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It is challenging to deal with the optimal scheduling problem of the multi-regional integrated
energy system (MIES) precisely and efficiently due to its multi-dimensional nonlinear
characteristics. This article proposes an iterative linearization approach to solve the
complicated and nonlinear MIES optimization problem with a well-balanced trade-off
between accuracy and computation efficiency. In particular, the proposed approach is a
combination of the modified piecewise linearization (PWL) tactic and the sequential linear
programming (SLP) algorithm. The modified PWL method is developed to improve the
speed-accuracy trade-off of the linearization, while the SLP algorithm is used to linearize
the multi-dimensional nonlinear functions and narrow the approximation error iteratively. In
this way, accurate but highly nonlinear formulations such as heat network models in the
variable flow and variable temperature (VF-VT) mode can be considered in the optimization
and solved efficiently. Finally, the effectiveness of the given approach is validated in a day-
ahead optimal scheduling case of a four-region MIES.
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1 INTRODUCTION

Integrated energy system (IES) can improve the overall efficiency by cascade utilization and
optimized dispatch among all types of energy (Mancarella, 2014). Besides, it is capable of
reducing the renewable energy curtailment via its superiority of flexible conversion and various
storage (Huang et al., 2020a). Many researchers focus on the optimal scheduling of IES to explore the
synergistic benefits of multi-energy utilization. The result of the optimal scheduling can indicate how
to maximize system performance, thereby aiding decision-making. The multi-regional integrated
energy system (MIES) considers both transregional transmission networks and multiple regional
subsystems, whose configurations are usually represented by energy hub (EH)models. Therefore, the
formulated optimization problem of MIES is more difficult to calculate than that of a single energy
system because of its large-scale, nonlinear, and non-convex features.

When dealing with the aforementioned optimization problems, the existing commercial solvers
are usually inefficient and may meet convergence problems. Simplifications of models are usually
taken to ensure solvability. Geidl and Andersson (2005) firstly integrates multiple EHs with three
energy networks, which simplify the problem by removing transmission constraints. In Shabanpour-
Haghighi and Seifi (2015a) and Shabanpour-Haghighi and Seifi (2015b), although a model of the
heat network is taken, the hydraulic conditions of pipelines are not considered, which may lead to
inaccuracy in the result. Moreover, the energy conversion efficiencies of EHs’ devices are kept as
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constants for simplicity in most EH-related research, which
makes the model less accurate (Sheikhi et al., 2015; Zhang
et al., 2015b; Moeini-Aghtaie et al., 2013). To sum up, for the
optimal scheduling problem of MIES, the precise model usually
introduces strong nonlinearity and makes the problem non-
solvable or inefficient to calculate; the simplified model makes
the calculation affordable but has non-ideal accuracy. Therefore,
a trade-off between accuracy and computing efficiency is
required, with the goal of maintaining the acceptable
performance while removing the unnecessary features.

Linearization and convex relaxation are two mainstream
solutions to achieve the aforementioned trade-off. In recent
years, convex optimization draws considerable interest because
of its global optimality and computation efficiency. Convex
relaxation techniques such as second-order cone (SOC)
relaxation and semidefinite relaxation are proved to be
effective when dealing with the optimization problem of IES
(Manshadi and Khodayar, 2018b,a). In particular, the SOC
formulation is frequently applied on the branch flow equation
in power systems and the Weymouth equation in natural gas
networks because of its guaranteed tightness (He et al., 2017; Liu
et al., 2018; Wang et al., 2017a). However, currently it is not
effective in dealing with the model of heat network or equipment
like the gas compressor. The piecewise linearization (PWL) tactic
is another classic method to deal with nonlinearity. It is under
development earlier and more applicable for different situations.
Taylor’s expansion based PWL is widely utilized in some
literature (Shao et al., 2016). However, it has a non-ideal
performance when dealing with the gas flow function,
especially when the pipeline is light-loaded (Liu et al., 2020).
Besides, Conventional PWL approaches are inefficient when
dealing with multi-dimensional nonlinear functions. Taylor’s
expansion based PWL method combined with the Big M
method is usually adopted to tackle this kind of problem
(Zhang et al., 2015a). However, this method is proved to be
less accurate than other methods (Bao et al., 2019). A three-
dimensional linearization method based on the Special Order of
Sets (SOS) tactic is proposed in Liu et al. (2020), which introduced
numerous continuous and binary variables to formulate the
problem. However, the number of piecewise segments need to
be limited to keep the computation affordable, which actually
harms the accuracy. Moreover, the multi-dimensional modeling
process is complicated and time-consuming, which is not efficient
to be implemented in a large and complex system. In summary,
previous studies on linearization are not sufficient for the MIES
with respect to the following aspects. 1) The PWL method carries
an additional computation burden due to its stepwise segments.
Besides, the performance of several PWL formulations varies. A
thorough comparison and analysis of these methods are needed.
2) With the increase of the dimension of nonlinear problems in
IES scheduling, the traditional PWL method is inefficient in
dealing with multi-dimensional nonlinear functions and needs
to be improved. 3) The linearization of the heat network model is
always oversimplified, resulting in lower optimization accuracy
(Geidl and Andersson, 2005; Shabanpour-Haghighi and Seifi,
2015a,b). Among all the heat network control modes, including
constant flow and constant temperature (CF-CT), constant flow

