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To improve the performance and economy of the hybrid energy storage system (HESS)
coordinating thermal generators to participate in automatic generation control (AGC), a
HESS bi-layer capacity configuration model that considers the control strategy and net
benefits of HESS is proposed. In addition, an improved mode-pursuing sampling (MPS)
optimization algorithm based on meta-model is presented to improve the accuracy of
model solving. In the lower layer, to improve the performance of HESS participating in
AGC, a model predictive control (MPC) strategy is presented to distribute HESS power
reasonably. Based on this, the upper layer develops a life-cycle net benefit model of HESS
participating in AGC to improve its economy. The bi-layer model realizes iterative
optimization of HESS capacity and operation through parameter transmission.
Furthermore, to improve the solution accuracy of the bi-layer model, the convergence
speed of the MPS algorithm is improved, so that the global search and local convergence
speed can be taken into account. The case study results show that the bi-layer model can
comprehensively consider the interaction between the economy and operating strategy of
HESS. The proposed MPC strategy has better frequency regulation performance and the
improved MPS algorithm has better solution performance.
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INTRODUCTION

Presently, with the increase of renewables penetration, the adjustment of automatic generation
control (AGC) commands is more intense (Akram et al., 2020; Ashouri-Zadeh et al., 2020; Bevrani
et al., 2021; Liu et al., 2021). However, the power response performance of traditional thermal
generators is poor and it is difficult to meet the frequency regulation requirements of power systems
with high penetration of renewable energy (Bryant et al., 2021), (Zhang et al., 2021). Generally, a
hybrid energy storage system (HESS) is composed of power-type energy storage with small energy
and energy-type energy storage with slow power response. It has the advantages of power and energy
response of various types of energy storage systems (ESS) and has better economy (Joshi et al., 2021),
(Luo et al., 2021). Coordinating the power of thermal generators through the HESS is an effective way
to improve the AGC performance of generators, which has a good engineering application prospect.
It can not only improve the power response performance of thermal generators, but also increase the
income of ancillary service (He et al., 2021). However, the capacity configuration cost and
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performance of HESS are contradictory. Meanwhile, the control
strategy of HESS is the key to improving the AGC performance.
Therefore, to improve the performance and economy of HESS,
the capacity configuration and control strategy of HESS are key
issues for HESS participating in AGC.

Researchers have been paying attention to the related fields of
ESS involved in frequency regulation. Relevant references have
studied the features of AGC commands and developed AGC
models, which provide a basis for further control and scheduling
of AGC participants (Qiu et al., 2021)–(Donadee and Wang,
2014). In (Qiu et al., 2021), stochastic differential equations were
used to model the uncertainty of AGC commands, which can be
used for AGC optimal scheduling or other issues. In (Zhang et al.,
2019), an AGC dynamics-constrained economic dispatch model
was proposed to provide a more reliable and economical
regulation reserve schedule. It can be applied to short-term
prediction or as a benchmark based on historical data.

The control strategy of HESS is one of the key issues in its
participation in AGC. The key issue to the HESS control strategy is
to improve the AGC performance of the “HESS-generator” system,
avoid the energy limitation of HESS, and prolong its lifetime. Most
existing studies are based on ESS as an independent AGC
participant, directly scheduled by the AGC controller (Yang
et al., 2022)–(Cheng et al., 2014). In (Yang et al., 2022), to
complete the frequency regulation service of battery energy
storage (BES) and effectively manage its state of charge (SOC), a
BESmulti-state control strategy was proposed, which considered the
interdependency between frequency regulation performance, SOC,
and lifetime of the BES. In (Xiong et al., 2020), to improve the
consistency of each ESS participating in AGC, a discrete prescribed
time consensus control strategy was proposed and an event triggered
communication protocol was presented to reduce the information
interaction between ESSs. In (Mégel et al., 2018), to improve the
dynamic performance of distributed batteries when following AGC
commands, a distributed battery energy management method
considering storage efficiency was proposed. However, it is also
an effective approach for ESS to participate in AGC by aiding
generators to respond to AGC commands (Xie et al., 2018)–(He
et al., 2022). Compared with ESS as an independent AGC
participant, this approach has many advantages, such as, easier
system update, will not affect existing controls, and the capacity
configuration is smaller. For example, based on this approach, (Xie
et al., 2018) proposed a method for BES to participate in frequency
regulation to improve the AGC performance of thermal generators.
In (Doenges et al., 2020), a BES control strategy was proposed to
improve AGC performance by minimizing the rate of non-
compliance with the corresponding dynamic performance
criteria. At present, there are few studies on ESS coordinated
generators and how they respond to AGC commands and most
of them are based on a single BES and there are even fewer studies on
capacity configuration and control strategies based on HESS.

