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The measurement of solar radiation and its forecasting at any particular location is a difficult
task as it depends on various input parameters. So, intelligent modeling approaches with
advanced techniques are always necessary for this challenging activity. Adaptive neuro-fuzzy
inference system (ANFIS) based on modeling plays a vital role in the selection of relevant input
parameters for undertaking precise solar radiation prediction. Numerous literature works
focusing on ANFIS-based techniques have been reviewed during the estimation of solar
energy incidents in the eastern part of India. During solar forecasting, the input parameters
considered for thismodel are the duration of the sunshine, temperature, and humidity whereas
the clearness index value has been considered as an output parameter for calculation. For
designing the model, practical data sets have been prepared for some specified locations.
Finally, the outcome is compared with several other techniques. During this course of analysis,
several studies have been reviewed for a comprehensive literature survey work.
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INTRODUCTION

With the rapid increase in global energy demands and depleting fossil fuel reserves, the world is opting for
renewable sources of energy. Non-conventional energy sources (Notton et al., 2002) play a great role in
mitigating power necessity and have become promising alternatives for the consumers. Among all such
energy sources, solar energy plays a leading role because of its widespread availability. Prediction or
forecasting of solar energy (Xue, 2017; Almaraashi, 2018a) is extremely important and has to be carried
out before the selection of any site for a solar-based power plant. Solar forecasting analysis is necessary for
the design and modeling of the solar conversion system. The collection of solar radiation data at a
particular location is made possible with the use of designatedmeasuring instruments.Manymodels have
been developed related to the global solar radiation using parameters such as relative humidity, duration
of the sunshine, temperature, latitude, and longitude. Basically, it is difficult to deal with systems having
uncertain features through conventional mathematical tools and hence advanced controllers are needed
to deal with the uncertainties.

Many literature works have repeatedly utilized ANN, fuzzy, and ANFIS-based algorithms to
estimate solar radiation forecasting for various applications based on numerous meteorological
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parameters and outputs. Fuzzy rule–based systems utilize
linguistic variables such as the IF − THEN − ELSE rule and
connect between antecedents and consequents. These rules
also possess lots of antecedents associated with logical
AND,OR operators. The prediction of GSR in Tehran
province of Iran usingANN has been carried out (Ramedani
et al., 2013a) based on inputs such as temperature (maximum and
minimum) and the duration of sunshine. The best model
considered here contains one hidden layer with 37 neurons.
Researchers have introduced a combination of neural network
and FIS for predicting solar radiation data on a day to day basis on
the horizontal surface (Rahoma, 2011). This approach was not
used for Helwan, Egypt (NRIAG), because the measurement of
solar radiation was not viable. In order to get more efficiency, they
used ANFIS in which the combined outcome is of FLC&ANN.
The results obtained from this combination indicate better
performance of the fuzzy model with accuracy of more than
96 percent and RMSE of less than 6 percent. Fuzzy systems have
been implemented for various applications using solar forecasting
data (Iqdour, 2006). Based on the SOS (second-order statistics)
techniques, the outcome of fuzzy-based models has been
compared with the linear models. After prediction, the RMSE
and accuracy of the fuzzy model are 0.52 and 0.96, respectively, as
compared to the linear model with RMSE = 0. 61 and accuracy =
0. 89. Different feature selection methods (Almaraashi, 2018a)
have been used to predict GSR in different parts of Saudi Arabia.
Mainly four feature selection algorithms such as Relief, Monte
Carlo uninformative variable elimination, random frog, and
Laplace score algorithms have been used followed by the
multi-layer neural network as a predictor. For the
improvement of (Xue, 2017) efficiency of the back-
propagation neural model (BPNN), optimization algorithms
such as PSO and GA are used during the prediction of daily
diffuse solar radiation. Seven parameters such as month of the
year, sunshine duration, mean temperature, rainfall, wind speed,
relative humidity, and daily global solar radiation have been
picked as evaluating indices. A hybrid model (Ibrahim and
Khatib, 2017) has been suggested for forecasting hourly global
solar radiation with random forests technique and firefly based
algorithm. Hourly meteorological data have been used to develop
the proposed model. The firefly algorithm has been utilized for
the optimization of the random forest technique by finding the
best number of trees and leaves per tree in the forest (Hassan
et al., 2017). In this study, several machine learning algorithms for
modeling global solar irradiation have been examined. Four
different heuristic (Keshtegar et al., 2018) regression models
such as Kriging, response surface method (RSM), multivariate
adaptive regression (MARS), and M5 model tree (M5Tree) are
investigated for the accurate estimation of solar radiation.
Monthly solar radiation (SR) from Adana and Antakya
stations are used as case studies taking parameters such as
maximum–minimum temperature, sunshine hour, and wind
speed along with relative humidity (Achour et al., 2017).
Because of the deficiency of solar energy forecasting measuring
stations in the past, prediction of the said energy source has
gathered great interest in the recent years. In this particular work,
fourteen solar radiation models have been implemented to assess

monthly mean GSR on a horizontal plane (Hassan et al., 2018).
Two networks have been developed for prediction of the solar
irradiance.

