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In order to improve the wildfire prevention capacity of transmission lines, a wildfire risk
assessment method for transmission-line corridors based on Weighted Naïve Bayes
(WNB) is proposed in this paper. Firstly, the importance of 14 collected types of
wildfire-related factors is analyzed based on the information gain ratio. Then, the
optimal factors set and the most accurate sampling table are constructed by deleting
the factors in the lowest order of importance one by one. Finally, the performance of the
WNBmodel is compared to that of NB and BNWmodels according to the ROC curve and
visualization. A total of 76.36% of fire events in 2020 fell in high-risk and very-high-risk
regions, indicating the acceptable accuracy of the proposed assessment method of
wildfire risk.
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INTRODUCTION

The continuously growing economy has brought a higher demand for electricity in China in recent
years. Under the background of “power transmission from west to east”, cross-regional high-voltage
transmission lines achieve the demand for long-distance power transmission. However,
transmission-line corridors have to extend to and/or through areas suffering from high risks of
wildfires (Song et al., 2012; Zeng, 2009). Once a wildfire is ignited near a transmission line, the
burning of vegetation produces high temperatures and a high concentration of soot cover, which
causes the dramatic decrease of air insulation under the transmission line. Undere these conditions,
breakdowns are prone to happen between phase-to-phase or phase-to-ground and cause a tripping
failure in the transmission line (Huang et al., 2015). Under the effect of wildfire combustion, the
automatic reclosing is difficult to operate successfully, and may even cause multiple trips of
transmission lines to induce a cascading grid failure (Hu et al., 2014; Wu et al., 2012).

To reduce the effect of wildfire on transmission lines, a series of wildfire preventionmeasures have
been proposed and carried out domestically and abroad, such as quantitative forecasting, wide-area
real-time satellite monitoring, fire-fighting measures, and so on (Lu et al., 2017; Ye et al., 2014).
Compared to passive prevention methods, the assessment of the wildfires risk level can effectively
improve the implementation efficiency of key wildfire preventions in high-risk areas and reduce the
hazards and economic losses caused by wildfires (Wang and Fan, 2016; Liu et al., 2016).

The outbreak of wildfire generally stems from the combined effects of multiple wildfire-related
factors. Scholars have formulated a series of quantitative risk assessments based on wildfire-related
factors. Early forest fire risk assessments in China are only focused on meteorological factors. The
temperature, humidity, precipitation, and wind speed are used to predict the weather and wildfire
behaviors (Xu et al., 2016). However, besides the meteorological factors, other wildfire-related
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factors, such as vegetation types, land-usage types, and fire-spot
density also contribute significantly to assessing fire risk. State
Grid Corporation of China has issued drawing guidelines for
regional distribution maps of wildfires near overhead
transmission lines. In this guideline, fire-spot density factors
combined with vegetation burning hazard levels are used to
assess and classify the risk level of wildfires in the
transmission-line corridors (QGDW11643, 2016). However,
these three wildfire-related factors are considered to have the
same contribution to the risk assessment of wildfires. The
Analytic Hierarchy Process is widely used to differentiate the
importance of factors, but it relies too heavily on the subjective
experiences gathered by questionnaires (Wang and Wang,
2016; Zhu et al., 2016). BP neural network can improve the
accuracy of the model by continuously correcting the weight of
factors. Liu et al. proposed a wildfire risk assessment method
based on the BP neural network (Liu C. X. et al., 2017), but this
method requires a huge amount of data as the basis for
modeling. The Bayesian Network (BNW) can effectively
integrate prior knowledge and objective evidence to solve
the uncertainty of wildfire risk assessments based on
mathematical statistics and graph theory. However, its
complex network structure also easily leads to a reduction
in computational efficiency (Dlamini, 2010). The use of Naïve
Bayes (NB) based on conditional independence has the
advantage of promoting computational efficiency, but
neglecting the relationship between the wildfire-related
factors could bring the curse of dimensionality and reduce
the evaluation accuracy (Chen et al., 2021).