Although HESS has advantages in power response,
participation in AGC may have a great impact on its lifetime,
resulting in high frequency regulation costs. To improve the
economy of HESS participating in AGC, optimizing its capacity
configuration is another key issue (Chen et al., 2016), (Wang
et al., 2022). (Chen et al., 2016) studied the BES capacity

configuration through a series of system-level performance
tests with different BES penetration rates. Furthermore, the
response effect of BES under different interference levels was
analyzed. (Wang et al., 2022) considered the interaction between
the battery degradation and the market clearing process and a bi-
level optimization model was proposed to optimize the
economics of ESS participating in frequency regulation
services. Since the operating strategy and capacity
configuration of HESS are related to each other, it is necessary
to jointly optimize them to improve the performance of HESS.
However, there is little research on it at present.

In this paper, considering the interaction between the
economy and operation strategy of HESS, an HESS bi-layer
capacity configuration method is proposed for HESS to
coordinate thermal generators to participate in AGC. First of
all, a bi-layer optimization model of HESS is formulated. In the
lower layer, to improve the AGC performance of HESS
participating in AGC, an MPC strategy is presented to
distribute HESS power. Based on this, the upper layer
develops a HESS net benefit model to optimize the economy
of HESS. The bi-layer model implements the iterative
optimization of HESS capacity and operation through
parameter transmission. Furthermore, to improve the solution
accuracy of the bi-layer optimization model, an improved MPS
algorithm based on the meta-model is presented. Simulation
results based on historical data show that the proposed HESS
bi-layer capacity configuration method is effective in both the
economy and operation control. The main contributions of this
paper are summarized as follows:

1) A bi-layer capacity configuration model of HESS is presented
to jointly optimize the economy and control strategy of HESS.

2) A model predictive control strategy of HESS is presented to
improve the performance of HESS participating in AGC.

3) A MPS algorithm with improved convergence speed is
presented, which take into account both the global search
and the local convergence speed.

The rest of this paper is organized as follows: Section 2
introduces the overview of the bi-layer capacity configuration
method, Section 3 introduces the presented MPC strategy in the
lower layer, HESS net benefit model in the upper layer is
presented in Section 4, the improved MPS algorithm is
discussed in Section 5, Section 6 presents the case study
results, and finally, conclusions are presented in Section 7.

OVERVIEW OF HYBRID ENERGY STORAGE
SYSTEM BI-LAYER CAPACITY
CONFIGURATION METHOD
In this paper, HESS is composed of flywheel energy storage (FES)
and lithium-ion batteries (LiB). Figure 1 presents the approach of
HESS-aided AGC and the proposed bi-layer capacity configuration
method. In this approach, HESS is not directly controlled by the
AGC controller but coordinates the generator to improve its AGC
performance.
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At present, the AGC performance evaluation of the State Grid
in North China implements the “Two Detailed Rules,” which is
formulated by the North China Power Regulatory Bureau (North
China Power Regulat, 2019). In the “Two Detailed Rules,” the
AGC performance index Kp is the comprehensive performance of
the three indexes of regulation rate K1, regulation accuracy K2,
and response rate K3, which respectively represent the
performance of different stages in an AGC cycle. The
performance index Kp of the ith adjustment Ki

p is calculated
as follows.

Ki
p � Ki

1 ·Ki
2 · Ki

3 (1)
According to the “Two Detailed Rules,” the performance index

Kp can be better improved only by comprehensively improving the
performance of the three indexes, rather than one or two indexes.
However, in an AGC cycle, due to the energy limitation of FES, it is
difficult to completely compensate the power difference between the
generator and the AGC command. Therefore, a reasonable
distribution of HESS power is the key to improving its
performance. Based on the prediction model of the controlled
object, MPC can minimize the impact of possible future
operating conditions by solving an optimal cost function. The
goal of HESS power distribution is consistent with the features of
the MPC strategy. Therefore, it is feasible to implement the MPC
strategy to realize the optimal control of HESS.

Another goal of HESS participating in AGC is to increase the
income of frequency regulation services. The economic benefits of

HESS include its cost and the increased frequency regulation
income due to the implementation of HESS. Therefore, in this
paper, the upper layer optimization model is formulated based on
the annualized net benefits of HESS in the project operating time.

In addition, because the bi-layer model is computationally
intensive and nonlinear, the solution requires a large amount of
computational consumption. Although the solution efficiency of the
MPS algorithm based on the meta-model is high (Xiao et al., 2018),
(Liu et al., 2018), it has the problem of aggressive convergence
evaluation, which is easy to fall into a local optimum before
generating enough exploratory points (Wang et al., 2004).
Therefore, in this paper, the convergence evaluation index is
modified and the convergence speed is dynamically adjusted, so
that the improved MPS algorithm can take into account the global
search and local convergence speed. All of these efforts are to
improve the accuracy and efficiency of solving the bi-layer model.