and variable temperature (CF-VT), variable flow and constant
temperature (VF-CT), and variable flow and variable temperature
(VF-VT), the variable flow and variable temperature (VF-VT)
mode has greater flexibility and controllability but more severe
nonlinearity in its mathematical model. As a result, while
previous research presented effective IES scheduling strategies,
the majority of them validated the optimal operation of the heat
network based on the assumption of constant temperature (CT)
(Shao et al., 2017) or constant mass flow rate (CF) (Liu et al.,
2019) to avoid the introduction of quadratic terms. The linearized
form of the heat network model in the VF-VT mode has not been
realized yet.

To bridge the aforementioned gaps, an iterative linearization
approach for optimal scheduling of MIES is proposed. The main
contributions are summarized as follows:

1. The PWL method is improved with vertical and horizontal
modifications. It outperforms other methods in precision and
computational efficiency because the same accuracy can be
achieved with fewer segments.

2. An iterative linearization approach based on a combination of
the modified PWL method and the sequential linear
programming (SLP) algorithm is proposed, which can solve
the problem with multi-dimensional nonlinear features
efficiently.

3. With the aid of this approach, models with strong convexity
are considered to improve the overall accuracy and solved
within acceptable time, including thermal and hydraulic
models of heat network in VF-VT mode and nonlinear EH
models.

The remainder of this paper is organized as follows. Section 2
denotes the formulations of the nonlinear models. Sections 3 and
4 present the modified PWL method and the iterative approach,
respectively. Optimization results are compared and analyzed in
Section 5. Finally, conclusions are drawn in Section 6.

2 MATHEMATICAL MODEL FORMULATION

2.1 Model of Electrical Network
To better fit the power rating of regional energy conversion
equipment, the DistFlow model is selected instead of the DC
power flow model (Molzahn et al., 2017). The DistFlow model
owns better accuracy than the DC power flow model, especially
for radial distribution networks. It contains voltages and reactive
power, and allows nonzero resistance (Low, 2014). The balance
equations of nodal active and reactive power are given as Eqs 1
and 2, respectively.

Pij � rijIij − Pj + ∑
u:j→u

Pju (1)

Qij � xijIij − Qj + ∑
u:j→u

Qju (2)

where i, j and u indicate indexes of buses in the electrical network;
Pij andQij denote the active and reactive power flow (MW,MVar)
from bus i to bus j; Pju and Qju are the active and reactive power
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flow (MW, MVar) from bus j to bus u; Pj and Qj are the nodal
injection active and reactive power (MW, MVar) of bus j; rij and
xij are the resistance and reactance (Ω) of transmission line; Iij is
the squared value of branch current (kA). The nodal voltage
equation, the branch power flow equation and the voltage and
current constraints are described in Eqs 3 and 4 and Eq. 5,
respectively.

Vj � Vi − 2 rijPij + xijQij( ) + r2ij + x2
ij( )Iij (3)

IijVi � P2
ij + Q2

ij (4)
Vmin

i #Vi#Vmax
i , Imin

ij #Iij#Imax
ij (5)

whereVi andVj are the squared values of nodal voltage (kV);Vmin
i

and Vmax
i are the lower and upper limits of Vi; Imin

ij and Imax
ij are

the lower and upper bounds of Iij.

2.2 Model of Natural Gas Network
In a general natural gas network, the components usually consist
of the gas source (connected with the upper network),
transmission pipelines, storage devices, and gas loads. The
nodal balance of gas flow is given as Eq 6.

vsFs − vlL + vpFp + vcFcom + vcFcon � 0 (6)
where Fs, L, Fp, Fcom and Fcon indicate the gas flow vectors of
source, loads, pipelines, compressors, and the consumption of
compressors respectively; vs, vl, vp and vc are incidence matrices
of gas source, loads, transmission pipelines and compressors for
each node. The pressure drop equation, the constraints of nodal
pressure and the constraints of gas flow in pipelines are given as
Eqs 7 and 8 and 9, respectively.