In this paper, a method is established based on Weighted
Naïve Bayes (WNB) for assessing the wildfire risk of
transmission-line corridors. First, 14 types of wildfire-related
factors are screened out. The data of wildfire-related factors is
collected and pre-processed in the four southern provinces of
China (Yunnan, Guizhou, Guangxi, Guangdong) with grids of
1 km × 1 km. Then the weights of factors are obtained based on
the entropy method to weaken the independence assumption of
Naïve Bayes (NB). Combining with the most accurate sampling
table (MAST), an optimal WNB model is constructed to
calculate the wildfire risk probability of the grids in the
research area. For visualization, the wildfire risks are graded
based on the geometric interval classification. Finally, the
performance of WNB is compared to that of BNW and NB
models.

STUDY AREA AND DATA COLLECTION

Study Area
Four provinces in the south of China, Yunnan, Guizhou,
Guangxi, and Guangdong, were selected as the study area.
They all belong to subtropical and tropical monsoon climates,
being generally rainy with high temperatures which, are suitable
climatic conditions for the growth of multiple forests. Specifically,
the Yunnan-Guizhou plateau has high vegetation coverage and
extensive karst landforms with a sparse population. From January
to December in 2020 a total of 825 fire-spots were monitored.

Once a fire is ignited, it is difficult to put it out quickly and is
prone to spread.

Wildfire-Related Factors
Wildfire ignition requires three preconditions: a fire source,
sufficient combustibles, and a suitable environment for fire.
Fire sources are generally divided into artificial and natural
fire sources. Statistics show that more than 90% of wildfires
are caused by human activities, both intentionally and
unintentionally. Therefore, this paper chooses five factors to
represent the impact of human activities, including Distance
from Settlements (DS), Distance from Roads (DR), fire-spot
density, Gross Domestic Product (GDP), and population
density. Combustibles means vegetation types and their
coverage on the underlying surface. This paper selects four
factors, land-usage type, vegetation type, fuel load, and
Normalized Difference Vegetation Index (NDVI), to represent
the influence of the underlying surface. Fire-environment mainly
refers to weather conditions and topography. Annual
precipitation and annual temperature are selected. And
elevation, slope and aspect are used to represent the
topographic factors. The chosen factors are listed in Figure 1.

Data Pre-Processing and Discrete
Classification
The study area is first divided into 1 km × 1 km grids. The data of
wildfire-related factors are provided by the Resource and
Environmental Science and Data Center and the National
Meteorological Center, which are extracted by using ArcGIS
software. Among them, land-usage type and vegetation type
are discrete variables, and the remaining factors are
continuous variables. The sample set of fire spots is formed by
the latitude and longitude of monitored fire-spots from 2010 to
2019, which are provided by the National Meteorological Center.
The sample set of non-fire-spots is constructed by random
sampling within the study area. To avoid the overlap of fire-
spot and non-fire-spot samples, only grids at least 3 km away
from fire-spot samples can be used as non-fire-spot samples.

During the factor collection procedure, the data of DS, DR,
elevation, slope, and aspect are calculated by using Digital

FIGURE 1 | Wildfire-related factors classification.
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Elevation Model (DEM). And the data of fire-spot density needs
further calculation (Chen et al., 2021), as follows.

step 1 The study area is meshed with 0.25 km × 0.25 km
precision. The area of a single grid is calculated based on its
longitude and latitude, as shown in formula (1–3).

S � d1 × d2 � 0.617πR0δ
2cosα (1)

d1 � 111 × δ (2)
d2 � πR0δcosα

180
(3)

where d1 and d2 are the distance spanned by the grid along the
longitude and latitude in km. δ is the latitude span of the grid.
R0 � 6.371 km, which is the average radius of the Earth. α is the
central latitude of the grid.