Many places in India are prone to natural calamities. The four
eastern coastal states, West Bengal, Odisha, Andhra Pradesh, and
Tamil Nadu, and one western state Gujarat are susceptible to
cyclonic events. Solar radiations in these particular localities are
more or less haphazard. So for finalizing any project based on
renewable energy such as SPV or STWM (solar thermal wind
machine), solar data collection becomes crucial. Generally,
traditional methodologies are practiced to forecast the solar
irradiation in major Indian cities. Moreover, less measuring
equipment is utilized in coastal regions due to high wind
effects. Some climatic parameters are needed to develop and
estimate the global diffuse solar radiation. Several literature works
are found describing the use of ANFIS models for many
applications. The forecasting of measles cases has been
described (Uyar et al., 2019) and greenhouse gas prediction
has been mentioned in the article (Ludwig, 2019). In this
study (Nguyen and Liao, 2011; Motepe et al., 2018), the
author has applied ANFIS for load forecasting to get accurate
results. Authors have also discussed its application in the
prediction of electricity including forecasting of several
renewable energy sources such as PV, wind, and fuel cell
(Notton et al., 2002; Gairaa et al., 2016; Singh and Rizwan,
2018a; Yadav et al., 2018a; Campos et al., 2018; Ilmi et al.,
2018; Karri et al., 2018; Maitra et al., 2018; Yousefi et al.,
2018; Sujil et al., 2019a; Fachini and Lopes, 2019; Perveen
et al., 2019; Pourdaryaei et al., 2019).

The proposed review work is arranged in the following
manner. Section 2 presents the material and methodology
used for the prediction of solar radiation. It also discusses the
implementation of intelligent modeling technique such as ANFIS
for solar energy forecasting in Eastern Indian cities. Section 3
presents the simulation and modeling of a standalone solar
system with ANFIS. Section 4 presents results and discussions.
The conclusion has been carried out in Section 5 and Section 6
presents the references.

MATERIAL AND METHOD USED FOR
PREDICTION OF SOLAR RADIATION

Description of Dataset
A total of 6 years data [Appendix], monthly average value of
temperature, humidity, and sunshine duration are obtained from
the solar radiation handbook and NREL (National renewable
energy laboratory) are used for training and the remaining 1 year
is used for testing. Recent datasets of 2015–17 have also been
prepared with the help of IMD Bhubaneswar center for further
studies and experimentation.

Artificial Neuro-Fuzzy Inference System
As we know that solar energy is unpredictable and uncertain,
there is an urgent need to mitigate the uncertain nature of solar
radiation. Conventional methods fail to predict the solar
irradiation properly because of the uncertain behavior of Sun.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8280972

Mohanty et al. ANFIS, Solar Radiation Forecasting, India

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


So soft computing happens to be an innovative approach with an
ability of a human mind. The application of various soft
computing tools such as multi-layer perceptron (MLP),
ANFIS, RBF, RNN, NARX, GNN, FL, FG, NFG, NG, and
SVM are suitably employed to predict and estimate the solar
irradiance.

An adaptive neuro-fuzzy inference system has been used to
predict the daily global solar radiation of the eastern zone of
India. The data on daily solar radiation, sunshine duration,
humidity, and temperature for the period of 5 years are
collected from the renewable energy source laboratory, NASA,
and the solar radiation handbook. A total of 2,190 day
(2000–2005) datasets are used in the ANFIS model. Out of
2,190 days, 1825 days are considered as training and the rest
365 days are considered for testing. Later, the latest data have
been applied for further research work.

ANFIS Model and Architecture
The typical structure of ANFIS has been divided into three parts:
(I) a rule based, (II) a database, and (III) reasoning mechanism.
ANFIS as shown in Figure 1 is a hybrid method which combines
algorithms such as back propagation, least-square algorithm, and
gradient-descent for optimizing the system output.

The ANN network is depicted in Figures 1A,B. Possessing lots
of nodes joined through the directional linking. In order to
minimize the error, couple of basic learning rule–based
method has been used in the network such as back-
propagation technique. A fuzzy model having rules is as follows:

Rule I: Ifx1 � A1&y1 � A20M1 � p1x + q1y + r1,
Rule II: If x1 � B1&y1 � B20N1 � pJx + qJy + r2,

(1)

where x1, y1 symbolizes input values.
M1&N1 symbolize outputs.
A1&A2 stand for the fuzzy sets (Figures 1A,B)
The model (as shown in Figures 2, 3) uses six dissimilar

membership type function such as (Gauss mf, triang mf, two side
Gaussian mf, Bell mf, Difsig mf, and Trap mf) along with
(i.e., linear &constant) membership function. The dataflow has
been explained from Eqs 3–8).

Layer 1. Every node i in this layer is an adaptive node with a
node function.

o1,i � { μAi
(x)for i � 1, 2

μBi−2(y)for i � 3, 4}. (2)

Y or X = input node I.
Ai or Bi-2 = linguistic value.
O1, i = membership grade.
Membership grade satisfies the quantifier A.