MODEL PREDICTIVE CONTROL
STRATEGY OF HYBRID ENERGY STORAGE
SYSTEM IN LOWER LAYER
In this paper, the HESS compensates the power difference
between AGC commands and the power output of thermal
generators. Its control objective is to reasonably distribute the
HESS power to coordinate thermal generators, so as to improve
AGC performance, prolong the lifetime of LiB, and improve
economy.

FIGURE 1 | Overview of the proposed bi-layer capacity configuration method.
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System Model of Hybrid Energy Storage
System-Aided Automatic Generation
Control
Assuming that the power demand of HESS at time k is Pd(k), then

Pd(k) � Pbat(k) + Pfl(k) + Pdif(k) (2)
Where Pbat (k) and Pfl (k) are the power of LiB and FES at time k,
respectively, and Pdif is the power difference between the AGC
command and the “HESS-generator” system.

The SOC of LiB and FES at k + 1 can be determined as follows:

SOCbat(k + 1) � SOCbat(k) − Pbat(k) · Δt/Ebat (3)
SOCfl(k + 1) � SOCfl(k) − Pfl(k) · Δt/Efl (4)

Where SOCbat and SOCfl are the SOC of LiB and FES respectively,
and Δt is the control cycle of the system. Pbat and Ebat are the
power capacity, and energy capacity of LiB, respectively, and Pfl
and Efl are the power capacity and energy capacity of FES,
respectively.

According to (2–4), the SOC of HESS is used as a state vector
and an output vector, such that x (k) = [SOCbat (k) SOCfl (k)]

T, y
(k) = [SOCbat (k) SOCfl (k)]T. The LiB power and the power
difference after compensation are used as a control vector, such
that u (k) = [Pbat (k) Pdif (k)]

T. The power demand of HESS is the
disturbance, such that w (k) = Pd (k), which can be obtained
according to the rated ramp rate of the generator. Therefore, the
system state-space model can be formulated as follows:

{x(k + 1) � Ax(k) + Bu(k) + B2w(k)
y(k) � Cx(k) (5)

Where A � C � [ 1 0
0 1

], B � [−Δt/Ebat 0
Δt/Efl Δt/Efl

],
B2 � [ 0

−Δt/Efl
].

Model Predictive Control Strategy for
Hybrid Energy Storage System
It is a multi-objective optimization problem for HESS-aided
AGC. The goal is to improve the AGC performance of the
generator, reduce the power fluctuation of LiB and the
compensated power difference, and keep the SOC of HESS
within a reasonable range. In summary, according to the
principle of MPC strategy, the cost function is formulated as
follows:

min J � ∑Np

i�1
(y(k + i) − yref)T · Q · (y(k + i) − yref)

+ ∑Np−1

i�0
u(k + i)T · R · u(k + i) (6)

Where Np is the prediction horizon. y (k + i) and u (k + i) are the
output vector and control vector of the ith prediction step at k,
respectively, yref is the reference of the output vector. Q and R are

the weight coefficient matrix of the cost function, respectively. Q,
R, and yref are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q � [Qsoc
bat 0
0 Qsoc

fl
]

R � [Rp
bat 0
0 Rp

dif
]

[yref(k)]1 � SOCbat(k)[yref(k)]2 � SOCfl(k)

(7)

Where Qsoc
bat, Q

soc
fl , R

p
bat, and Rp

dif are all greater than zero.
The four weight coefficients in the cost function will influence

different objectives and even contradict each other in different
scenarios. The larger the Qsoc

bat, the smaller the SOC change of LiB,
so the degradation of LiB can be reduced to prolong its lifetime.
Similarly, Qsoc

fl affects the SOC change of FES. The larger the
weight coefficient Rp

bat, the smaller the SOC change of LiB.
Similarly, the larger Rp

dif is, the output of “HESS-generator” is
as close to the power demand Pd as possible. Therefore, when
implementing the presented MPC strategy, it is necessary to
adjust them reasonably according to the performance.

To implement the presented MPC strategy, the state vector
and control vector of the system must meet certain constraints.

s.t. 1) SOC constraints. In every prediction step, the state of the
system must meet the SOC constraints of HESS, such that

{ SOCmin
bat <y1(k)< SOCmax

bat

SOCmin
fl <y2(k)< SOCmax

fl
(8)

Where SOCmin
bat and SOCmax

bat are the minimum and maximum
SOC constraints of LiB, respectively. SOCmin

fl and SOCmax
fl are the

minimum and maximum SOC constraints of FES, respectively.
2) Power constraints. In every prediction step, the state of the

system must meet the power constraints of HESS, such that

{−Pmax
bat <Pbat(k)<Pmax

bat

−Pmax
fl <Pfl(k)<Pmax

fl
(9)

Where Pmax
bat and Pmax

fl are the maximum power constraints of LiB
and FES, respectively.