Step 2 The number of fire spots falling on each grid is counted
as Fx. And the calculation formula of fire-spot density Dx is as
formula (4).

Dx � Fx

100SY
(4)

where the Y is the year of fire-spots.
Step 3 To meet the requirement of spatial resolution, the fire-

spot density to a resolution of 1 km × 1 km by using the Kriging
interpolation algorithm.

To accelerate the calculation efficiency of Bayes models, the
data of all wildfire-related factors for both fire-spot and non-fire-
spot samples are graded into four classes. The grading standard is
to maximize the difference between the groups of samples. Taking
the data of elevation as an example, the frequency distributions of
wildfire-related factors are firstly calculated and compared for the
two groups of samples, as shown in Figure 2. Secondly, all
intersections of the distribution curves were found. These
intersections can divide data distribution into several intervals,
which means the change of probability for wildfire occurrence.
For example, when the elevation is lower than 605 m, or between
1,105 m and 1,745 m, there is a greater probability of wildfire

occurrence. Thirdly, for the factors of which the number of
intersections is more than three, the adjacent intervals are
then combined to reduce the final classes number into four.

For the wildfire-related factors with discrete data, the classes
are simply formed by their natural property or their attribution to
wildfire occurrence. The specific grading standards are
summarized in Supplementary Tables S1, S2, S3.

IMPORTANCE OF WILDFIRE-RELATED
FACTORS

Among the selected 14 wildfire-related factors, some of the
factors may contribute little to the risk assessment and cause
data redundancy, which increases the model complexity and
decrease the accuracy. Thus, the factors are ranked by
contribution importance based on the information gain ratio.
By deleting the lowest factors of the rank singly, the optimal
factor set is selected according to the accuracy results of
the model.

Information Entropy and Information Gain
Entropy
In 1948, the mathematician C. E. Shannon first proposed the
concept of Information Entropy. The larger the information
entropy is, the larger the uncertainty of the information source
it represents. However, the size of information entropy often
cannot reflect the importance of the information contained in the
system.

In order to reflect the degree of characteristic information
brought to the system, the Information Gain Entropy, which is
the difference between the entropy of the set to be classified and
the conditional entropy of a selected feature, was used.

Information Entropy
To calculate information entropy, the fire-spot samples, as well as
the same amount of non-fire-spot samples are selected. And the
information entropy of wildfires is calculated by formula (5):

H(Y) � −(p(y1)log2(p(y1)) + p(y0)log2(p(y0))) (5)
where p(y1) and p(y0) represent the occurrence and non-
occurrence probability of wildfires, respectively. And there is
∑p(yi) � 1.

Information Gain Entropy
In a wildfire event, the information gain entropy represents the
reduced uncertainty degree of the factor information, which is
recorded as G(Y|X).

G(Y |X) � H(Y) −H(Y |X) (6)
H(Y |X) � −∑n

i�1p(xi)(p(xi1)log2(p(xi1)) + p(xi0)log2(p(xi0)))
(7)

where H(Y|X) is the conditional information entropy of the
wildfire event Y with the given factor X. p(xi) represents the
distribution probability under each factor. p(xi1) and p(xi0)

FIGURE 2 | The frequency distribution of elevation.
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represent the proportion of fire-spot samples and non-fire-spot
samples of the same level under each factor, respectively.

Information Gain Ratio
When the number of factor samples data is large, the information
gain entropy is also larger. In order to eliminate the influence of
the number of samples, the information gain ratio is proposed
(Xiong et al., 2014). It avoids the overfitting of factor data by
offsetting the complexity of factor variables.

GR(Y |X) � G(Y |X)
HX(Y) (8)

where G(Y|X) represents the information gain entropy
corresponding to factor X. HX(Y) is the information entropy
of mountain wildfire event Y about factor X.

Importance Rank of Wildfire-Related
Factors
The calculated information gain entropy and information gain
ratio of factors are listed in Table 1.

