-HVDC, and wind/
photovoltaic power generators are shown in Table 1, Table 2,
and Table 3, respectively. The outlet of the AC bus side of the
converter station adopts Thevenin’s equivalent circuit. The
simulation model of the real-world power grid covers two
critical 500 kV substations (i.e., substation 1 and substation 2).

5.2 Signal Selection and Training Sample
Acquisition of the Data-Driven Model
In the simulation experiment, the data-driven modeling idea is
used for the modeling of a PWM loop and wind/photovoltaic
power grid-connected system. For the PWM loop of MMC, the
reference values of physical quantities Vref

dc , Q
ref as well as the

measured signals Vdc, Q, Vd, Vq, Id, Iq fed back from AC/DC
sides are selected as the input signals, and the d–q-axis
components of three-phase AC voltage Vcd, Vcq are chosen as

FIGURE 6 | Brief diagram of the north channel of MMC-HVDC.
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the output signals. For the wind power grid-connected system,
the voltage at PCC Vw

pcc, dc voltage of capacitor Vw
dc, and wind

speed υω are selected as the input signals of the data-driven
model, and the active/reactive power at PCC Pw

pcc, Q
w
pcc are

selected as output signals. For the photovoltaic power grid-
connected system, the light intensity Linten and ambient
temperature T are selected as the input signals, and the
active/reactive power at PCC Pp

pcc, Q
p
pcc are selected as the output

signals. These aforementioned signals are the time series data which
the data-driven model needs to pay attention to and record.

In the offline training of the data-driven model based on TCN
algorithm, large amounts of system running data are needed for the
iterative optimization of network parameters. Since the daily operation
state of the power system is usually steady and the transient operation
state under fault condition is generally few, there is a problem of
insufficient training data and resources. Furthermore, the data
collected in an actual operating environment of the power system
are usually the raw data with noise and error signals, which causes
great interference to the training of neural network.

Therefore, in order to obtain more abundant and high-quality
training samples, the simulation data under the steady or

transient operating state will be utilized to describe the
dynamic characteristics of the power system. On one hand, in
the steady operating state, the simulation sampling frequency is
set as 1,000 kHz. The data will be recorded after the MMC
operation state becomes stable.

On the other hand, different types of faults on the AC grid,
such as the single-phase and three-phase short-circuit grounding,
are set in the simulation. The fault starting and duration time are
set as 1.0 and 0.25 s, respectively. In this study, it is assumed that
the power system is still operating in the safe and stable region
after the fault occurs, which means the fault current and voltage
are both within the operating limits when the limiting measures
are taken. In order to form a valid data sample set, the input and
output signals will be recorded and all the electrical quantities
collected will be standardized and the mean will be removed.

5.3 Verification Results of the Digital Twin
Model
For the result comparison, a classical mathematical model of the
power system is constructed based on the main running

TABLE 1 | Main parameters of the AC power grid.

Parameter type Converter station of
substation 2

Converter station of
substation 4

Normal operating voltage 525 kV 525 kV
Normal continuous operating voltage range 500–550 kV 500–550 kV
Rated frequency 50 Hz 50 Hz
Maximum three-phase short-circuit current 15 kA 41.5 kA

TABLE 2 | Main parameters of MMC-HVDC.

Parameter type Converter station of
substation 2

Converter station of
substation 4

Rated power 1000 MW 1000 MW
Rated DC voltage 840 kV 840 kV
Number of power modules on a single bridge arm 367 367
Capacitance value 8,000 uf 8,000 uf
Starting resistance 6,000 Ω 6,000 Ω
Bridge arm reactor 140 mh 140 mh

TABLE 3 | Key parameters of the wind power generator (DFIG) and photovoltaic power generator.

Parameter type Value Parameter type Value

Wind power generator Rated voltage 0.69 (kV) DC link capacitance 32,000 (µF)
Stator resistance 0.045 (p.u.) RSC filter resistance 0.001 (Ω)
Stator leakage inductance 0.073 (p.u.) RSC filter inductance 0.6 (mH)
Rotor resistance 0.015 (p.u.) GSC filter resistance 0.001(Ω)
Rotor leakage inductance 0.13 (p.u.) GSC filter inductance 0.6 (mH)

Parameter type Value Parameter type Value

Photovoltaic power generator Reference irradiation 1,000 (W/m2) Reference cell temperature 25 (°C)
Effective area per cell 0.01 (m2) Series resistance per cell 0.02 (Ω)
Shunt resistance per cell 1,000 (Ω) Diode ideality factor 1.5
Bandgap energy 1.103 (eV) Temperature coefficient of photocurrent 0.001 (A/K)
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parameters and network topology information. In a steady-state
simulation test, the parameters of power grid running, renewable
energy generators, and critical substations under the heavy-load
mode in the wet season are utilized. In order to verify the
effectiveness of the modeling method proposed in this study, a
hybrid-driven model based on DT technology is constructed by
using the historical and simulated data according to the
construction process in Figure 2.