3) System model constraints. To avoid the power circulation
inside the HESS and reduce the unnecessary charging/
discharging, Pd, Pbat, Pfl, and Pdif, should be the same
positive or negative values, such that

⎧⎪⎨⎪⎩
Pd(k) · Pdif(k)> 0
Pd(k) · Pbat(k)> 0
Pd(k) · Pfl(k)> 0

(10)

The optimization problem of Equations 6–10 can be
transformed into a standard quadratic programming (QP)
problem to obtain the control vector ui. The specific
transformation process can be found in the Supplementary
Material. Since the proposed MPC strategy of HESS is
implemented through a computer, it can be easily applied to
real-time control. Once the control vector ui is obtained, the
control vector u0 is used as the power output of the HESS to
compensate the generator.
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In addition, based on the presented MPC strategy, 1-day
historical power response data of a thermal generator is used
to implement HESS-aided AGC. Once the compensation results
are obtained, the operating parameters of the lower layer can be
obtained, which are the lifetime of LiB Tlt and the 1-day AGC
performance index Kp day, respectively. The Tlt can be obtained
from the SOC change of LiB in 1 day by the rain flow counting
method (Li et al., 2015), and theKp day can be obtained from the
compensation results based on the “Two Detailed Rules.”

ECONOMIC OPTIMIZATION MODEL OF
HYBRID ENERGY STORAGE SYSTEM IN
UPPER LAYER
Increasing the income of frequency regulation services is one of
the goals of HESS participating in AGC. The economy of HESS
includes the cost of HESS and the increased frequency regulation
income due to the implement of HESS. Therefore, the upper layer
takes the maximum annualized net benefits of HESS as the
optimization goal. The cost function is formulated as follows:

max Cben � Cinc − Ccost (11)
Where Cben is the annualized net benefit of HESS participating in
AGC, Cinc is the annual frequency regulation income of HESS,
and Ccos t is the annualized cost of HESS.

Annual Frequency Regulation Income of
Hybrid Energy Storage System Cinc
According to the “Two Detailed Rules”, the annual income of the
“HESS-generator” system GAGC when configuring HESS is as
follows:

GAGC � ∑365
i�1
(lnKi

p day + 1) ·Di
day · YAGC · ηi +∑365

j�1
Yhour · 24 · ηj

(12)
WhereKi

p day is the Kp value on the ith day, YAGC is the payment
standard for generators participating in AGC, and Yhour is the
payment standard for the available time of generators, both of
which are formulated by the local regulatory agency. η is the
proportion of the daily operation time of generators, and Di

day is
the daily regulation depth of the generator on the ith day.

Similarly, the annual income of frequency regulation services
without HESS can be calculated as follows:

GAGC
′ � ∑365

i�1
(lnK′ i

p day + 1) ·D′ i
day · YAGC · ηi + ∑365

j�1
Yhour · 24 · ηj

(13)
Where K′ i

p day and D′ i
day are the daily Kp value and daily

regulation depth of the generator without HESS, respectively.
The daily regulation depth is the sum of the power

adjustments of the “HESS-generator” system in response to
AGC commands in 1 day, which can be obtained as follows

Di
day � ∑b

j�1
Dj � ∑b

j�1

∣∣∣∣Pj − Pj−1
∣∣∣∣ (14)

When the power output of the system reaches the jth AGC
command, Pj in (14) is equal to the jthAGC command.When not
reached, Pj is the power output of the system when the (j + 1)-th
AGC command is received.

In summary, the annual frequency regulation income of HESS
is as follows:

Cinc � GAGC − GAGC
′ (15)

Annualized Cost of Hybrid Energy Storage
System Ccost
The annualized cost of HESS is the sum of annualized capital cost,
annual replacement cost, and annual maintenance cost. The
annualized capital cost of HESS is as follows:

Ccap � (cpb · Pbat + ceb · Ebat + cpf · Pfl + cef · Efl) · γCRF (16)

γCRF � γ · (1 + γ)Trt

(1 + γ)Trt − 1
(17)

Where cpb and ceb are the unit power cost and unit energy cost of
LiB, respectively, cpf and cef are the unit power cost and unit
energy cost of FES, respectively. Pbat and Ebat are the power and
energy of LiB, respectively. Pfl and Efl are the power and energy of
FES, respectively. γ is the interest rate. Trt is the operation time of
the “HESS-generator” project.

The replacement cost of HESS within the project operation
time is as follows:

Crep � (cpb · Pbat + ceb · Ebat) · nbat · γCRF (18)
Where nbat is times of LiB replacement in Trt, which can be
obtained according to the lifetime of the LiB Tlt, the calculation is
as follows:

nbat � ceil(Trt/Tlt − 1) (19)
Where the ceil (x) function refers to the smallest integer greater
than or equal to x,

since the lifetime of FES generally exceeds 20 years, the
replacement cost of FES is not considered.