Vegetation type, land-usage type, and historical fire-spot density
are the three most important factors in affecting the occurrence risk
of wildfire. It is because that the vegetation type and land-usage type
can indicate the degree of fuel whereas the historical fire-spot density
represents the high incidence of wildfires. The DR and the aspect are
the factors with the least influence on the wildfire occurrence.

METHODOLOGY

Weighted Naïve Bayes
Bayes theorem calculates the posterior probability of events by
combining the prior probability and conditional probability, as
follows (Qu et al., 2016; Zhao et al., 2013; Ma et al., 2013).

P(Xi|Y) � P(Y |Xi) · P(Xi)
P(Y) (9)

where P(Xi) is the prior probability of event Xi, which
is obtained according to the data distribution difference of

fire-spot and non-fire-spot samples. P(Y|Xi) is the conditional
probability of eventY occurring under the occurrence of eventXi.
P(Y) � ∑P(Y|Xi) · P(Xi) is the probability of event Y occurring
under the condition with the occurrence of all eventsX1 X2/Xi.
P(Xi|Y) is the posterior probability that the given Y is caused by
the event Xi.

Due to the conditional independence, the NB model has
advantages of higher operating efficiency, faster speed, and a
simple structure compared to BNW. But absolute independence
does not exist in reality. The WNB model assigns different
weights to nodes to strengthen the connections between nodes.
In this way, the assumption of the independence of NB can be
weakened (Huang et al., 2015; Lee, 2015; Liu R. et al., 2017; Tang
et al., 2018; Ji et al., 2019). The structures of BNW, NB, andWNB
models are shown in Figure 3.

The posterior probability in WNB is defined as the weighted
product of the conditional probabilities of factors, as shown in
formula (10).

P(yj
∣∣∣∣∣x1, x2/xn) � P(yj)∏P(xi

∣∣∣∣∣yj)
ωi

(10)
According to the wildfire risk assessment of the transmission
corridor based on NB [16], the conditional probability of factors
under fire or non-fire conditions is obtained.

P(xij
∣∣∣∣∣yj) �

nij + 100

∑4
k�1nij + 400

(11)

where xij represent the factor xi at the jth level. nij is the sample
size of xij. The distributions of P(xij|y0) and P(xij|y1)
represent the conditional probability of a non-fire event and
a fire event.

Finally, the weighted Bayesian posterior probability of wildfire
occurrence P(Y) is determined.

TABLE 1 | Importance of wildfire-related factors.

Factors Information gain entropy Information gain ratio

Vegetation types 0.512 0.3447
Land-usage types 0.4893 0.2962
Historical fire-spot density 0.562 0.2654
Population density 0.5142 0.2454
Fuel load 0.5781 0.2203
GDP 0.6698 0.1864
Annual temperature 0.7076 0.1853
DS 0.7794 0.1699
Annual precipitation 0.8394 0.1693
Elevation 0.8073 0.1686
NDVI 0.735 0.1655
Slope 0.8446 0.1642
DR 0.8892 0.1483
Aspect 0.9319 0.1482

FIGURE 3 | WNB, NB, and WNB classifier structure.
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P(Y) � P(y1
∣∣∣∣x1, x2/xn)

P(y1
∣∣∣∣x1, x2/xn) + P(y0

∣∣∣∣x1, x2/xn)
(12)

Weight Calculation
The weights are often obtained by subjective or
objective methods. With subjective methods, the value of
weights is strongly affected by the knowledge and
experience of surveyed experts, which may introduce
larger errors to the model. Therefore, the entropy method
is used to objectively evaluate and weight the factors in the
WNB model.

In the information entropy theory, a smaller information
entropy indicates a larger variation of the factor value with
more information. Based on the information entropy theory,
the weight is determined by the information entropy of the
factor.