μAi(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x≤ ai
x − ai
bi − ai

ai ≤ x≤ bi

ci − x

ci − bi
bi ≤x≤ ci

0 x≥ ci

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3)

Layer no 2: Every node in the layer is fixed, where the output
symbolizes product of all input signals.

o2,i � wi � μAi(x)μBi(y) i � 1, 2. (4)
The node output indicates the firing strength. Any other

T-norm which performs fuzzy is used as a node function.
Layer no three is fixed and is labeled as N. Furthermore, the
ith node decides about the ith rule’s firing capacity for the sum of
all the rule’s firing capacity.

o3,i � wi � wi

w1 + w2
i � 1, 2 − where the outputs idicate normalized firing strength. (5)

Layer 4. Every node i in this layer is an adaptive node with
function.

o4,i � wifi � wi(pix + qiy + ri) i � 1, 2, (6)
where wi is a normalized firing strength from layer three and =
parameter sets of the node.

Layer no 5. Here, in this case; a single node is a fixed node and
is given as Σ. This calculates the overall output as sum of all the
incoming signals.

output o5 � ∑
i

wifi � ∑iwifi∑iwi
. (7)

Related Work
Based on the geographical coordinates and following
meteorological parameters such as relative humidity and

FIGURE 1 | (A) ANFIS structure. (B) Detailed ANFIS structure with three
inputs and three membership function.
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sunshine duration, the isolated places of Nigeria (Ojosu and
Komolafe, 1987; Ododo et al., 1995) are studied for forecasting
daily global solar radiation using (RMSE) and MAPE values.
Further advantages of this model in (Olatomiwa et al., 2015a) the
accuracy of the model are measured using the ANFIS-based soft
computing technique for predicting solar radiation. The model
uses the following meteorological parameters such as monthly
mean maximum and minimum temperature and sunshine
duration. Finally, the accuracy using ANFIS is compared with
experimental results in terms of RMSE and coefficient of
determination (R2). Further research has been carried out
using a hybrid machine learning technique for solar radiation
prediction based on some meteorological data (Olatomiwa et al.,
2015b; Olatomiwa et al., 2015c; Olatomiwa et al., 2015d). For this,
a novel method named as SVM–FFA is developed by hybridizing

the support vector machines (SVMs) with the firefly algorithm
(FFA) to predict the monthly mean horizontal global solar
radiation using three meteorological parameters such as
sunshine duration (n�), maximum temperature (T max), and
minimum temperature (T min) as inputs. The prediction
accuracy of the proposed SVM–FFA model is validated
compared to those of artificial neural networks (ANNs) and
genetic programming (GP) models. The root mean square
error (RMSE), coefficient of determination (R2), correlation
coefficient (r), and mean absolute percentage error (MAPE)
are used as reliable indicators to assess the models’
performance. In this work, the authenticity of the soft
computing method in forecasting based on the number of
meteorological data of Nigeria is studied. The simulation work
has been performed using the SVM where the inputs are monthly
maximum temperature T max, monthly mean temperature T
min, and monthly Sunshine (Bahel et al., 1987a; Asl et al., 2011).
The sizing of the standalone photovoltaic system is designed with
the help of a solar radiation pattern. Mohammadi et al. (2016a)
have also used theANFISmodel for finding out the most suitable
parameters for the forecasting of daily horizontal diffused solar
radiation. Here, the author suggests a single input for case 1, both
H&HO combination for case 2 andH,HO&n combined value for
the third case. A comparative study has been carried out between
ANN&ANFIS to predict daily solar radiation GSR in different
parts of Iran (Bahel et al., 1987b; Robaa, 2009; Abdo and EL-
Shimy, 2011; Ramedani et al., 2014a; Mohammadi et al., 2016a).
Mehmet et al. (Rahimikhoob, 2010; Koca et al., 2011; Demirhan,
2014; Demirhan and Kayhan Atilgan, 2015; Yıldırım et al., 2018)
have drawn a comparison between statistical and neuro-fuzzy
network models to forecast the weather of Istanbul. A long period
of 9 years ranging from 2000 to 2008 has been considered taking
parameters such as daily temperature average (dry–wet) and
pressure of air and speed of wind. Different models such as
ANFIS and autoregressive integrated moving average (ARIMA)
have been incorporated in this particular research work. Further
several training and testing datasets have been considered to find
out the effectiveness of these models. The performance is
determined after comparing several parameters with respect to
the moving average error (MAE) and root mean square error

FIGURE 2 | (A,B). ANFIS structure with different input parameters.

FIGURE 3 | Dataflow and processing of the ANFIS model.
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(RMSE−R2). Teke and Yıldırım (2014) estimates monthly global
solar radiation for twelve cities of the eastern Mediterranean
region based on meteorological data based on the following
statistical test (MBE, RMSE, and MPE). The result shows that
the Angstrom–Prescott model is most suitable for the calculation
of GSR in the sites of Bonger, Pala, and Am-Timan mongo. Al-
Mostafa et al. (2014) developed a sunshine based GSR model in

Riyadh, Saudi Arabia as it is easily and reliably measured with
wide availability of data. Almorox et al. (Quej et al., 2016)
estimate empirical models for predicting daily GSR in
Peninsula, Mexico. A total of 13 different models were
developed based on following parameters such as temperature,
rainfall, and air humidity. But by taking temperature as the input
parameter, model performs the best result. On the basis of

TABLE 1 | Geographical and meteorological data related to places of Eastern India.