5.3.1 Steady-State Analysis
In steady state, the actual transmission capacity of back-to-back
MMC-HVDC is 2 × 1,000 MW. The positive and negative poles
of the converter valve units transmit 500 MW electrical energy
each, and the DC voltage is set as ±420 kV. The comparison
results of the classical mathematical model (model 1) and hybrid-
driven model (model 2) are shown in Figure 7. The simulation
conclusions are summarized as follows:

(1) In detail, first, from Figure 7A, the DC voltage curves of
model 2 (irrespective of the positive or negative poles)
fluctuate almost close to the curve of model 1, which
demonstrates the accurate tracking ability of the proposed
modeling method for power system steady state

(2) In Figure 7B, although the curve of model 2 fluctuates a little
bit compared with the curve of model 1, the fluctuation

amplitude is within acceptable range and the variation
tendency of these two curves is completely the same in
the steady state; as shown in Figure 7C, the same
conclusion can also be obtained

In conclusion, the hybrid-driven model proposed in this study
can describe the steady state of the power grid represented by the
classical mathematical model with high accuracy. Irrespective of
the critical operational parameters on the DC side or those on AC
side, the relative error between the hybrid-driven model and
classical mathematical model is within acceptable limit, which
proves the effectiveness and validity of the proposed method for
describing the power system steady state.

5.3.2 Transient Stability Analysis
In the transient process, multiple types of faults such as renewable
energy generator cutting off and bus short circuit are set up in this
study. Specifically, the fault starting time and duration time are
1.0 and 0.25 s, respectively. The time-domain curves of DC
current and active power under different fault types in the
transient process are shown in Figure 8 and Figure 9.
Relevant simulation results are summarized as follows:

(1) On one hand, for the renewable energy generator cutting
off fault, Figure 8 (A) shows that the active power curves

FIGURE7 | Steady-state comparison results of the classical mathematical model (model 1) and hybrid-drivenmodel (model 2). (A)DC voltage of MMC in the heavy-
load mode. (B) Active power of the unipolar DC line in the heavy-load mode. (C) Active power of the AC side of substation 3 in the heavy-load mode.
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of model 1 and model 2 are almost coincident just with a
small difference during the transient period between 1.0
and 1.25 s; the simulation results of Figures 8B,C also
show the accurate tracking characteristic of the proposed
modeling method.

(2) On the other hand, for the bus short-circuit fault, Figures 9
(A) and (B) demonstrate that the hybrid-driven model can
follow the transient variation of the power system actual state
represented by model 1 in the small fluctuation scenario. At
the same time, the proposed modeling method can also
describe the transient process of the active power curve of
the AC side accurately in the large fluctuation scenario, which
is shown in Figure 9C.

(3) Furthermore, comparing the results of Figure 8 with those
of Figure 9, the renewable energy generator cutting off
fault can induce bigger oscillations in the active power and
DC current of a unipolar DC line than the bus short-circuit
fault. On the contrary, the active power of the AC side of
substation 3 is more affected by the bus short-circuit fault
compared with the renewable energy generator cutting
off fault.

Regardless of which type of faults mentioned above, the
hybrid-driven model (i.e., model 1) is able to track the

transient response curve of the power grid accurately and
effectively, which demonstrates that the modeling method
proposed in this study can describe the transient
characteristics of the power system with high precision.

5.3.3 Model Robustness Verification
In order to verify the robustness of the proposed hybrid-driven
model further, a validation sample set is formed by transient
simulation at a new operating point (i.e., the low-load mode in
the wet season) different from the training sample set. In order
to simulate the transient process of the real power system after
the fault occurs, three groups of different validation sample
sets are obtained by setting fault types of single-phase
grounding, two-phase, and three-phase short circuits whose
fault starting time and duration time are 0.5 s and 450 ms,
respectively. The hybrid-driven DT model after 500 training
iterations is used for robustness testing. The comparative
time-domain curves of the classical mathematical model
(model 1) and hybrid-driven model (model 2) are shown in
Figure 10. Some important conclusions can be drawn as
follows:

(1) It can be concluded that, with the increase in fault severity,
the fluctuation amplitude of the time-domain curve

FIGURE 8 | Time-domain curves under renewable energy generator cutting off fault in the transient process: (A) active power of the unipolar DC line; (B)DC current
curves; and (C) active power of the AC side of substation 3.
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increases. Since the three-phase short circuit fault is the most
serious fault, the corresponding curve of AC line active power
has the largest fluctuation range. In the order of fluctuation
amplitudes, the two-phase and single-phase short-circuit
fault rank second and third, respectively.