The maintenance cost of HESS is as follows:

Cpm � cpm bat · Ebat + cpm fl · Efl (20)
Where cpm_bat and cpm_fl are the annual maintenance cost of LiB
and FES per unit capacity, respectively.

To meet the optimal power distribution in the lower layer, the
capacity configuration of HESS in the upper layer needs to meet
certain minimum power capacity and energy capacity
constraints.

s.t. 1) The power capacity and energy capacity limits of HESS
should be reasonably set according to the actual operating
conditions.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
0<Pbat <Pmax

bat

0<Ebat <Emax
bat

0<Pfl <Pmax
fl

0<Efl <Emax
fl

(21)

Where Pmax
bat , E

max
bat , P

max
fl and Emax

fl are the maximum power
capacity and energy capacity limits of LiB and FES according to
the actual operating conditions, respectively.

2) To improve the economy of HESS, according to Equation 2,
the sum of the power capacity of Pbat and Pfl should be less than
the maximum HESS power demand, which can be obtained
according to the historical data of AGC commands and
generators, such that

0<Pbat + Pfl ≤Pmax
d (22)

Where Pmax
d is the maximum HESS power demand in the

historical data.
The optimization variables of the upper-layer cost function are

the capacity parameters of HESS Pbat, Ebat, Pfl, and Efl. When the
upper layer is optimized to obtain a set of HESS capacity, the
lower layer is called to realize the optimal control of HESS. Then,
the optimal results of the lower layer are updated and returned to
the upper layer to repeat the upper-layer optimization, so as to
realize iterative optimization.

IMPROVED MODEL PREDICTIVE
CONTROL ALGORITHM

In the bi-layer optimization model, the lower layer is a QP
optimization problem. Although it is easy to solve, in this
paper, to obtain the control results of HESS in 1 day, it will
lead to a large amount of calculation consumption. As a result,
when solving the outer layer, traditional heuristic optimization
algorithms [such as particle swarm optimization (PSO)] need a
large number of calls to the lower-layer model, resulting in
reduced calculation accuracy or low efficiency. The key of
meta model-based optimization algorithm is to formulate a
meta model to replace the original complex model for
calculation. It can effectively reduce expensive calculation
times and improve solution efficiency.

In this paper, the MPS algorithm based on meta-model is
adopted, which is effective in solving computation-intensive
black box optimization problems. The MPS algorithm uses
multi-correlation coefficient R2 to evaluate the global
convergence and control the convergence speed. However, the
author also pointed out that it is risky (Wang et al., 2004) because
the index R2 may be aggressive for convergence speed control and
the optimization process may converge to a local optimum before
generating enough exploratory points. Therefore, an
improvement of convergence speed control factor is
implemented to address this issue in this paper.

The modification of the convergence speed control factor in
MPS is divided into two parts, which are the modification of the
multi-correlation coefficient R2 and the modification of the
convergence speed factor based on modified R2.

Modification of Multi-Correlation
Coefficient R2

In the process of formulating the response surface model (RSM)
in the MPS algorithm, the accuracy evaluation index of RSM
R2 ∈ (0, 1). The more R2 tends to 1, the higher the fitting
accuracy of the RSM model. However, an increase in the
number of variables tends to increase R2, but this does not
mean that the RSM model has been well fitted. That is, R2

approaching 1 does not necessarily mean a better fit, but it is
also related to the number of variables. Therefore, the global
convergence based on R2 evaluation index may cause the
optimization process to converge prematurely before
generating enough exploratory points, thus falling into a local
optimal solution.

Therefore, to be able to consider the influence of the number of
variables, the evaluation index R2 can be modified as follows:

R2
adj � 1 −

∑ns
i�1

(ŷi − �y)2/(ns − nt−1)2

∑ns
i�1

(yi − �y)2/n2s
(23)

Where R2
adj is the modified accuracy evaluation index of RSM, ns

is the sample size, and nt is the number of variables.
In (23), the quadratic form of nt is introduced to correct the

multi-correlation coefficient R2. The corrected R2 dynamically
decreases with the increase of the number of the sample size, so as
to increase more exploration points and avoid premature
convergence to a local optimum.

Modification of the Convergence Speed
Control Factor
The function of the convergence speed control factor is to
dynamically adjust the range of the search region according to
the accuracy of the RSM model. The increase of R2 means the
increase of the fitting accuracy of the RSM model, so the speed
control factor r will increase to generate more sample points in
the current region, thereby accelerating the convergence process.
On the contrary, if R2 decreases, r will tend to 1, thereby
expanding the sampling region to search for the global
optimum. Based on the above analysis, the Sigmoid function
has strong nonlinearity and its curve features are consistent with
the dynamic change requirements of r. Therefore, based on the
Sigmoid function, the r can be modified as follows:

radj � 2 · rmax

1 + e−α·(R2
adj

−1) + 1 (24)

Where rmax is the maximum value of radj, which can be set as an
empirical value through the MPS algorithm, α is an adjustment
coefficient, which can be adjusted according to rmax.