Station Latitude (degree) Longitude (degree) Height above sea level
(ft)

Max global solar
insolation (MJ/m2day)

Bhubaneswar 20.29 85.82 49 28.54
Kolkata 22.65 88.45 6 27.90
Vizag 17.72 83.23 3 27.79
Ranchi 23.35 85.33 616 26.96
Patna 25.60 85.10 60 27.79
Assam 26.14 91.77 108 30.52
Lucknow 26.75 80.88 128 26.42
Hyderabad 17.37 78.48 545 27.86

FIGURE 4 | (A,B) Map of Eastern India showing three important stations.

FIGURE 5 | (A) PV system and its operating blocks, (B) I-V and P-V based characteristics at 25° with changing radiation.
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statistical indicators RMSE, MBE, MPE, and coefficient of
determination, Prescott (1940) developed an empirical model
to calculate monthly average daily global solar radiation on a
horizontal surface from monthly average daily total insolation on
an extra-terrestrial horizontal surface by using the following
equation H/H0 = a + b (S/S0).

Yacef et al. (2012) prepare a comparative study between
Bayesian neural network (BNN), classical neural network
(CNN), and empirical models for estimating the daily global

solar irradiation (DGSR) of AI-Madinah (Saudi Arabia) from
1998 to 2002. A comparative study has also been carried out
between the Bayesian network with the classical neural network
and the empirical model developed using the Angstrom–Prescott
equation. Mellit (2005) and Mellit et al. (2007) applied an ANFIS
model for estimating the sequence of monthly mean clearness
index (kt) and daily solar radiation data in isolated areas of
Algerian location with some geographical coordinates (latitude,
longitude, and altitude) and meteorological parameters such as

FIGURE 6 | (A,B) Regression plot of.ANFIS. (C,D) Training and testing plots through ANFIS network.

FIGURE 7 | (A,B) Training and testing plots based on ANFIS.
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temperature, humidity, and wind speed. The comparison has also
been made between ANFIS and ANN by evaluating the RMSE
and MAPE.

An ANFIS model (Mellit, 2004; Mellit et al., 2008) is presented
for estimating the mean monthly clearness index (Kt) and total
solar radiation data in isolated sites based on geographical
coordinates. These data have been collected from 60 locations
in Algeria. The magnitude of solar radiation is the most
important parameter for sizing photovoltaic (PV) systems. The
ANFIS model is trained using MLP based on fuzzy logic (FL)
rules. The inputs of the ANFIS model are the latitude, longitude,
and altitude, while the outputs are the 12-values of meanmonthly
clearness index Kt. The results show that the performance of the
proposed approach in the prediction of mean monthly clearness

index Kt is favorably compared to the measured values. The
RMSE between measured and estimated values varies between
0.0215 and 0.0235 and the MAPE is less than 2.2%. Data from 60
locations in Algeria are taken into account, and the performance
of the model is found out through the RMSE and mean relative
error (MRE) (Angstrom, 1924; Garg and Garg, 1983; Takagi and
Sugeno, 1985; Bahel et al., 1987c; Hawlader et al., 2001; Kalogirou,
2001; Iqdour and Zeroual, 2004; López et al., 2005; Tymvios et al.,
2005; Bosch et al., 2008; Zounemat-Kermani and Teshnehlab,
2008; Behrang et al., 2010; Tektaş, 2010; Coulson, 2012; Boland
et al., 2013; Jafarkazemi et al., 2013; Will et al., 2013; Ramedani
et al., 2014b; Choubin et al., 2014; Varzandeh et al., 2014;
Mohammadi et al., 2015; Choubin et al., 2016a; Choubin
et al., 2016b; Mohammadi et al., 2016b; Despotovic et al.,

FIGURE 8 | Training and testing of the ANFIS model.

FIGURE 9 | (A–D) Performance testing, testing, and validation of different models.
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2016; Kaplanis et al., 2016; Wu andWang, 2016; Quej et al., 2017;
Zou et al., 2017; Almaraashi, 2018b; Halabi et al., 2018; Khosravi
et al., 2018; Rafiei-Sardooi et al., 2018). Yadav et al. (2014) have

applied the J48 algorithm and WEKA software for selecting
significant input parameters such as clearness index, altitude,
and longitude for the better prediction of solar radiation in

FIGURE 10 | (A) Prediction of solar radiation for the city of Bhubaneswar. (B) Solar radiation forecasting of Kolkata. (C) Prediction of solar radiation for the city of
Visakhapatnam.
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Western Himalayas with ANN (Mani, 2008; Yadav et al., 2014;
Yadav and Chandel, 2015). By using the four g-bell input
membership function, statistical analysis shows the maximum

regression value; R (R = 0.99) in comparison to the other
membership function (Bhardwaj et al., 2013a; Ramedani et al.,
2013b). M Rizwan et al. (Khan et al., 2008; Rizwan et al., 2012;

FIGURE 11 | Figure showing error response.