Fp,mn � sgn m, n( )Cmn

��������
π2
m − π2

n

∣∣∣∣ ∣∣∣∣√
, sgn m, n( )

� +1, πm − πn( )P0
−1, πm − πn( )< 0{ (7)

πmin
m #πm#πmax

m , πmin
n #πn#πmax

n (8)
Fmin
s,m#Fs,m#Fmax

s,m , Fmin
p,mn#Fp,mn#Fmax

p,mn (9)
wherem and n indicate indexes of nodes in the gas network; Fp,mn

is the gas flow (kcf/h) of pipeline mn; Cmn is the coefficient of the
pressure drop equation for pipeline mn; πm and πn are nodal gas
pressures (Psig); πmin

m , πmin
n , πmax

m , πmax
n are the lower and upper

bounds of nodal pressures (Psig); Fs,m is the gas flow (kcf/h) of
source at nodem; Fmin

s,m and Fmax
s,m are the minimum and maximum

of Fs,m; Fmin
p,mn and Fmax

p,mn are the lower and upper gas flow limits of
pipelinemn. The consumption of the gas compressor powered by
gas are given in Eq. 10, and 11. Equation 12 is derived from
substituting Eq. 10 into Eq. 11, eliminating the variable Hcom,mn,
which represents the horsepower of compressor. The equation of
compression ratio is given as Eq. 13 and its upper and lower
bounds are expressed in Eq. 14.

Fcom,mn � Hcom,mn

k1,mn
πn
πm
[ ]αmn − k2,mn

(10)

Fcon,mn � acon,mn Hcom,mn( )2 + bcon,mnHcom,mn + ccon,mn (11)

Fcon,mn � acon,mn k1,mn
πn

πm
[ ]αmn

− k2,mn( )Fcom,mn( )2

+bcon,mn k1,mn
πn

πm
[ ]αmn

− k2,mn( )Fcom,mn( ) + ccon,mn

(12)

Rcom,mn � πn

πm
(13)

Rmin
com,mn#Rcom,mn#Rmax

com,mn (14)
where Fcom,mn is the gas flow (kcf/h) of compressor on pipe mn;
Hcom,mn is the horsepower of compressor; k1,mn, k2,mn and αmn are
the empirical parameters of compressor; Fcon,mn is the gas
consumption (kcf/h) of compressor on pipeline mn; acon,mn,
bcon,mn and ccon,mn are the consumption coefficients of
compressor; Rcom,mn is the compression ratio of compressor,
with its lower and upper limits indicated by Rmin

com,mn and
Rmax
com,mn.

2.3 Model of District Heating Network
District heating network is generally composed of supply
pipelines and return pipelines (Liu et al., 2016). The continuity
of flow equation, the loop pressure equation and the head loss
equation are expressed as Eqs 15, 16 and 17, respectively. The
loop head loss equation is given as Eq. 18, derived by substituting
Eq. 17 into Eq. 16. The constraints of mass flow rates and head
losses are given in Eqs 19 and 20, respectively.

Amline � mnode (15)
Bhf � 0 (16)

hf � Kmline|mline| (17)
BKmline|mline| � 0 (18)
mmin

line#mline#mmax
line (19)

hmin
f #hf#hmax

f (20)
where A denotes the incidence matrix of the heat network,
relating the nodes to branches; mline is the vector of mass flow
rates (kg/s) of pipelines, with its lower and upper limits indicated
by mmin

line and mmax
line ; mnode is the vector of mass flow rates (kg/s)

through each node, charged from a heat source or discharged to a
heat load; B is the incidence matrix of loops, relating the loops to
branches; hf is the vector of head losses (m) of pipelines, with its
lower and upper bounds represented by hmin

f and hmax
f ; K is the

vector of resistance coefficients of pipelines. The general heat
transfer equation is expressed as Eq. 21. The temperature drop
equations in the supply network and the return network are given
as Eqs 22 and 23. The nodal mixture temperature equation is
described as Eq. 24. The constraints of nodal temperatures in the
supply network and the return network are given as Eqs 25
and 26.