Step 1 The data of factors is normalized by

xij
′ � xij − xmax

xmax − xmin
(13)

where xij represents the value of the jth factor of the ith object.
xmax and xmin are the maximum and minimum values among
the xij.

Step 2 The entropy value ei of the ith factor is:

ei � −ln(n)−1∑n

j�1Pij · ln Pij (14)

Pij � xij′

∑n
i�1xij′

(15)

where Pij represents the proportion of the jth evaluation object of
the ith factor.

Step 3 According to the information entropy ei of factors, the
initial weight fi is determined, and the entropy weight wi is
obtained after normalization.

The entropy weight wi of the ith factor is calculated as:

f i �
1 − ei

m − ∑m
i�1ej

(16)

wi � f i
∑m

i�1f i
(17)

Framework Conceptualization
The framework of theWNB-based wildfire risk assessment model
is as shown in Figure 4.

1) Initialize the sample table, that is the proportion n of fire-
spot samples and the proportion m of non-fire-spot samples, in
which n +m � 100%. And set the maximum sampling times,
Mis = 100.

2) Extract the fire-spot samples and non-fire-spot samples,
and the value of wildfire-related factors in 1 km × 1 km grids by
using ArcGIS 10.4.

3) Establish a training set and a test set for the model. The
training set is formed by randomly selecting 75% of the fire-spot
and non-fire-spot samples. The test set is formed by the
remaining 25% of the samples. Naïve Bayes conditional
probability is estimated based on the training set. And the
optimal threshold is determined by observing the Receiver
Operating Characteristic (ROC) curve to establish the
confusion matrix, as shown in Supplementary Table S4.

The accuracy Pa, recall Pr, precision Pp and Fβ score of the test
set under this sampling ratio are calculated, according to Eqs 18–21.

Pa � TP + TN
TP + TN + FP + FN

(18)

Pr � TP
TP + FN

(19)

Pp � TP
TP + FP

(20)

Fβ � (1 + β2)PrPp

β2Pp + Pr
(21)

Considering the higher tolerance of the fake wildfire events for
power grids, β � 3 is used.

4) Set the thresholds of Pa, Pr, Pp and Fβ as 0.75 to find the Most
Accurate Sampling Table (MAST) by using the forward sorting
algorithm. Only the sampling tables whose performance meets
the requirement of thresholds can be included in the sampling
table database. The conditional probabilities of factors under
the fire and non-fire conditions are then evaluated.

5) Calculate the factor weights by using the entropy method.

FIGURE 4 | The wildfire risk assessment model framework on WNB.
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6) Establish the WNB-based wildfire risk assessment model,
by combining the conditional probability and factor
weight.

RESULTS AND DISCUSSION

According to the importance rank of information gain ratio, some
factors contribute little to the wildfire risk assessment. Therefore,
the factor with the lowest information gain ratio is deleted one by
one to obtain the Optimal Factor Set (OFS). The optimal WNB
model is then established by the OFS. At the same time, an NB
model, as well as a BNW model with the same factors, are
established for comparison.

The Optimal Factors Set and the Most
Accurate Sampling Table
The entropy weights of wildfire-related factors during the
formation of OFS are shown in Table 2.

The performance of the WNB models under different factor
sets is compared by using the 825 new fire-spot samples and an
equal number of non-fire-spot samples in 2020. With the optimal
threshold, the performance measures of the model under
different factor sets are shown in Figure 5.

As can be seen from Figure 5, the two factors of aspect and
DR have been deleted, and the Pa, Pr, Pp and Fβ scores of the
model have improved to a certain extent. They all reach the
optimal state. As more factors are reduced, the Pr and Fβ

scores of the model reduce stepwise. Therefore, the top 12
factors of the information gain ratio are selected to form the
OFS, and the MAST is obtained through 100 iterations. By
using the OFS and MAST, the final accuracy Pa is 0.7566,
recall Pr is 0.7661, precision Pp is 0.7728, and Fβ the score is
0.7667. The prior probability of fire and non-fire is 0.53 and
0.47, respectively. The conditional probability table is shown
in Figure 6.

