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During shale gas reservoir development, obtaining actual formation pressure is
challenging; therefore, it is challenging to obtain a single well production allocation
using the current formation pressure based on a productivity equation. Different shale
gas reservoirs with different rock adsorption properties and the traditional Langmuir
isotherm adsorption equations are not accurate in describing the adsorption properties
of shale gas reservoirs, causing significant errors. BET multimolecular adsorption,
considering the shale gas surface fractal dimension theory to describe the adsorption
properties, can describe the adsorption surface as a multimolecular layer and regard
adsorption using a fractal dimension, describing the adsorption property of shale gas more
accurately. According to the core adsorption test data and theory, the actual BET
multimolecular adsorption is established by considering the shale gas surface fractal
dimension. Therefore, the actual material balance equation was obtained using the theory,
establishing the relationship between the formation pressure and cumulative shale gas
production. A time-independent distribution and cumulative gas production chart were
formed using the productivity equation. Consequently, the material balance equation,
which takes advantage of the BET multimolecular fractal theory, was conducted. This
allocation production method obtained from the material balance equation has significant
importance in shale gas development.
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Abbreviations: A and B, coefficient of binomial productivity equation and dimensionless parameter; Bg , natural gas volume
factor,m3/m3; Bgi , original volume factor of shale gas,m3/m3; Bw , formation water volume factor,m3/m3;C, constant related to
the energy of adsorption and liquefaction; Cm , shale rock compressibility factor of the matrix system; Mpa−1; Cf, rock
compressibility factor of the fracture system, Mpa−1; Cw , formation water compressibility factor of the shale gas reservoir,
Mpa−1;Ds,—fractal dimension of the adsorption surface;Gf , surface free volume of the shale gas reservoir fracture system,m3;
Gm , surface free volume of the shale gas reservoir matrix system,m3;M,—salinity of formation water,mg/L; n, adsorption layer
of the gas surface;N1, adsorption capacity of layer One;Ni , adsorption capacity of layer i; p0, saturated vapor pressure, MPa;
Pcd , critical desorption pressure,MPa; Pi , original formation pressure,MPa; PS , pressure,MPa × 10; Rs , natural gas solubility
in the formation water, m3/m3Rsi, original formation water solubility of the shale gas reservoir,m3/m3; Swf , water saturation of
the shale gas reservoir fracture system, %; T, temperature, °C; VS , single well control volume of the shale rock, m3; x, relative
pressure p

p0
, MPa/MPa; ρs, density of shale, g/cm3.
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INTRODUCTION

Shale gas reserves comprised free, adsorbed, and dissolved gases,
of which free and adsorbed gases are the main parts
(Taghavinejad et al., 2020); (Mengal and Wattenbarger, 2011);
(Huang and Zhao, 2017); (Boadu, 2000); (Sanyal et al., 2006);
(Curtis, 2002); (Jenkins and Boyer, 2008). In this regard, the study
of shale gas adsorption behavior is significant to reservoir volume
calculation and development (Huang and Zhao, 2017); (Shao
et al., 2017); (Wu et al., 2015). Currently, the Langmuir isotherm,
BET equations, and other modified Langmuir and BET equations
predominantly describe the adsorption behavior (Li et al., 2020);
(Jaroniec et al., 1989); (Zhang et al., 2015). The classic Langmuir
equation assumes that methane is monolayer-adsorbed, and the
surface of the adsorbent is homogeneous with constant
adsorption heat (Langmuir, 1918); (Langmuir, 2015). The
adsorption behavior of shale gas is complex, and Langmuir’s
isotherm adsorption equation is too ideal and cannot describe it
accurately. The BET adsorption theory considers the adsorption
surface as a multilayer, and the adsorption capacity of every layer
is the same (Myers, 1968); (Brunauer et al., 1940); (Zhou et al.,
2019); (Myers and Prausnitz, 1965); (Ritter and Yang, 1987);
(Dang et al., 2020). To simulate the enrichment and production of
methane in shale gas reservoirs, an accurate gas adsorption model
is critically required (Chareonsuppanimit et al., 2012), (Clarkson
and Haghshenas, 2013), (Huang et al., 2018a). Fortunately, the
BET multi-molecular fractal theory, considering the surface
fractal dimension of shale gas, can describe adsorption more
accurately by considering the multilayer and fractal dimension of
shale gas adsorption (Brunauer et al., 1938), (Wang et al., 2022),
(Chai et al., 2019), (Zheng et al., 2019), (Wang et al., 2016), (Fan
and Liu, 2021). Therefore, the material balance equation can
enhance the accuracy of future reservoir prediction about reserves
and formation pressure based on the adsorption theory (Zhang
et al., 2017), (Canel and Rosbaco, 2006), (Fianu et al., 2019).