Φ � Cpmnode Ts − To( ) (21)
Tq,supply � Tp,supply − Ta( )e− λpqLpq

Cpmline,pq + Ta (22)

Tq,return � Tp,return − Ta( )e− λpqLpq
Cpmline,pq + Ta (23)

∑mout( )Tout � ∑ minT in( ) (24)
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Tmin
p,supply#Tp,supply#Tmax

p,supply (25)
Tmin
p,return#Tp,return#Tmax

p,return (26)
where p and q indicate indexes of nodes in the heat network;mnode is
the vector of the mass flow rate (kg/s) at each node injected from a
source or discharged to a load; Φ is the vector of heat power (MW)
consumed at each node;Cp is the specific heat of water (MJkg−1°C−1)
at constant pressure; Ts and To are vectors of temperatures (°C) of
the injected and discharged water flow to each load; In the
temperature drop Eqs 22, 23, Tp,supply and Tq,supply are nodal
temperatures (°C) of supply networks; Tp,return and Tq,return are
nodal temperatures (°C) of return networks; Ta is the ambient
temperature (°C); λpq is the coefficient of heat transfer
(MWm−1°C−1) of pipeline pq; Lpq is the length (m) of pipeline;
The nodal mixture temperature equation is shown in Eq. 24, where
mout andmin are the vectors ofmass flow rates (kg/s) of water leaving
or coming into each node, with their corresponding temperatures
(°C) indicated by Tout and Tin respectively; T

min
p,supply and T

max
p,supply are

the minimum and maximum of Tp,supply; T
min
p,return and Tmax

p,return are
the lower and limits of Tp,return.

2.4 Model of Energy Hub
To eliminate the nonlinear problem brought by the dispatch factor,
auxiliary state variables are introduced to represent each energy flow
inside theEH(Wang et al., 2017b).A typical framework of EH is shown
in Figure 1. The modified coupling equation of EH is given as Eq. 27.

F1

F2

F3

F4

F5

0
0
0
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 1 0

ηcec 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 ηhhp 0 0 0 0 0 0 −1 −1 0 0

0 0 0 ηechp 0 0 −1 0 0 0 0 0 0

0 0 0 ηhchp 0 0 0 −1 0 0 0 0 0

0 0 0 0 ηhgb 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 ηcharhs 0
−1
ηdishs

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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p

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

ΔE
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(27)

where F1 to F5 and f1 to f12 are the outer and inner energy flows
(kW h) of the EH; ΔE is the stored energy (kW h) in the heat
storage (HS) tank; ηcec, η

h
hp, η

e
chp, η

h
chp, η

h
gb, η

char
hs , ηdishs are the energy

conversion efficiencies of electric chiller (EC), heat pump (HP),
combined heat and power (CHP) unit (electrical output), CHP
unit (heat output), gas boiler (GB), HS (charging) and HS
(discharging), respectively. Through this modification, the
connection and conversion relationships are integrated into
one coupling matrix, which provides considerable flexibility
and simplicity to the modeling process without introducing
more elements like energy buses and virtual nodes into the
modeling process (Liu et al., 2020).

2.5 Objective Function and Problem
Formulation
In the system of networked EHs, the heat power of district heat
network is supplied by EHs, while EHs are powered by electricity
and gas from the upper networks. The objective function can be
described as Eq. (28).

Cop � ∑Nt

t�1
PinCin − PoutCout +MgasCgas( ) (28)

where t is the index of hour; Cop is the total cost (¥) of the whole
system during 24 h; Nt denotes the total scheduling time periods,
which is set as 24 in this study; Pin, Pout and Mgas are the
purchasing electrical power (kW h), selling electrical power
(kW h) and gas flow (kcf) at gas source; Cin, Cout and Cgas are
the corresponding prices (¥/kW h, ¥/kcf) for Pin, Pout and Mgas.

Objective function: 28( ), s.t. 1( ) − 27( ) (29)
The formulated problem is a complicated mixed integer nonlinear
programming (MINLP) problem, which can hardly be solved by
existing commercial solvers. Therefore, a modified PWLmethod is
proposed in the next section to transform part of theMINLPmodel
(one-dimensional nonlinear functions) into theMILP formulation,
which can reduce the computation difficulty.

3 LINEARIZATION METHODOLOGY

3.1 Modified Piecewise Linearization
Method
In this section, a modified PWL method is proposed, with improved
performance of accuracy and computation efficiency (verified in the last
subsection) among popular PWL tactics, such as Taylor’s expansion
based approximation (TEBA) method (Zhang et al., 2015a; Shao et al.,
2016), Special Order of Sets (SOS) method (Liu et al., 2020) and binary
method (Huang et al., 2020b). The proposed PWLmethod is based on
the binary method with horizontal and vertical modifications, which
are introduced in the following subsections.