(2) Another important conclusion is that the proposed hybrid-
driven model can keep track with the transient process
accurately within the acceptable error under all the three
types of faults, which demonstrates that the hybrid-driven
model trained by TCN has good robustness in face of
different validation sample sets.

5.3.4 Algorithm Error Analysis
For testing the superiority of the proposed method in this
study, the back propagation (BP) network, radial basis
function (RBF) network, and long short-term memory
(LSTM) network will be used to substitute the data-driven
parts of the proposed hybrid-driven model, respectively. The
aforementioned three kinds of neural network models are
trained, respectively, by using the same sample set in
Section 5.2. Table 4 shows the training and test errors of
different neural networks, in which the training iterations of
different neural networks are all 500 times. Based on the
simulation results, the following conclusions can be obtained:

(1) From the results of error comparison in Table 4, it can
be concluded that the data-driven model trained by
TCN network has higher accuracy than the BP, RBF,
and LSTM networks, which indicates that the TCN
network owns more advantages in modeling the time
series data.

(2) Sorted by error size, the LSTM network is more suitable for
the time series data modeling than BP and RBF. The BP
network has the worst accuracy in these four neural
networks.

5.3.5 Analysis of Noise Test Results
The aforementioned historical and simulated data used in these
models do not consider the actual measurement errors, which will
affect the power system’s control effect directly through the
feedback loop in the actual power system. In order to keep
consistency with the measurement situation of the actual
power system as much as possible, this study adds 10, 20, and
40 dB Gaussian white noise to all three groups of test sample sets,
and the error results are shown in Table 5. Compared with the
environment without noise, the reasons why the results do not
change much are as follows:

(1) TCN network itself has the function of noise reduction.

FIGURE 9 | Time-domain curves under bus short-circuit fault in the transient process: (A) active power of the unipolar DC line; (B) DC current curve; and (C) active
power of the AC side of substation 3.
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(2) For the data sample set of time series, the increased noise has
little influence on the overall characteristics of the data sample
set, but may have a significant effect during the fault period.

6 CONCLUSION

In this study, an effective hybrid-driven modeling method
based on DT is proposed to provide a high-fidelity
description for the uncertain and non-linear characteristics
of the AC/DC hybrid interconnection grid integrated with
large capacity of the renewable energy source. Compared
with conventional methods, it describes accurately the
unmodeled dynamics and uncertain data of the AC/DC
hybrid interconnection system with a high grid-connected
capacity of renewable energy. Moreover, the validity of this
method is enhanced by the model-data hybrid-driven
modeling concept based on the DT, which combines the
advantages of the linearized modeling theory with the
characteristics of the data-driven model. In addition, an
equivalent model of MMC that combines the linearized
model with the framework of the deep learning algorithm
was constructed to further improve the accuracy and
generalization of the MMC model with a large amount of
bridge arm sub-modules. Consequently, the effectiveness of
the proposed modeling method and the expected
performance of the hybrid-driven model are successfully
verified in a real power system.

FIGURE 10 | Simulation result of model 1 and model 2 robustness: (A) AC line active power curve under singe-phase grounding fault; (B) AC line active power with
two-phase short circuit fault; and (C) AC line active power with three-phase short-circuit fault.

TABLE 4 | Error comparison of different neural networks.

Data sample Error Network Structure

TCN BP RBF LSTM

Training sample Training error (%) 2.88 34.97 29.72 6.51
Test sample 1 Test error (%) 9.27 39.27 36.93 15.02
Test sample 2 Test error (%) 9.73 38.91 38.37 12.83
Test sample 3 Test error (%) 10.37 38.44 39.19 14.51

TABLE 5 | Simulation results of noise testing.

Noise type Mean square error of testing (%)

Test sample 1 Test sample 2 Test sample 3

No noise 9.27 9.73 10.37
10 dB 9.40 10.11 10.67
20 dB 9.76 10.39 11.07
40 dB 10.15 10.56 11.28
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