The conditional probabilities of factors under fire and non-fire
conditions differ from each other, indicating different effects on
the wildfire. Therefore, these 12 types of wildfire-related factors
can be used to evaluate the wildfire risk of the research area.

Comparison of BWN, NB, and WNB
The BNW can solve the uncertainty of evaluating wildfires by
combining the prior conditional probability and the relationship
between factors (Jiang et al., 2016; Albuquerque et al., 2017; Bates
et al., 2021). However, the network complexity may be time-
consuming and storage-consuming of the model. The NB, based
on the assumption of conditional independence, can improve
computational efficiency but sacrifices the predicting accuracy.
By adding the different weights into factors, the WNB could
compensate for the influence of different factors on the results
and form a budget method with both plausibility and efficiency.
In order to compare the assessment performance of the proposed
WNBmodel, a BWNmodel and an NBmodel are also established
based on OFS.

Wildfire Risk Assessment Model Based on BNW
and NB
To build a BNW-based wildfire risk assessment model, the
appropriate BNW structure should be established firstly

TABLE 2 | Entropy weight under different factors.

Number 14 13 12 11 10 9 8 7 6

Vegetation types 0.1138 0.1210 0.1303 0.1378 0.1477 0.1576 0.1682 0.1875 0.2034
Land-usage types 0.1304 0.1387 0.1493 0.1580 0.1693 0.1806 0.1927 0.2149 0.2331
Fire-spot density 0.0866 0.0922 0.0992 0.1050 0.1125 0.1200 0.1280 0.1428 0.1549
Population density 0.0980 0.1042 0.1121 0.1186 0.1271 0.1357 0.1447 0.1614 0.1750
Fuel load 0.0799 0.0850 0.0914 0.0967 0.1037 0.1106 0.1180 0.1316 0.1427
GDP 0.0509 0.0541 0.0582 0.0616 0.0660 0.0705 0.0752 0.0838 0.0909
Annual temperature 0.0473 0.0503 0.0541 0.0573 0.0614 0.0655 0.0699 0.0779 0
DS 0.0699 0.0744 0.0800 0.0847 0.0908 0.0969 0.1033 0 0
Annual precipitation 0.0452 0.0481 0.0517 0.0547 0.0586 0.0626 0 0 0
Elevation 0.0485 0.0516 0.0555 0.0587 0.0629 0 0 0 0
NDVI 0.0552 0.0588 0.0631 0.0668 0 0 0 0 0
Slope 0.0480 0.0511 0.0550 0 0 0 0 0 0
DR 0.0666 0.0709 0 0 0 0 0 0 0
Aspect 0.0598 0 0 0 0 0 0 0 0

FIGURE 5 | The accuracy Pa, recall Pr , precision Pp and Fβ score of the
model under different factor sets.
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(Sevinc et al., 2020; Penman et al., 2020; Wu et al., 2018). The
BNW structure consists of factor nodes, connecting lines, and
arrows. The data of factor nodes are provided by the most
accurate sampling table, which guarantees the optimal state of
nodes. The connection line and arrow are determined by the
causal correlation of two nodes. The relationship between
wildfire-related factors is obtained by Pearson correlation

analysis (Supplementary Table S5). When the absolute
value of a Pearson coefficient is higher than 0.1, it is
considered to have a certain relationship between two
factors. For example, the Pearson coefficient between GDP
and population density is 0.719, indicating a strong positive
correlation between the two factors. According to the
literature, population density affects the distribution of

FIGURE 6 | The conditional probability table of fire and non-fire (Red is fire and gray is non-fire).

FIGURE 7 | The model framework based on BNW.
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GDP, so the arrow points from population density to GDP.
The connecting lines and arrows between the factors in BNW,
as well as the prior probability between factor nodes, are
obtained, shown in Figure 7.