3.1.1 Binary PWL Method
Through the PWL approximation, the general form of one-
dimensional nonlinear function F(X) can be reformulated into
the linearized function L(X). The equations of its independent

FIGURE 1 | Framework of single EH.
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variable, dependent variable, and segment range are described as
Eqs 30, 31, and 32, respectively.

X � X0 +∑N
k�1

σk (30)

L X( ) � F X0( ) +∑N
k�1

Kkσk (31)

Zk+1 · Xk −Xk( )≤ σk ≤Zk · Xk −Xk( ) (32)
where k is the index of segment;N is the total number of segmentsX is
a continuous variable;X0 is theminimumofX; σk is the value of the kth
segment of X; Kk is the coefficient of the kth segment of L(X); Zk and
Zk+1 are binary variables to guarantee the continuity ofX and L(X);Xk

and Xk are the upper and lower limit of the kth segment of X.

3.1.2 Horizontal Modification
The accuracy of the PWL approximation depends greatly on the
selection of breakpoints. The precision of the approximation can
be further improved by adding more piecewise segments.
However, the addition of segments leads to a substantial
increase in the computational burden. Therefore, the strategy
of breakpoint selection is modified here, from the evenly-spaced
selection, to the selection at the maximum error of linear
approximation. The approximation error is shown as:

E � L X( ) − F X( ) (33)
where E is the error of piecewise linearization. The initial
breakpoint is determined when the maximum error occurs at
zE/zX = 0. The following breakpoints are ranked and selected
sequentially according to the maximum errors of their own
ranges, as illustrated in Figure 2. This process is conducted
iteratively until the maximum piecewise segment is reached or
the approximation error is less than the predefined tolerance.

3.1.3 Vertical Modification
Based on approximation error value, a vertical modification has been
implemented on the PWL approximation, which is denoted in Eq. 34.

L′ X( ) � L X( ) −
∑N

k�1∫xk

xk−1
L X( ) − F X( )( )dX
∑N

k�1σk

(34)

where L′(X) is the modified formulation of L(X) after vertical
modification; xk−1 and xk are the (k−1)th and kth breakpoint for

L(X). This modification can further reduce the approximation
error, with its demonstration shown in Figure 3.

3.2 Linearization of Nonlinear Constraints
In this subsection, the above-mentioned modified PWL approach
Eqs (30)–(34) will be implemented on one-dimensional
nonlinear functions.

3.2.1 Modified Model for Gaseous Constraints
Variable substitutions of θm � π2m, θn � π2

n,φmn � θm − θn are
performed to replace the original gas flow function Eq. 7 by
Eq. 35. In this way, a dimension reduction is applied to the
nonlinear function, which simplifies the linearization process.

Fp,mn � sgn φmn( )Cmn

����
φmn

∣∣∣∣ ∣∣∣∣√
(35)

Besides, the substitution is applied to the variable constraints,
which converts Eq. 8 into Eq. 36.

πmin
m( )2 − πmax

n( )2 ≤φmn ≤ πmax
m( )2 − πmin

n( )2 (36)
The pressure drop equation is finally reformulated as

φmn � sgn Fp,mn( )Fp,mn
2

Cmn
2 (37)

The modified PWL method is then carried out on Eq. 37.

3.2.2 Modified Model for Hydraulic Constraints
The hydraulic models, including the equations of pipelines’
thermal resistance, friction factor, diameter, Reynolds number,
and flow velocity, are given as Eq. 38, 39, 40, and 41, respectively.

FIGURE 2 | Horizontal Modification for PWL method.

FIGURE 3 | Vertical Modification for PWL method.
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Kpq � 8Lpqfpq

Dpq
5ρ2π2g

(38)

fpq � 0.3164
Repq

0.25 (39)

Repq � vpqDpq

μ
(40)

vpq � mline,pq

ρπD2
pq/4 (41)

where Kpq, fpq, Dpq, Repq and vpq are the resistance coefficient,
friction factor, diameter (m), Reynolds number and flow
velocity (m/s) of pipeline pq; ρ is water density (kg/m3); g is
the acceleration of gravity (kg·m/s2); μ is the kinematic
viscosity of water (m2/s). Eq. 42 is derived from
substituting Eqs. 38–41 into Eq. (18), where W denotes
vector of comprehensive coefficients.

BWmline|mline|3/4 � 0 (42)
The nonlinear term in Eq. 42 can be linearized by the

proposed PWL approach.