FIGURE 12 | (A,B) ANFIS-based comparison between latest measured and prediction solar data.
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Chaudhary and Rizwan, 2018; Perveen et al., 2018; Sadhu et al.,
2018; Chaudhary and Rizwan, 2019) focused on the GNN model
in order to predict global solar energy in India. Parameters used
as inputs in this particular model include latitude, longitude, and
altitude (Iqbal et al., 2010; Patel and Parekh, 2014; Singh and
Rizwan, 2018b; Yadav et al., 2018b; Sujil et al., 2019b; Singh et al.,
2019; Vanitha et al., 2019) with temperature ratio, Sunshine/hour

whereas the clearness index stands for the output parameter.
Solar radiation data set has been prepared for several Indian states
for training and performance is evaluated through the mean
absolute error. The MAPE during the estimation of global solar
energy prediction is found to be nearly 4 percent usingGNN but it
becomes 6 percent during estimation with the fuzzy logic (Ajil
et al., 2010; Chandra et al., 2013; Verma et al., 2019). Joshi (2013)
estimated the monthly global solar radiation utilizing the
Angstrom model (Angstrom, 1924) forecast solar irradiation
with the help of ANN with variables. Thorough comparisons
have been carried out between the ANN model and Angstrom
model in order to judge the efficiency of the models with mean
squared error (MSE) and regression coefficient (R2). From the
learning of MSE and R2 values with Angstrom models they come
close to (0.1225 and 0.3965) for Ahmedabad, (0.0059 and 0.0149)
for Bangalore, (0.1024 and 0.404) for Dehradun, and (0.0625 and
0.0498) for Kolkata whereas the MSE and R2 values for the ANN
model as (0.002 and 0.99) for Ahmedabad, (0.006 and 0.98) for
Bangalore, (0.01, 0.90) for Dehradun, and (0.006 and 0.99) for
Kolkata. The selectedANNmodel performs better with less RMSE
value with maximum regression value than the empirical model.
Kadhambari et al. (2012) proposed a recurrent neural network
model to estimate the global solar radiation of the Thiruvallur
region. Input parameters utilized in this work are all days of
month, all day temperature, humidity (relative), pressure of air,
and solar azimuth angle. The RNN-based models are trained by
the evolutionary swarm optimization–based algorithm. The
performances of these algorithms are verified and compared
with each other by calculating the RMSE value. The RMSE
value of the evolutionary algorithm comes around 0.0667
which is lower in comparison to the RMSE value of the PSO
algorithm. Poudyall khem et al. estimate [GSR] depending on the
sunshine duration in the Himalayan region. The performance
parameters of the model are investigated on the basis of RMSE
value,MBE value,MPE value, and correlation coefficient R2 value.
Solar radiation data for a span of 3 years of Indian cities have been
studied by Katiyar and monthly daily mean clear sky radiation
has been estimated.

A thorough comparison on the basis of (RMSE) and (MBE)
has been initiated which shows the percentage of MBE with a new
constant for each station vary from 0.22 to 2.09% whereas with

TABLE 2 | Relative outcome with ANN, ANFIS, and SVM algorithms. Model comparison of different regions.

Month Measured Prediction (NN) Prediction (ANFIS) Prediction (SVM)

Jan 0.799364 1.118,864 0.79,994 0.5966
Feb 0.1730 1.1188 0.1731 0.2730
March 0.4948 0.4948 0.49,494 0.5113
April 0.2110 0.2110 0.2111 0.3083
May 0.1 0.6463 0.1 0.2644
June 0.9 1.1477 0.9 0.6003
July 0.1008 0.1008 0.1009 0.2310
Aug 0.5277 0.5277 0.5278 0.4277
Sept 0.1757 0.1757 0.1758 0.2537
Oct 0.5983 0.5983 0.5983 0.3353
Nov 0.4616 0.4616 0.4616 0.5292
Dec 0.1119 0.1119 0.1119 0.2992

Model comparison of different regions.

TABLE 3 | Performance evaluation of Bhubaneswar, Kolkata, and Visakhapatnam
with different algorithms.

Technique Location MAPE RMSE MBE R2

MLP Kolkata 6.93 7.0 0.93 0.04
Bhubaneswar 7.73 7.8 0.92 0.01
Visakhapatnam 6.8 6.9 0.89 0.03

NARX Kolkata 9.08 9.11 0.91 0.03
Bhubaneswar 8.9 9.02 0.92 −0.01
Visakhapatnam 9.2 9.4 0.90 0.04

RNN Kolkata 8.60 8.7 0.88 0.04
Bhubaneswar 8.45 8.5 0.92 0.01
Visakhapatnam 8.7 8.8 0.91 0.00

GRNN Kolkata 9.35 9.4 0.92 −0.03
Bhubaneswar 9.20 9.28 0.91 0.02
Visakhapatnam 9.15 9.28 0.90 0.07

FL Kolkata 6.83 6.9 0.89 0.02
Bhubaneswar 6.53 6.7 0.90 0.01
Visakhapatnam 6.9 7.0 0.91 0.05

SVM Kolkata 7.35 7.4 0.89 0.04
Bhubaneswar 7.40 7.5 0.90 −0.02
Visakhapatnam 7.25 7.35 0.91 0.07

RBF Kolkata 9.33 9.4 0.92 0.05
Bhubaneswar 8.5 8.7 0.93 0.02
Visakhapatnam 7.4 7.7 0.89 −0.03

ANFIS Kolkata 4.70 4.75 0.93 0.04
Bhubaneswar 4.5 4.6 0.94 0.02
Visakhapatnam 4.83 4.9 0.95 0.01

NFG Kolkata 7.5 7.7 0.91 −0.04
Bhubaneswar 7.3 7.5 0.89 0.02
Visakhapatnam 7.78 7.9 0.92 0.01

NG Kolkata 7.2 7.4 0.91 −0.07
Bhubaneswar 6.8 6.9 0.9 0.05
Visakhapatnam 6.9 7.0 0.89 0.01

LR-GA Kolkata 8.2 8.3 0.87 0.03
Bhubaneswar 8.5 8.7 0.88 −0.02
Visakhapatnam 9.2 9.4 0.89 0.04
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RMSE it varies from 2.22 to 10.37%. Krishnaiah et al. (2007b)
suggest the neural network approach for modeling which suggests
the superiority of the neural network–based model compared to
conventional regression models. Premalatha and Arasu (2012)
estimated the GSR of India utilizing ANN based on the input
parameters such as maximum and minimum ambient
temperature with least relative humidity.