Ambrose et al., (2012), (Xiong et al., 2021), and (Memon et al.,
2020) combined the Langmuir adsorption isotherm with the
volume for free gas and formulated a new gas-in-place
equation accounting for the pore space occupied by the
adsorbed phase; however, the adsorption surface layer and
fractal dimension were not considered (Pang et al., 2019). The
material balance equation proposed by Daniel et al. (Orozco and
Aguilera, 2015) simultaneously considered stress-dependent
porosity and permeability, free gas, adsorbed gas, and
dissolved gas but also excluded the adsorption surface layer
and fractal dimension. Usually, the material balance equation
combined with the shale gas productivity equation is used to
calculate the reservoir reserves and conduct the relevant model
for predicting the production rate and formation pressure versus
time (Sun et al., 2019), (Gu et al., 2014), (Hu et al., 2019). The
shale gas well allocation is usually based on this method to carry
out well productivity tests (Deng et al., 2014), (Wheaton, 2019).
According to the test, the shale gas well binomial productivity
formula is determined. If the present reservoir pressure is
calculated by the material balance equation, then the actual
open flow capacity of a single well can be calculated. The
reasonable gas well allocation is also determined. Nevertheless,

practical reservoir production requires convenient and efficient
allocation progress. The aforementioned method aims at a certain
moment, is complex, and cannot satisfy the practical production
needs. Therefore, finding an efficient and convenient shale gas
allocation method for the whole well life is necessary.

Huang et al. (2018b) proposed a new method. Shale
reservoirs were depicted by the De Swaan dual porosity
model, where the secondary and hydraulic fractures were
characterized by discrete units to conduct the shale gas
well productivity equation. This method can calculate more
efficiently than the Eclipse simulator. Furthermore, it can
describe the complex fracture network more correctly even
though the calculating process and single shale gas well
allocation of every production moment are complex. Sang
et al. (2014) used a numerical model considering desorption
and adsorption processes to establish and solve, under polar
coordinates and Laplace space, respectively, predicting the

FIGURE 1 | Actual isotherm adsorption curve of shale gas Block XX.

FIGURE 2 | Curve of the gas volume factor versus formation pressure of
shale gas Block XX.
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productivity of volume-fractured horizontal wells in shale gas
reservoirs. This model can predict the production rate versus
time, but the allocation production of the single well cannot be
obtained. At present, the existing allocation methods
combining the material balance equation with productivity
formula cannot offer well the allocation of well life and satisfy
the convenience of practical allocation apart from numeric
simulation, decline analysis, and so on (Huang et al., 2018b);
(Arps, 1945). As for the adsorption of shale gas reservoirs, we
adopted the BET multi-molecular fractal theory. Creatively,

we developed a material balance equation based on the BET
multi-molecular fractal theory, considering the dissolved gas
of the formation water. Furthermore, we combined this new
material balance equation with the productivity equation to
obtain single well allocation production versus cumulative gas
production for the well life cycle. As a result, we can offer the
shale gas development worker an allocation plate, and there is
no need for paying attention to complex equations about the
well and gas reservoir properties. In a word, this method can
not only calculate the adsorption gas volume but also propose

TABLE 1 | Test data of shale gas Block XX.