3.2.3 Modified Model for Energy Hubs
The capacities and conversion characteristics of the devices in the
EH depicted in Figure 1 are shown in Table 1 (Huang et al.,
2020b). The modified PWL method is applied to the nonlinear
curve of each device.

4 ITERATIVE LINEARIZATION BASED ON
SLP ALGORITHM

After the previous PWL section, the remaining multi-
dimensional nonlinear functions are handled with the SLP
algorithm in this section. The SLP obtains a feasible solution
from linearized models and fixes the linearization-related
inaccuracies by repeating the steps successively, leading the
approximation to reach the solution (Nocedal and Wright,
2006).

4.1 Framework of Linearization and Iteration
Process
The framework of the linearization process and iteration
approach is illustrated in Figure 4. In this framework, the
original MINLP model is partially linearized by the proposed

PWLmethod, and the remaining nonlinear functions are going
through the iterative linearization process. Several decision
variables are predefined to linearize these functions. The
variables include the current term Iij in Eqs 1–5, the
compressor ratio term Rcom,mn in Eqs 13, 14 and the nodal
temperature terms Tp,supply, Tp,return in Eqs 21–26. The
decision variables are updated through each iteration,
making sure that the error caused by approximation is
reduced sequentially. In this way, the model is totally
linearized and forms a computational affordable MILP
problem.

4.2 Selection of Decision Variables
4.2.1 Decision Variable in Electrical Constraints
As shown in the nonlinear electrical Equation 4, the quadratic
terms P2

ij and Q2
ij bring multi-dimensional nonlinearity into

this formulation, which make the model difficult to be
linearized. To solve this problem, Equation 4 is defined as
an auxiliary constraint, which does not participate in the
optimization directly but is used to update the value of Iij
repeatedly in the iteration process. Through this way, the term
Iij in Eqs 1–3 are set as constant, and thus these equations are
converted into linear formulations.

4.2.2 Decision Variable in Gaseous Constraints
The three-dimensional nonlinear function Eq. 12 is difficult to
linearize efficiently. In some works, the gas compressor’s
consumption is replaced by an empirical ratio multiplied
with the passing gas flow (Li et al., 2018). To avoid both
inaccurate approximation and inefficient linearization, a
hybrid method is adopted to calculate the consumption.
Firstly, Equation 13 is defined as an auxiliary constraint,
determining the value of compression ratio πn

πm
by iterative

process, which transform Equation 12 into a one-
dimensional function. Then, the proposed PWL method is
applied to this function to remove the nonlinearity of the
quadratic term.

4.2.3 Decision Variable in Hydraulic-Thermal
Constraints
It is obvious that the thermal Equations 21–24 contain variable
multiplications and exponential term, which introduce
nonlinearity and make the hydraulic-thermal model difficult
to solve. Also, common NLP and MINLP solvers met
convergence problems when trying to optimize this
integrated model. Therefore, Eqs 22–24 are treated as
auxiliary constraints, and the nodal temperature values
Tp,supply and Tp,return are determined according to the feasible
solution of each iteration. In this way, the hydraulic-thermal
model is transformed into a MILP format that supports rapid
iteration.

4.3 Iteration Procedure
After the previous linearization process, Eq. 29 is reformulated
into MILP form. An iterative approach based on SLP algorithm is
carried out to get the final solution. The specific details are
provided in Algorithm 1.

TABLE 1 | Parameters for devices in Figure 1.

Device Efficiency characteristics: y = f(x) Capacity (kW)

GB 3x 900
HP 0.8x 400
EC −0.000,030 41x3 + 0.019 01x2 + 0.259 3x 400
CHP Electric: 0.000,115 0x2 + 0.230 5x 720

Thermal: 0.0 001 611x2 + 0.322 8x
HS Charging: − 0.00 005x2 + 0.93x 800 (3.2 MWh)

Discharging: − 0.00 005x2 + 0.93x
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5 CASE STUDIES

5.1 Accuracy and Efficiency Verification for
the Proposed PWL Method
This subsection tests the performance of three mainstream PWL
methods and the proposed PWL method in an optimization
problem. The three PWL methods include Taylor’s expansion
based Approximation (TEBA) method (Zhang et al., 2015a; Shao
et al., 2016), Special Order of Sets 2 (SOS2) method (Liu et al.,
2020), and Binary method (Huang et al., 2020b). The
optimization problem is formulated as the day-ahead optimal
scheduling of single EH shown in Figure 1. The EH contains
two devices with linear efficiency curves and three devices with
nonlinear efficiency curves, shown in Table 1. The optimization
result is illustrated and compared in Figures 5 and 6.