The nonlinear characteristic of the curve in (24) is shown in
Figure 2.

According to the above two stepmodification, the “greediness”
of the convergence speed control factor is dynamically adjusted,
so as to avoid the problems of premature convergence to a local
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optimum and slow convergence when finally converging to the
local optimum region.

The flow diagram of the proposed bi-layer capacity
configuration method is shown in Figure 3. The bi-layer
model realizes mutual iterative optimization through

parameter transmission. When the lower-layer LiB lifetime Tlt
and AGC performance indexKp day are obtained, the upper layer
optimizes the capacity configuration of HESS. When the HESS
capacity configuration of the upper layer is obtained, the lower
layer optimizes the power distribution of the HESS. The final
optimization results meet both the optimal capacity configuration
and optimal HESS control.

CASE STUDY

To verify the effectiveness of the proposed bi-layer capacity
configuration method, in this section, the historical data of a
thermal generator with poor AGC performance is used for
simulation analysis. The rated power Prate of the generator is
330 MW, located in North China. The control period Δt of the
generator is 3 s, the data sampling period is 1 s, and the generator

FIGURE 2 | Characteristic diagram of speed control factor radj (α = 5).

FIGURE 3 | The flow diagram of the proposed bi-layer capacity configuration method.
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participates in AGC throughout the day. The historical power
curves of thermal generators in response to AGC commands and
the capacity configuration analysis of HESS are presented in
Supplementary Material. The proposed models and algorithm
were validated based on MATLAB, and the parameter settings
(Zhang et al., 2020), (Han et al., 2014) are shown in Table 1.

Optimization Results of the Bi-Layer Model
Table 2 shows the HESS capacity results obtained using the bi-
layer capacity configuration method. Figure 4 shows the partial
results of the lower-layer optimization control under the optimal
capacity, where Figure 4A shows the HESS compensation results,
Figure 4B shows the power distribution of HESS, and Figure 4C
shows the SOC change of HESS in 1 day.

According to Figure 4B and Figure 4C, although the AGC
command fluctuates constantly, its average change is close to
zero. The HESS compensates for the power difference between
AGC commands and the generator. Its power output is

continuously charged and discharged with the change of AGC
commands, so the energy requirement of HESS is not high. This

TABLE 1 | Parameter settings in case study.

Variables Definition Values

Lower-layer MPC control parameters

Qsoc
bat Weight coefficient 0.1

Qsoc
fl Weight coefficient 10

Rp
bat Weight coefficient 0.1

Rp
dif Weight coefficient 0.1

SOCmin
bat Minimum SOC constraint of LiB 0.1

SOCmax
bat Maximum SOC constraint of LiB 0.9

SOCmin
fl Minimum SOC constraint of FES 0.05

SOCmax
fl Maximum SOC constraint of FES 0.95

rrate Rated ramp rate of generators 0.01*Prate

Np Prediction horizon 5
Δt Control period (s) 3

Upper-layer HESS configuration parameters

cpb Unit power cost of LiB ($/kW) 310
ceb Unit capacity cost of LiB ($/kWh) 625
cpf Unit power cost of FES ($/kW) 270
cef Unit capacity cost of FES ($/kWh) 4,000
cpm_b Unit capacity maintenance cost of LiB ($/kWh) 37
cpm_fl Unit capacity maintenance cost of FES ($/kWh) 210
γ Interest rate 0.05
Trt Project operating time (years) 20
YAGC Payment standard for AGC performance ($/MW) 0.71
Yhour Payment standard for available time of generators ($/h) 1.42
η Proportion of daily operation time 0.8

Improved MPS algorithm parameters

λ Number of iterations 50
α Adjustment coefficient of speed control factor 5

TABLE 2 | Capacity configuration results of HESS.

Parameters Before compensation After compensation

Pbat/(kW) — 3,092
Ebat/(kWh) — 1,015
Pfl/(kW) — 3,472
Efl/(kWh) — 79
Kp 2.42 5.15
Cben ($) — 948,000
GAGC ($) 2,857,000 5,121,000

FIGURE 4 | Results of the lower-layer optimization control (partial
results). (A) HESS compensation results. (B) Power distribution of HESS. (C)
SOC, change of HESS, in 1 day.
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feature also determines that a power-type ESS with a longer cycle
life can be used for compensation, so as to improve its economy.