Sample Pressure (MPa) Adsorption volume
(m3/t)

Sample Pressure (MPa) Adsorption volume
(m3/t)

Sample 1 0.38 0.16 Sample 8 0.38 0.36
1.04 0.29 1.04 0.73
2.21 0.45 2.21 1.18
4.28 0.64 4.28 1.59
6.21 0.77 6.21 1.82
8.67 0.8 8.67 2
10.83 0.82 10.83 2.07

Sample 2 0.38 0.22 Sample 9 0.38 0.36
1.05 0.44 1.04 0.73
2.25 0.66 2.21 1.18
4.31 0.88 4.28 1.59
5.91 0.93 6.21 1.82
8.56 1 8.67 2
10.86 1.06 10.83 2.07

Sample 3 0.37 0.13 Sample 10 0.38 0.38
1.03 0.24 1.04 0.95
2.24 0.4 2.21 1.5
4.13 0.56 4.28 2
6.24 0.61 6.21 2.27
8.62 0.72 8.67 2.46
10.85 0.77 10.83 2.54

Sample 4 0.35 0.27 Sample 11 0.38 0.47
1 0.61 1.04 1.03

2.26 0.93 2.21 1.67
4.33 1.17 4.28 2.38
6.27 1.25 6.21 2.66
8.74 1.27 8.67 2.91
10.85 1.3 10.83 2.98

Sample 5 0.38 0.24 Sample 12 0.38 0.47
1.04 0.45 1.04 1.03
2.27 0.64 2.21 1.67
4.28 0.77 4.28 2.38
6.26 0.93 6.21 2.66
8.67 0.96 8.67 2.91
10.77 1.06 10.83 2.98

Sample 6 0.38 0.24 Sample 13 0.38 0.38
1.04 0.45 1.04 0.94
2.21 0.69 2.26 1.46
4.28 0.96 4.28 1.85
6.21 1.09 6.21 2.11
8.67 1.14 8.67 2.35
10.83 1.14 10.67 2.47

Sample 7 0.38 0.32 Sample 14 0.38 0.36
1.04 0.62 1.08 0.88
2.21 0.94 2.21 1.48
4.28 1.19 4.37 2.08
6.21 1.33 6.26 2.32
8.67 1.44 8.67 2.56
10.83 1.53 10.86 2.64
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a convenient and fast life cycle allocation method for shale gas
reservoirs.

MATERIAL BALANCE EQUATION OF A
SHALE GAS WELL BASED ON THE BET
MULTI-MOLECULAR FRACTAL THEORY
The material balance equation of the confining shale gas reservoir
was established by considering the reservoir as a fracture-matrix
dual system and the dissolved gas in the formation water to obtain
the chart of shale gas dynamic allocation production.
Furthermore, the BET multimolecular and fractal adsorption
theory described the gas adsorption behavior.

The Actual Isotherm Adsorption Curve of
Shale Gas Block XX
Brunauer et al. (1940) proposed the BET multimolecular
adsorption theory in 1940, and it was an addition to the
Langmuir monolayer molecular adsorption equation. The
assumption of the BET multimolecular adsorption theory is as
follows:

1) The gas adsorption is multimolecular, and it does not have to
cover the first layer completely and then the second.

2) The heat of adsorption (E1) of the first layer is a certain value;
the other is the liquefaction heat (EL) of the adsorbate.

3) The adsorption and desorption of the adsorbate are exposed
on the surface of the gas phase directly.

TABLE 2 | Formation physics and fluid property of Well #1 shale gas Block XX.