The structure of the NB model is much simpler, in which all
factor nodes only points to fire events node, as shown in Figure 8.

Receiver Operating Characteristic Curve
The Receiver Operating Characteristic (ROC) curve is drawn
based on a series of binary classification results. In the ROC
curve, the True Positive Rate (TPR) is the ordinate whereas the
False Positive Rate (FPR) is the abscissa. The Area Under ROC
Curve (AUC) can be used to represent the classification
performance of the model. The performance of the classifier
is better when the AUC is larger. The TPR and FPR are
calculated as:

TPR � TP
TP + FN

(22)

FPR � FP
FP + TN

(23)

In order to compare the performance of three Bayesian
models, fire-spots from 2010 to 2019 and non-fire-spots are
randomly extracted in equal proportions to calculate the
probability of wildfire. According to the threshold of fire and
non-fire, the ROC curves are constructed, as shown in Figure 9.

It can be clearly seen that the AUC of the NB model is the
smallest, indicating the worst classification effect. The AUC of the
BNW, NB, and WNB classifiers are 0.8446, 0.7973, and 0.8383
respectively. The points marked in curves are the Optimal Division
Threshold (ODT). Under the ODT, the TPR of the WNB model
and BNW model is nearly identical and is higher than that of the
NBmodel. The FPRs ofWNB, NB, and BNW are relatively similar.

According to the analysis of theROCcurves, bothWNBandBNW
models have a good performance in classifying the fire and non-fire
events. But the intercoupling of factors, the establishment, and
calculation processes of the BNW analysis is complicated and
time-consuming, andthe classification performance of the model
strongly depends on the reasonability of structure. The WBN
strengthens the effects of important factors and weakens the
influence of redundant relationships on model performance by
assigning different weights to the factors. It not only considers the
interrelationship of factors but also reduces the complexity of
calculation. Therefore, the classification performance of the WNB
model is similar to that of BNW but has a simple structure and
shortened calculation speed.

Wildfire Risk Assessment
By using the established WNB, NB, and BNW models, the
posterior probabilities of wildfire risk of the grids in the
research area are estimated. And the statistics of probability
results are shown in Supplementary Table S6.

The distribution of estimated probabilities by different
models is very different in the research area, indicating that
the grading method may have an important impact on wildfire
risk assessment. Therefore, four different grading methods, that

FIGURE 8 | The model framework based on NB.

FIGURE 9 | The ROC curve of WNB, NB, and BNW.
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is equal interval, quantile, natural breaks, and geometric
interval, are compared. Among them, the equal interval
method divides the probability distribution of wildfire risk
into four equal sub-ranges. The quantile method allocates
division intervals into an equal proportion. The natural
breaks method, which was proposed by Jenks (Anchang
et al., 2016, suggests that the distribution can be divided into
groups with similar nature by the natural turning points or
breakpoints between any series of populations. It collects the
greatest similarities inside the groups, and used the greatest
difference to separate the groups. The principle of the geometric
interval method is to establish segmentation hyperplanes by
maximizing the distance between the hyperplane and the
nearest sample (Peng and Wang, 2009).

By using the grading methods, the wildfire risk of grids is then
classified into four levels, Low-risk, Medium-risk, High-risk, and
Very-high-risk, based on the results of poster probability. For
comparison, the fire spots in 2020 are used as the criterion to
identify whether they fall into a region with high-risk or very-
high-risk levels. The accuracy of the four grading methods is
shown in Figure 10.

With the four grading methods, the accuracy of the BNW
model differs remarkably. The accuracy reaches the highest
(0.7636) by using the quantile method, whereas it is only
0.6642 using the grading methods of equal intervals and
natural breaks. This means the predicting performance of the
BNW-based wildfire risk assessment model is sensitive to the
grading method. On the other hand, the accuracy results of the
NB and WNB models are relatively stable with different grading
methods. Specifically, the accuracy of theWNBmodel is all above
0.76 with either grading method, indicating that the WNB model
is stable and adaptable.