According to the results in Figure 4 and Table 2, compared
with the AGC performance compensated by the generator alone,
the Kp is increased by 114% when HESS is configured using the
proposed method. Meanwhile, the annual frequency regulation
income of “HESS-generator” system is increased by 78.8%. Both
the AGC performance and frequency regulation income are
significantly improved. In addition, the annual net benefit of
HESS is US$ 948,000.

Performance Comparison of Different
Control Strategies
To verify the effectiveness of the presented MPC strategy, under
the optimal capacity configuration of HESS in Section 6.1, two
other control strategies are used for power compensation.

1) RULE: common rule-based strategy (Xie et al., 2018), (Zhang
et al., 2020) is used for comparison.

2) PMPC: MPC strategy based on prescient information is used
for comparison. It is assumed that the power demand of HESS
can be obtained in advance and participate in the control. It is
an ideal case and is usually used as a benchmark for
comparing the limits of the MPC strategy.

3) No HESS: the power response is completely dependent on
generators without configuring HESS.

Table 3 shows the results of the AGC performance index Kp

within 1 day under different strategies. Figure 5 shows the
comparison of compensation results between the MPC
strategy and other strategies.

The performance index Kp under different strategies is
significantly higher than that without HESS configuration.
Under the optimal capacity, the Kp of the presented MPC
strategy is 5.7% higher than that of the rule-based strategy.
This is because in the “Two Detailed Rules”, the AGC
performance index Kp is a comprehensive evaluation of
different stages of an AGC cycle. However, the RULE strategy
requires that the difference between AGC commands and the
generator power be fully compensated as much as possible. The
compensation performance of the RULE strategy strongly
depends on the energy capacity of HESS, especially the energy
of FES. As a result, the RULE strategy uses most of the energy of
FES to compensate for the initial stage of the AGC command but
it does little to improve the performance of K3. However, in the
later stage of K1 stage and K2 stage, due to the energy limitation of
FES, it is difficult to continue compensation, or even withdraw the

compensation suddenly, resulting in secondary disturbance. It
will affect the overall performance of Kp. In contrast, the MPC
strategy solves this problem better. For example, in the multiple
AGC cycles from 1,600 s to 1,800 s in Figure 5A, the power
compensated by HESS under the RULE strategy fluctuates
significantly in the K2 stage, which leads to a decrease in K2

and thus affects Kp. However, under the MPC strategy, the
fluctuation of the compensated power in K2 stage is smaller.
Based on the future power demand of HESS, the decision of MPC
strategy considers the system state of Np cycles in the future.
Therefore, MPC can optimize the power output of the HESS at
the current time according to the control target to prolong the
compensation time, so as to improve the performance of K1 and
K2 stages.

Since the actual power response of the generator may not
operate completely at the rated ramp rate, the MPC strategy was
compared with the ideal PMPC strategy. The Kp performance
under theMPC strategy is only 3.0% lower than that of the PMPC
strategy. The PMPC strategy uses the actual historical power data
of the generator to replace the rated ramp rate. Under the same

TABLE 3 | AGC performance within 1 day under different strategies.

Strategies K1 K2 K3 Kp

MPC 1.82 1.46 1.95 5.15
PMPC 1.78 1.56 1.95 5.31
RULE 1.82 1.38 1.96 4.87
No HESS 1.38 1.10 1.58 2.42

FIGURE 5 | Compensation results under different strategies. (A)
Comparison of MPC and RULE. (B) Comparison of MPC and PMPC.
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parameters, its power output is the ideal result of the MPC
strategy. Compared with PMPC strategy, MPC has lower K2

and higher K1. This means that MPC consumes more energy in
the K1 stage, which leads to a decrease in the performance of the
K2 stage. This is consistent with the analysis of the HESS
compensation process in Section 2 and at the same time
verifies the effectiveness of the presented MPC strategy.

Influence of Different Control Strategies on
Capacity Configuration
To analyze the interaction between the bi-layer models and their
influence on the performance of HESS participating in AGC,
different strategies were used to configure the capacity of HESS.
The results are shown in Table 4.

As shown in Table 4, under different control strategies, the
results of HESS capacity and economy are significantly different.
The optimal result of the annual net benefit of HESS under the
MPC strategy is 15.1% higher than that under the RULE strategy.
According to the HESS capacity configuration results, compared
with the MPC strategy, the LiB capacity under the RULE strategy
is larger and FES capacity is smaller. This means that due to the
high capital cost of FES, it is more economical to configure higher
LiB capacity under the RULE strategy. In addition, because the
RULE strategy needs to fully compensate the power difference, it
has higher requirements for the capacity of HESS, which affects
its economy.