It is worth noting that when the number of piecewise segments
gets large enough, all the methods obtain a relatively precise
approximation. However, a large number of segments is
impractical since the number of extra binary variables and
constraints has a considerable impact on computational
efficiency. Therefore, in this comparison, the maximum
segment is limited to 20. The benchmark values are derived
from directly solving the nonlinear problem by the nonlinear
programming (NLP) solver IPOPT.

Figures 5 6 compare the approximation accuracy and
computation efficiency of these four methods. The results
come from the average of 100 calculations. As shown in
Figure 5, the proposed method’s error drops fastest as the

FIGURE 4 | Framework of the linearization process and iteration approach.

Algorithm 1 | Iterative Algorithm Based on Sequential Linear Programming.

FIGURE 5 | Relative errors of four PWL approaches with increasing
segments.
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number of segments increases. In this case, the proposed method,
Binary method, SOS2, and TEBA, require 5, 10, 10, and more
than 20 segments, respectively, to achieve an error of less than
1%. It suggests that, given the same number of segments, the
proposed method’s accuracy is clearly superior to other
methods. As can be seen from Figure 6, the calculation time
of the proposed method, Binary method and TEBA is nearly the
same with the increasing segment number, while SOS2 requires
a larger computation time. Since the proposed method can
reduce the calculation error to an acceptable level with fewer
segments, its accuracy advantage can be converted into a boost
in computational efficiency.

5.2 Evaluation of Simulation Result
In this subsection, the numerical solution of the optimal
scheduling problem is analyzed to confirm the effectiveness of
proposed approach of iterative linearization. The demonstration

system in Figure 7 is composed of 4-bus electrical system, 7-node
natural gas network, 8-node district heating network (with looped
configuration of supply and return pipelines) and four EHs
representing different regional IESs, including residential area,
commercial area, industrial area and office area with specific
layout of equipment and load characteristics.

A set of cases are designed and tested to evaluate the
performance of the proposed method. Due to the heavy
nonlinearity, the original MINLP model in Eq. 29 is not
solvable for the mainstream solvers like FMINCON and
IPOPT (By replacing the binary variables bin with constraint
bin (1 − bin) = 0, the MINLP problem can be transformed into
NLP formulation, which expands the choices of solvers) (Yang
et al., 2020). Thus, the solution of the proposed method with high
numbers of iterations and piecewise segments is considered
accurate and taken as the reference value to compare with
other results. Simulation results are obtained from a PC with
an Intel Core of i5-7400U 3.00GHz CPU and 16GB RAM; the
YALMIP toolbox (Lofberg, 2004) has been used to develop the
optimization programs in Matlab R2019a; the solver for
nonlinear programming is IPOPT and the MILP problems are
solved by GUROBI.

• Case 1: The proposed method is carried out with the
convergence tolerance of 10−5 and the piecewise segment
of 30. The result is regarded as the benchmark value for
further comparison.

• Case 2: The MINLP model in Eq. 29 is implemented and
solved. To make sure that the original nonlinear model is
solvable, the conversion efficiencies for devices of EHs are
set as constants and the constraints of the heat network are
simplified according to (Shabanpour-Haghighi and Seifi,
2015a).

• Case 3: The proposed method is performed with the
convergence tolerance of 10−3 and the piecewise segment
of 10.

FIGURE 6 | Computation time of four PWL approaches with increasing
segments.

FIGURE 7 | Schematic of the system composed of four networked EHs.
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Table 2 presents a comparison of optimization results for
three different cases. The table shows that the calculation time
and relative error of Case 3 are significantly less than those of
Case 2, demonstrating the proposed method’s improved accuracy
and computation efficiency.

In terms of the calculation time, Case 3 has a clear advantage
due to its fast computation (due to its MILP formulation) and
fewer iterations. Case 2 is slow due to its MINLP property. In
terms of the relative error, Case 3 has good performance since the
modified PWL method and iterative approach fix the
approximation deviation. Case 2 has a high relative error of
11.694%, mainly because its model is not accurate enough. The
electrical and gaseous models are considered accurate because the
original nonlinear constraints are taken. The inaccuracy is mainly
introduced by simplifying the heating model (neglecting
hydraulic constraints and return pipelines) and constant
conversion efficiencies adopted for EHs.