The monthly global solar radiation in 31 districts of Tamil
Nadu, India was predicted by using ANFIS in Verma et al.
(2019). Considering the input parameters such as solar radiance,
ambient temperature collector, tilt angle, and working fluid mass
flow rate, the flat plate collector efficiency was predicted using the
MLP and ANFIS model (Verma et al., 2019). This specific model
MLP utilizes the Levenberg–Marquardt algorithm with logistic
sigmoid function. Comparative analysis proves ANFIS model’s
superiority over normal controlling architectures. After the
introduction of unglazed flat plate solar collectors, analytical
and experimental studies have been carried out on a solar-
assisted heat pump water heating system (Chandra et al.,
2013). Mohammad Hossein et al. (2014) use the WNN
(wavelet neural network) and ANFIS algorithm for the
prediction of meteorological station in Tehran, Iran. The
results establish better performance in the field of solar
radiation estimation and wind short-term solar radiation
velocity time series. The analysis in terms of R2 and RMSE
establish that with lower RMSE and higher R2 values a perfect
model can be achieved. Dushyant Patel and Falguni Parekh
(Chandra et al., 2013) used ANFIS for forecasting the flood of
the Dharoi dam on the Sabarmati river in Mehsana in the state of
Gujarat in India. In this case, statistical indices such as RMSE,
correlation coefficient (R), and discrepancy ratio (D) are used.
The evaluation of the model for forecasting has been carried out
by comparing the ANFIS model and statistical method such as
the log-Pearson type III method. The comparison indicates that
the ANFIS model accurately addresses the forecasting of flood.
In another work, rainfall forecasting with ANFIS has been
developed by Jignesh Patel and Falguni Parekh (Krishnaiah
et al., 2007a; Ajil et al., 2010; Premalatha and Arasu, 2012;
Chandra et al., 2013; Joshi, 2013; Awasthi and Poudyal, 2018)

for Gandhi Nagar station. Eight models based on different
membership functions and climatic parameters such as
temperature, relative humidity, and wind speed are developed.
In this case, a generalized bell-shaped membership function has
been chosen. The outcome of the hybrid model with seven
membership functions and three inputs produces better results
with a correlation factor of 0.99 for training and 0.92 for
validation. The application of ANFIS for wind energy short-
term forecasting was first developed by Pousinho et al.
(Krishnaiah et al., 2007a). Experiments established the
efficiency of neuro-fuzzy inference system and proved its
performance regarding MAPE&Error variance in comparison
to ARIMA&NN.

MATHEMATICAL MODELING AND
SIMULATION

Important Eastern stations of India such as Bhubaneswar,
Kolkata, Visakhapatnam, Ranchi, Patna, Assam, Lucknow,
and Hyderabad with their geographical and meteorological
features are presented in Table 1 and Figures 4A,B. The map
of Eastern India shows three important stations.

Estimation of the PV Parameters
The ANFIS-based PV model predicts the I-V and P-V
characteristics of the PV modules in a given environmental
setting. For a certain irradiance and temperature combination
of the PV cell, the voltage of PV array (from zero to open-circuit
voltage) can be determined on the manufacturing datasheet. The
corresponding anticipated current set is obtained from the
proposed PV estimation model. The equivalent circuit of the
PV is described as follows:

I � Iph − Io{exp(V + IRs/nsVt) − 1} − (V + IRs/Rsh), (8)
Vt � kTA/q, (9)

Iph � (G/GSTC)Iph(STC)(1 + ki(T − TSTC)), (10)

TABLE 4 | ANFIS models for Bhubaneswar, Kolkata, and Visakhapatnam (single input).

ANFIS model Input MBE (trn) MBE (tst) MSE (trn) MSE (tst) R (trn) R (tst)

Bhubaneswar
I T/To 1.4532 1.3212 2.4332 2.2,143 0.9584 0.9537
II S/So 1.2,156 1.2054 2.1564 2.0326 0.9798 0.9778
III R/Ro 1.7638 1.5738 2.3125 2.1967 0.9389 0.9327
IV P/Po 2.4363 2.1532 3.6738 3.3453 0.8754 0.8778

Kolkata
I T/To 1.7658 1.7257 2.6732 2.6685 0.9527 0.9498
II S/So 2.0397 1.9274 3.7843 3.4508 0.9362 0.9316
III R/Ro 1.4785 1.4586 2.3472 2.3369 0.9869 0.9845
IV P/Po 2.9845 2.8648 3.4538 3.2,375 0.8858 0.8845