The optimal result of the annual net benefit of HESS under the
MPC strategy is 16.8% lower than that under the PMPC strategy.
The main reason for the higher economy of HESS under the
PMPC strategy is that the power distribution of HESS is more
reasonable, which can obtain better performance benefits.
Meanwhile, under the PMPC strategy, the optimal capacity of
HESS increases the LiB energy capacity and the FES capacity. As a
result, the lifetime of LiB Tlt under the PMPC strategy is 10.8
years, while that under theMPC strategy is 5.6 years. The increase
in HESS capacity further increases Kp and reduces the
replacement cost of HESS, thereby increasing the net benefit
of HESS. The results verify that the proposed bi-layer model can
comprehensively take into account the influence of HESS
operation control and economic benefits.

Furthermore, the influence of the key operating parameters of
the lower layer on the economy of HESS is analyzed in this paper.
Figure 6 shows the variations in the annual net benefit of HESS
under different parameters, which are the proportion of the daily
operation time of HESS η and payment standard YAGC. It can be

seen from Figure 6 that under different operating parameters, the
annual net benefit of HESS presents nonlinear changes. With the
increase of η and YAGC, the annual net benefit of HESS increases
faster. Compared with η, the annual net benefit of HESS is more
sensitive to the change of YAGC.

Results of Different Optimization
Algorithms
To verify the effectiveness of the improved MPS optimization
algorithm, the PSO algorithm and standard MPS algorithm were
used to solve the bi-layer model. The parameters of the PSO
algorithm are set to the default value, such that the particle swarm
size is 20, the minimum inertia weight is 0.4, themaximum inertia
weight is 0.8, and the learning factor is 1.5. The number of
iterations of all algorithms is set to 50, and all algorithms are
calculated five times. Table 5 shows the optimization results of
different optimization algorithms. Figure 7 shows the
comparison of five calculation results of different algorithms.
(Since the solution time of the PSO algorithm is almost fixed, it is
not shown in the figure).

According to Table 5, the improved MPS algorithm has a
higher annual net benefit, which is $22,000 and $61,000 higher
than that under the standard MPS and PSO, respectively.
According to Figure 7, the improved MPS algorithm improves
the accuracy and robustness of the model solution. At the same
time, the average solution time of the improvedMPS is only 1/6 of
that of the PSO algorithm and is slightly slower than that of the
standard MPS algorithm.

In this paper, the convergence speed of the MPS algorithm is
improved. By modifying the global convergence evaluation index
and using a nonlinear curve as the speed control factor, the
improved MPS dynamically adjusts the convergence region to
avoid premature convergence to a local optimal region. The
improved MPS algorithm only calls the lower-layer model
168 times for evaluation but it can obtain higher solution
accuracy. This is because the improved MPS algorithm is
more efficient in global sampling. Firstly, when the sampling
points increase, the multi-correlation coefficient R2

adj is modified,

TABLE 4 | Capacity configuration results under different strategies.

Strategies MPC RULE PMPC

Pbat/(kW) 3,092 3,638 2,762
Ebat/(kWh) 1,015 1,544 1,205
Pfl/(kW) 3,472 2,691 3,699
Efl/(kWh) 79 61 96
Kp 5.15 4.89 5.48
Cben/($) 948,000 823,000 1,140,900

FIGURE 6 | Annual net benefit changes of HESS under different
operating parameters. Results of different optimization algorithms.
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which reduces the impact of the increase of variables on the
convergence evaluation index. Secondly, when speed control
factor radj is small, the search region can be quickly expanded
for more exploration points, and when radj is close to the
threshold, the search region can be quickly reduced to
promote algorithm convergence. Therefore, the improved MPS
algorithm can effectively expand the search region and sample
more exploration points to determine the global optimum and
avoid premature convergence. At the same time, the solution time
is basically the same as that of the standard MPS algorithm. If the
other two algorithms improve the solution accuracy, it is
necessary to increase the number of iterations to increase the
sampling points but this also reduces the solution efficiency.

CONCLUSION

To improve the performance and economy of HESS participating
in AGC, a bi-layer capacity optimization method considering the
operating strategy and net benefits of HESS is proposed in this
paper. In addition, an improved MPS algorithm is presented to
improve the accuracy of model solving. In an AGC cycle, to
reasonably distribute the HESS power to improve AGC
performance in the lower layer, an MPC strategy of HESS is
presented to coordinate the power of generators. In the upper
layer, the net benefit optimizationmodel of HESS is formulated to
improve its economy. Through bi-layer mutual iterative

optimization, the optimization results obtained meet both the
optimal capacity and optimal control of HESS. Furthermore, to
improve the solution accuracy of the bi-layer model, the
convergence speed of the MPS algorithm is improved, so that
the global search and local convergence speed can be taken into
account. The case study results show that the bi-layer model can
comprehensively consider the interaction between the economy
and operating strategy of HESS. Compared with the commonly
used RULE strategy, the presented MPC strategy not only has
better AGC performance, but also has better economic benefits.
The improved MPS algorithm has higher solution accuracy.
Compared with the results of the standard MPS algorithm, the
annual net benefits of HESS increased by $22,000.
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