Figure 8 shows the operating states of 4 EHs, obtained from
the optimization result of Case 3. It is worth noting that the
CHP unit in each region is given the highest priority for
operation due to its good economic performance. The HS
plays a vital role in EH3 and EH4, especially when
cooperating with HP. The HP generates heat and stores it

in the HS during the peak time of electricity, then the HS
release heat during the off-peak time of electricity. However,
the HPs are not active in EH1 and EH2 due to the absence of
HS. In EH4, the GB is heavily used during the day, while the
HP is active at night, since gas is relatively cheaper than
electricity in daylight hours.

Since the VF-VT model of heat network is adopted, the mass
flow of each pipe and the temperature of each node can be
obtained in the optimization, as illustrated in Figures 9 and 10.

Unlike the CF-VT mode, which is extensively utilized in
China, Russia, and part of Northern European countries, the
VF-VT mode can more flexibly manage the flow and thus alter
the total quantity of heat given to each node. In the study case, the
heat loads in regions one to four are mostly concentrated
throughout the daytime, and the peak load of the industrial
zone is significantly higher than that of other regions, posing
significant challenges to IES collaborative scheduling. As
demonstrated in Figure 10, each pipeline can vary its flow
dramatically with the VF mode to meet a load curve that
fluctuates greatly throughout the day. Among all the pipelines,
pipeline 4 has the highest flow and changes the most during the
day since it is mostly utilized to supply the heat load in the
industrial area.

TABLE 2 | Optimization result comparison for different cases.

Case Iteration Computation time(s) Convergence
tolerance

Optimal value ($) Relative error (%)

Case1 (s = 30) 32 92.929 1.00E-05 9,738.09 -
Case2 (NLP) 0 154.220 - 8,595.70 11.694
Case3 (s = 10) 2 3.934 1.00E-03 9,708.62 0.302

FIGURE 8 | Operation states of energy converters of four regional EHs.
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FIGURE 9 | Temperatures for each node in the heat network.

FIGURE 10 | Mass flow rate for each pipe in the heat network.

FIGURE 11 | Iterations of the proposed method in scenarios of fluctuating loads.
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5.3 Adaptability Analysis
Assume that loads of electricity, heat, and gas differ uniformly
with a proportion of 10% compared to the initial load values. The
Monte Carlo simulation method is adopted to produce 50
scenarios with fluctuating loading conditions.

Figure 11 demonstrates the variations of the solutions under
multiple scenarios. It is demonstrated that most scenarios
converge within two iterations. Only a few of them require
one or two more iterations, validating the convergence and
adaptability of the proposed approach.

6 CONCLUSION

This paper proposes a modified piecewise linearization (PWL)
method to improve the linearization performance and
combines it with the sequential linear programming (SLP)
algorithm to deal with the multi-dimensional nonlinear
problem. The formulated mixed integer linear programming
(MILP) problem is tested in a multi-regional integrated energy
system (MIES) including electrical, heat, and gas networks as
well as four energy hubs (EH) representing residential,
commercial, industrial, and office regions, respectively. The
results demonstrate that the iterative linearization method can
solve the optimal scheduling problem of a multi-region
integrated energy system accurately and efficiently while
keeping a modest number of segments and iterations. In
addition, the findings from this study make several
contributions to the current literature:

1. The method presented in this paper helps solve two kinds of
problems that are difficult to deal with by traditional PWL
methods. The first problem is the slowdown in computation
speed caused by the introduction of integer variables. In this
study, the PWL method is improved to accomplish the same
effect with fewer segments, minimizing the calculation time
increased by the additional integer variables. The other
problem is that dealing with multivariable nonlinear
equations is challenging using the traditional PWL method.
In this work, the PWL method is combined with the SLP
algorithm to transform a complex mixed integer nonlinear
programming (MINLP) problem into a MILP problem that
can be solved efficiently with the powerful state-of-the-art
MILP solvers.

2. The proposed method can achieve a more desirable trade-off
between accuracy and computational efficiency when solving
MILP problems, which is especially suitable for complex and
nonlinear multi-regional integrated energy system scheduling
problems. Compared with the original nonlinear model, the
newly formulated MILP model is computationally cheaper
with only a slight loss in accuracy. The results of the case study
show that the two factors that may slow down the
computational efficiency, namely segments and iterations,
can be kept within a tolerable range and hence have a
minimal effect on calculation performance.

Although the proposed algorithm has successfully
demonstrated its effectiveness in solving MINLP problems, it
lacks certain considerations in terms of time-scale interaction
mechanisms between multiple energy systems, as well as the time
delay and energy storage effect of gas/heating pipelines. Taking
these considerations into account, the proposed algorithm has
not been proven to be effective, which means it will be
investigated further in our future work.
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