Visakhapatnam
I T/To 2.2,302 2.1036 3.0234 2.9846 0.9378 0.9326
II S/So 1.5747 1.5592 2.4782 2.2,461 0.9546 0.9616
III R/Ro 1.9725 1.8245 2.8723 2.8278 0.9489 0.9420
IV P/Po 3.2345 3.2267 4.5327 4.4562 0.8743 0.8698
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IMP � Iph − I0{exp(IscRS/nsVt)} − (IscRS/RSh), (11)
IMP � Iph − Io{exp(VMP + IMPIRS/nsVt)} − (VMP

+ IMPIRS/Rsh), (12)
IOC � 0 � Iph − I0{exp(Voc/nsVt)} − (Voc/Rsh), (13)∣∣∣∣dp/dv∣∣∣∣V�VMP,I�IMP

� 0, (14)
|di/dv|V�0,I�IMP

� −1/Rsh, (15)
Vt � ((IMPRs + VMP − VOC)/ns logB), (16)

where I = output current.
IPh = photo current or generated current under given

insolation.
IO = diode reverse saturation current.
η = ideality factor of PV cell.
RS = series loss resistance.
RSh = shunt loss resistance.

Vt = thermal voltage.
Vth � kT

q ,where k is Boltzmann’s constant = 1.3806X10−23J/K.
Input data = solar irradiance G.
Ambient temp = T.
Operating voltage = V.
Output current = I.

RESULTS AND DISCUSSION

The ANFIS technique is used to find out the impact of all
important variables such as
n,N, Tmin, Tmax, Tavg, Rh, Vp, p&Ho for forecasting daily GSR,
H, and further to find out the ideal set of the input
parameters. The performance of the models is evaluated by
dividing the data set into two parts, that is, training and
testing (Figures 5, 6). First, the model will be trained for some

TABLE 5 | Performance evaluation of different models with respect to number of inputs.

Author Name Model Location Input Parameters Output
parameter

Results obtained

Sumithira (Yadav
et al., 2014)

ANFIS Tamil Nadu, India Ambient temperature,
relative humidity,
atmospheric pressure, and
wind speed

Monthly GSR RMSE = 0.78, Accuracy = 0.98

Yadav et al. (Yadav
et al., 2014)

J48 algorithm and WEKA
software

Western Himalayan Air temp, sunshine duration,
clearness index, altitude,
latitude, and longitude

GSR ANN-1, MAPE = 20.12

ANN-2, MAPE = 6.89
ANN-3, MAPE = 9.04

Bhardwaj et al.
(Bhardwaj et al.,
2013a)

Hidden Markov model
with generalized fuzzy
model

India Radiation span GSR RMSE = 7.9124

MAPE = 3.0083
Accuracy = 0.9921

Rizwan M, Jamil M,
Kothari DP
(Chaudhary and
Rizwan, 2019)

GNN-based model New Delhi, Kolkata,
Ahmadabad, Jodhpur,
Visakhapatnam, Nagpur,
and Shillong

Latitude, longitude, altitude,
months of the year,
temperature ratio and
sunshine duration

Clearness index Mean absolute relative error = 4%
(using GNN) and using fuzzy logic it is
equalto6%

Juhi Joshi and Vinit
Kumar (Joshi, 2013)

Angstrom–Prescott
model and ANN

Ahmadabad, Bangalore,
Dehradun, Kolkata

Sunshine hour, latitude,
longitude, ,and altitude

Solar Radiation ANN better than Empirical model

Kadhambari et al.
(Verma et al., 2019)

Recurrent neural
networks

Thiruvallur region Days inside a month, daily
average air temperature,
relative humidity, air
pressure, and solar azimuth
angle

GSR RMSE = 0.0667 (Evolutionary
algorithm), RMSE = 1.222 (PSO
algorithm)

Poudyal Khem et al.
(Awasthi and
Poudyal, 2018)

Angstrom model Himalaya Region
Kathmandu (Nepal)

Sunshine duration GSR RMSE � 0.71,MBE � 0.055
MPE � 0.047,C.C � 0.71

Katiyar et al. (Ajil
et al., 2010)

Least square regression
analysis

Jodhpur, Calcutta,
Bombay, and Pune

Sunshine duration Monthly mean
daily clear sky
radiation

MBE varies from 0.22 to 2.09% and
RMSE varies from 2.22 to 10.37%

Krishnaiah et al.
(Krishnaiah et al.,
2007a)

Neural network approach India Latitude and longitude GSR MBE = 0.3133%, RMSE = 4.61% and
Correlation Coefficient = 0. 999,954

N. Premalatha and A.
Valan Arasu
(Premalatha and
Arasu, 2012)

ANN Tamil Nadu Maximum, minimum
ambient temperature, and
minimum relative humidity

GSR MPE = 6.65% and MSE = 0.008

T. Sandhya and V. R.
Kavitha (Joshi, 2013)

Non-linear
autoregressive
exogenous input model

Tiruvallur region Climatic parameters Solar radiation MSE = 1.8, accuracy = 0.78
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TABLE 6 | ANFIS models for Bhubaneswar, Kolkata, and Visakhapatnam (two inputs).