Parameter Symbol Unit Value Parameter classification

Surface-free volume of the shale gas reservoir matrix system Gm m3 Gm + Gf � 1.97 × 107 Shale gas geological parameter
Surface-free volume of the shale gas reservoir fracture system Gf m3

Original volume factor of shale gas Bgi m3/m3 0.0069

Formation water compressibility factor of the shale gas reservoir Cw Mpa−1 0.000453
Shale rock compressibility factor of the matrix system Cm Mpa−1 0.000419

Original formation water solubility of the shale gas reservoir Rsi m3/m3 0.647887
Original formation pressure Pi MPa 48.6
Water saturation of the shale gas reservoir fracture system Swf % 45
Rock compressibility factor of the fracture system Cf Mpa−1 0.000419
Formation water volume factor Bw m3/m3 0.993262

Density of shale ρs g/cm3 2.65
Critical desorption pressure Pcd MPa 12.58
Single well control volume of the shale rock VS m3 4,382 × 104

Natural gas volume factor Bg m3/m3 Variable Shale gas geological parameter

Present solubility of formation water Rs m3/m3 Variable
Coefficient of the binomial productivity equation A Dimensionless parameter 1.8633 × 10–8 Test parameter
Coefficient of the binomial productivity equation B Dimensionless parameter 5.78 × 10–3

FIGURE 3 | Formation pressure versus the cumulative gas production
double logarithm chart of Well #1 shale gas Block XX.

FIGURE 4 | Allocation production versus the cumulative gas production
double logarithm chart of Well #1 shale gas Block XX.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8298004

Qiu et al. Shale Gas Development

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Consequently, the BET multimolecular adsorption expression
is described in Eq. 1.

V

Vm
� Cx[1 − (n + 1)xn + nxn+1

(1 − x)[1 + (C − x) − Cxn+1]. (1)

In the equation, x is the relative pressure p
p0
, p0 is the saturated

vapor pressure, n is the adsorption layer of the gas surface, and C
is the constant related to the energy of adsorption and
liquefaction.

Eq. 2 shows the relationship of the adsorption capacity
between layers i and One proposed by Fripiat et al., (1986)
and (Zhou et al., 2019) based on numeric simulation.

fi � Ni

N1
� i−(Ds−2). (2)

In Eq. 2, Ds is the fractal dimension of the adsorption surface,
N1 is the adsorption capacity of layer One, and Ni is the
adsorption capacity of layer i. Therefore, the BET
multimolecular adsorption, considering the fractal dimension
of the adsorption surface expression, was obtained as Eq. 3.

V �
VmC∑

i�1

n

i2−Ds ∑
j�i

n

xj

1 + C ∑
i�1

n

xi

. (3)

According to Eq. 3, the actual isotherm adsorption curve of
shale gas Block XX can be obtained by regression, as shown in Eq.
4, and Figure 1 shows the curve. The gas adsorption test data is
showed in Table 1. According to the regression results, we
obtained the following conclusions. The adsorption volume of
shale gas Block XX was 1.19924 m3/t, and the constant related to
the energy of adsorption and liquefaction was 9.86193, based on
the fractal dimension 2.5 and the layer of surface molecular
adsorption 3 (Figure 1).

V � 1.19924

9.86193 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P

P0
+ ( P

P0
)2

+ ( P

P0
)3

+

22−2.5(( P

P0
)2

+ ( P

P0
)3) + 32−2.5( P

P0
)3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1 + 9.86193 × [( P

P0
) + ( P

P0
)2 + ( P

P0
)] . (4)

Material Balance Equation of Shale Gas
Block XX
The assumption of the material balance equation of shale gas
Block XX is as follows:

1) The shale gas reservoir is an isotherm system; in other words,
the reservoir temperature is unchanged during exploitation.

2) The water saturation of the matrix and fracture system is
different.

3) There is no formation of water to be produced.

According to the principle of the material balance equation,
the underground volume of the produced shale gas comprised

underground expansion, including free gas, formation water,
rock, dissolved gas of formation water underground volume
variation of the matrix, and fracture system. For the shale gas
reservoir, it included the underground adsorption gas volume
variation of the matrix system. When the shale gas reservoir
proceeded to desorption, the material balance equation was as
shown in Eq. 5.