Compared to the other three grading methods, the geometric
interval method ensures an approximate same number of values
in each grading range and a consistent variation between
intervals. It is believed to be a compromise between the equal
interval method, the quantile method, and the natural breaks
method. Therefore, the geometric interval method is selected as
the grading standard for visualizing the wildfire risks of the
research area. By using the geometric interval method, the

accuracy of the three Bayesian models is 0.7418, 0.7515, and
0.7636, respectively.

The Visualization of Wildfire Risk Assessment Models
Based on the grading results of the geometric interval method, the
distribution of wildfire risk levels based on BNW, NB, and WNB
models are visualized by using ArcGIS Software, as shown in
Figure 11.

It can be found that no matter which Bayesian model is
adopted, the overall risk distribution of the study area is
roughly similar. This is mainly because the three kinds of
Bayesian networks all use the same OFS and MAST and the
sampling results objectively reflect the actual situation of the
study area. The High-risk and Very-high-risk regions are
generally distributed at the south and southeast of the study
area. However, in some local areas, the assessment results of
different models differ. For instance, in the result of the BNW
model, the regions of a, b, and c have a larger area that is assessed
to be the Very-high-risk. The Very-high-risk areas in NB and
WNB models are much more scattered in the local regions, as
shown in Figure 12. This may be caused by the mutual coupling
of factors considered in the BNW model. Most factors have
spatial continuity and surrounding relevance, so when the BNW
model is used for assessment, the results would be smoothed. The
NBmodel treats the factors independently, so the results are more
scattered. Since WNB emphasizes some wildfire-related factors,
the dispersion of the results lies between the NB model and the
BNW model.

The proportions of grid areas and the fire spots from 2015 to
2021 under the four levels are summarized in Table 3. When
using the geometric interval method for grading the poster
probabilities of risk assessment, the low-risk and very high-
risk occupy a larger proportion than the rest two risk level in

FIGURE 10 | The accuracy comparison of the four grading methods.

FIGURE 11 | The distributions of wildfire risk levels based on BNW, NB,
and WNB.
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the BNW model. The total area of these two risk levels accounts
for 60.36% of the whole region. The area proportions of the four
risk levels are more evenly distributed in the results of the NB and
WNBmodels. In WNB-based risk assessment, 86.28% of the fire-
spots fall in the high-risk and very high-risk region, which is
much higher than that of BNW (76.43%) and NB (82.78%).

Considering the area and accuracy at the same time, the
assessment performance of the BNW model is the worst. In
total, 48.57% of fire spots falls in the High-risk and Very-high-
risk area, which accounts for 47.35% of the total research region.
By defining the predicting efficiency as the ratio of accuracy and
the area proportion of the High-risk and Very-high-risk area, the
predicting efficiencies for BNW, NB, and WNB models are 1.61,
1.69, and 1.73, separately. The WNB model exhibits the highest
efficiencies for wildfire risk assessment, which is very helpful for
the monitoring, inspection, and prevention of wildfires by
relevant departments.

CONCLUSION

1) The importance of 14 types of wildfire-related factors is ranked
through the information gain ratio. The vegetation type, land-
usage type, and fire-spot density are the three most important

factors that affect the occurrence of wildfires. The aspect and DR
have few effects on the risk assessment of wildfire occurrence.

2) The deletion of less important factors and establishment of a
Most Accurate Sampling Table can improve the assessment
performance of the WNB model. The best accuracy of the
WNB model is 0.7566 by deleting the aspect and DR factors.

3) Compared to the BNW and NB model, the WNB model has
the best predicting efficiency for fire-spots assessment. By
using the geometric interval grading method, a total of 86.44%
of the fire-spots fall in the high-risk and very high-risk regions,
and the predicting efficiency is 1.72.
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