GpgBg � Gm(Bg − Bgi) + GmBgi
CwSmwi

1 − Smwi
(Pi − P)+

GmBgi
Cm

1 − Smwi
(Pi − P) + GmBgi

(1 − Smwi)Bw
Smwi(Rsi − Rs)Bg+

Gf(Bg − Bgi) + GfBgi
CwSfwi
1 − Sfwi

(Pi − P)+

GfBgi
Cf

1 − Sfwi
(Pi − P) + GfBgi(1 − Sfwi)Bw

Sfwi(Rsi − Rs)Bg

+ρsVS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vm

C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pcd

P0
+ (Pcd

P0
)2

+ (Pcd

P0
)3

+ 22−Ds((Pcd

P0
)2

+ (Pcd

P0
)3)

+32−Ds(Pcd

P0
)3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1 + C[ P

P0
+ ( P

P0
)2

+ ( P

P0
)3]

−

C
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P

P0
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P0
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+ ( P

P0
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+ 22−Ds(( P
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1 + C[ P

P0
+ ( P

P0
)2

+ ( P

P0
)3]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(5)

The high-pressure fluid parameter testing of shale gas Block
XX regressed the relationship between the gas volume factor
and formation pressure. Eq. 6 shows the function, and Figure 2
shows the curve of the gas volume factor versus the formation
pressure.

Bg � 0.22919P−0.902. (6)
The empirical formula of the formation water property is as

suggested by Yuanqian (Chen, 1990) and (Myers and Prausnitz,
1965), as shown in Eq. 7.

Rs � (T,M, P) � −3.1670 × 10−10T2 × M + 1.997 × 10−8T × M
+1.0635 × 10−10P2

S × M − 9.7764 × 10−8PS × M + 2.9745 × 10−10T × PS × M
+1.6230 × 10−4T2 − 2.7879 × 10−2T − 2.0587 × 10−5P2

S+1.7323 × 10−2PS + 9.5233 × 10−6T × PS + 1.1937.

(7)

In the equation, Rs is the natural gas solubility in the formation
water (m3/m3). T is the temperature (°C). PS is the pressure
(MPa × 10), and M is the salinity of formation water (mg/L).

PRACTICAL MATERIAL BALANCE
EQUATION OF SHALE GAS BLOCK XX

Based on the BET multimolecular adsorption theory equation
(Eq. 4) of shale gas Block XX, the practical material balance
equation of the shale gas Block XX can be established by
considering the dissolved gas of formation water and
adsorption of shale gas. The practical material balance
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TABLE 3 | Cumulative gas production versus the formation pressure and single well allocation production.

Cumulative gas production (m3) Formation pressure (MPa) Allocation (m3/d)

2,560,459 42 68,913
3,336,274 40 66,310
4,112,330 38 63,735
4,888,812 36 61,191
5,665,926 34 58,684
6,443,905 32 56,218
7,223,014 30 53,799
8,003,557 28 51,432
8,785,884 26 49,127
9,570,407 24 46,891
10,357,608 22 44,735
10,752,390 21 43,691
11,148,069 20 42,672
11,544,735 19 41,680
11,942,493 18 40,716
12,341,457 17 39,782
12,741,758 16 38,882
13,143,541 15 38,016
13,546,976 14 37,189
13,952,255 13 36,401
14,116,546 12.6 36,098
14,676,689 12.55 36,060
15,045,356 12.53 36,045
15,596,469 12.5 36,023
17,421,447 12.4 35,949
21,040,933 12.2 35,802
24,626,119 12 35,656
28,175,327 11.8 35,513
31,686,804 11.6 35,371
35,158,721 11.4 35,231
38,589,165 11.2 35,093
41,976,138 11 34,957
45,317,553 10.8 34,823
48,611,233 10.6 34,691
51,854,902 10.4 34,560
55,046,184 10.2 34,432
58,182,599 10 34,306
61,261,559 9.8 34,182
64,280,362 9.6 34,060
67,236,190 9.4 33,940
70,120,077 9.2 33,822
72,940,198 9 33,706
75,688,122 8.8 33,593
78,360,507 8.6 33,481
80,953,874 8.4 33,372
83,464,591 8.2 33,265
85,888,877 8 33,161
88,222,791 7.8 33,058
90,462,228 7.6 32,958
92,602,913 7.4 32,860
94,640,393 7.2 32,765
96,570,033 7 32,671
98,387,010 6.8 32,581
100,086,302 6.6 32,492
101,662,682 6.4 32,406
103,110,711 6.2 32,323
104,424,729 6 32,242
105,598,839 5.8 32,163
106,626,904 5.6 32,087
107,502,526 5.4 32,013
108,219,034 5.2 31,942
108,769,462 5 31,873
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equation of Well #1 Block XX was obtained from Eq. 8 by
substituting Eqs 6 and 7 into Eq. 5.

Gpg × 0.22919P−0.902 � Gm(0.22919P−0.902 − Bgi)+
GmBgi

CwSmwi

1 − Smwi
(Pi − P) + GmBgi

Cm

1 − Smwi
(Pi − P)+
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.

(8)

According to the formation of physics and fluid properties
(Table 2), the practical material balance equation can be
established, and a double logarithm chart (allocation versus
cumulative gas production) can be obtained. Therefore, the
allocation of a single shale gas well can be calculated according
to the cumulative gas production using the chart in the
progress of shale gas exploitation.

From the productivity test data, the gas well productivity
equation was as in Eq. 9.

P2 − P2
wf � Aq2 + Bq. (9)

The 1/5 times of the gas well open flow was often used as the
allocation in situ production; therefore, the production allocation
formula was as in Eq. 10.

q � 1
5
· (−B + ����������������

B2 + 4A(P2 − 0.12)√
2A

). (10)

CASE STUDY

As the description of the practical material balance equation of
shale gas Block XX, at first, the shale gas material balance
equation is conducted, considering multimolecular fractal
adsorption about the single shale gas well. Second, the
binomial productivity equation is obtained by regressing the
productivity test data. Third, cumulative gas productivity is
substituted into the first step regarding the material balance
equation in order to obtain the present reservoir pressure.
Fourth, the pressure is substituted into the second step
productivity equation, and the single well allocation can be
calculated. Finally, the abovementioned steps are repeated, and
then, the allocation plate allocation production versus cumulative
gas production double logarithm is drawn. According to the plate,
the practical allocation process is guided quickly. The specific
procedures are as follows.

Figures 3, 4 and Table 3 show the cumulative gas production
chart versus formation pressure and single well production
allocation chart taking advantage of Eqs 8–10.

By viewing the cumulative gas production in Figure 4, the
allocation production can be obtained. Through analysis, in
Figure 3, the decrease in the formation pressure on the
cumulative gas production was gentle, and the allocation on
cumulative gas production decreased similar to that in
Figure 4 when the shale gas reservoir entered desorption.
Thus, the formation pressure can keep well after desorption,
and shale gas had a long dependable crop time.

CONCLUSION

Based on the practical BET multimolecular adsorption,
considering the fractal dimension of the adsorption surface, a
production allocation chart about Well #1 shale gas Block XX can
be established using the material balance equation. The
conclusions are as follows:

1) The adsorption volume of the shale gas Block XX was
1.19924 m3/t, and the constant related to the energy of
adsorption and liquefaction was 9.86193, based on the
fractal dimension 2.5 and the layer of surface molecular
adsorption 3.

2) According to the production allocation chart of Well #1 shale
gas Block XX, before the shale gas reservoir entered the
desorption, the desorption pressure decreased faster, and
the cumulative gas production increased slowly. However,
when the reservoir entered the desorption stage, the decrease
in the formation pressure was gentle, despite the low
formation pressure. Furthermore, the shale gas production
allocation can maintain a certain time, indicating that most
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shale gas of the production well was exploited during the
desorption stage.
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