ANFIS model Input MBE (trn) MBE (tst) MSE (trn) MSE (tst) R (trn) R (tst)

I T/To, S/So 0.8349 0.8269 1.8338 1.7749 0.9887 0.9821
II S/So, R/Ro 0.9212 0.9186 1.8574 1.7948 0.9747 0.9695
III R/Ro, T/To 1.6853 1.6946 2.7629 2.6539 0.9427 0.9385
IV S/So, P/Po 2.4576 2.4256 3.2,317 3.2,256 0.9167 0.9123
V T/To, P/Po 2.6367 2.6243 4.5231 4.5042 0.8934 0.8876
VI R/Ro, P/Po 2.7369 2.7145 3.9854 3.8956 0.9042 0.9027
I T/To, S/So 1.8806 1.8764 2.9845 2.9536 0.9526 0.9859
II S/So, R/Ro 0.9847 0.9778 1.6538 1.6383 0.9888 0.9864
III R/Ro, T/To 1.2,142 1.2078 2.1384 2.0946 0.9648 0.9689
IV S/So, P/Po 2.7843 2.7732 3.7842 3.7754 0.8954 0.8918
V T/To, P/Po 2.5431 2.5514 3.5321 3.4532 0.9465 0.9454
VI R/Ro, P/Po 2.4573 2.3428 3.4351 3.4256 0.9589 0.9534
I T/To, S/So 1.9653 1.9598 3.2,426 3.1274 0.9264 0.9298
II S/So, R/Ro 0.9842 0.9789 1.6849 1.5265 0.9914 0.9906
III R/Ro, T/To 1.3367 1.3138 2.5743 2.4379 0.9847 0.9834
IV S/So, P/Po 2.4321 2.4032 3.4214 3.4511 0.9443 0.9398
V T/To, P/Po 2.6531 2.6489 3.8854 3.7843 0.8921 0.8942
VI R/Ro, P/Po 2.3243 2.3465 3.3830 3.3798 0.9543 0.9512

TABLE 7 | ANFIS models for Bhubaneswar, Kolkata, and Visakhapatnam (three inputs).

Model Input MBE(trn) MBE(tst) MSE(trn) MSE(tst) R(trn) R(tst)

Bhubaneswar
I S/S0 , T/T0 ,R/R0 0.777 0.754 1.754 1.743 0.993 0.993
II S/S0 , T/T0 ,P/P0 1.824 1.816 2.248 2.224 0.977 0.973
III P/P0 , T/T0 ,R/R0 2.245 2.226 3.435 3.413 0.924 0.923
IV R/R0 ,P/P0 ,S/S0 2.442 2.436 3.683 3.657 0.945 0.941

Kolkata
I S/So, T/To, R/Ro 0.8957 0.8865 1.5678 1.5467 0.9956 0.9923
II S/So, T/To, P/Po 2.5457 2.5376 3.5645 3.5523 0.9356 0.9325
III P/P0 , T/T0 ,R/R0 1.6734 1.6573 2.4562 2.4378 0.9878 0.9845
IV R/R0 ,P/P0 ,S/S0 2.2,312 2.2,167 2.9556 2.9476 0.9756 0.9745

Visakhapatnam
I S/So, T/To, R/Ro 0.8934 0.8869 1.5938 1.5868 0.9965 0.9936
II S/So, T/To, P/Po 2.4876 2.4567 3.3452 3.4078 0.9457 0.9423
III P/P0 , T/T0 ,R/R0 1.8745 1.8685 2.5235 2.5023 0.9148 0.9056
IV R/R0 ,P/P0 ,S/S0 2.2,858 2.2,789 2.9849 2.9765 0.9778 0.9745

TABLE 8 | Monthly average solar radiation data.

MONTH Kolkata (West Bengal) Bhubaneswar (Odisha) Visakhapatnam (AP)

S/S0 T/T0 R/R0 H/H0 S/S0 T/T0 R/R0 H/H0 S/S0 T/T0 R/R0 H/H0

January 0.781 0.750 0.641 0.581 0.751 0.732 0.511 0.622 0.880 0.881 0.622 0.622
February 0.811 0.791 0.841 0.531 0.742 0.831 0.522 0.621 0.961 0.891 0.682 0.631
March 0.681 0.831 0.542 0.564 0.651 0.942 0.491 0.592 0.792 0.932 0.681 0.621
April 0.562 0.853 0.842 0.563 0.642 0.992 0.551 0.592 0.821 0.942 0.712 0.612
May 0.681 0.881 0.712 0.521 0.603 0.991 0.671 0.562 0.771 0.951 0.751 0.571
June 0.631 0.912 0.732 0.432 0.351 0.973 0.782 0.573 0.632 0.961 0.772 0.451
July 0.552 0.921 0.841 0.381 0.263 0.941 0.822 0.671 0.651 0.951 0.781 0.412
August 0.562 0.932 0.672 0.412 0.332 0.942 0.821 0.361 0.722 0.952 0.781 0.431
September 0.681 0.922 0.871 0.421 0.421 0.923 0.801 0.422 0.653 0.942 0.792 0.472
October 0.732 0.881 0.633 0.491 0.621 0.872 0.752 0.521 0.831 0.931 0.741 0.541
November 0.813 0.831 0.771 0.532 0.661 0.802 0.582 0.572 0.871 0.911 0.642 0.572
December 0.741 0.770 0.741 0.522 0.762 0.711 0.491 0.492 0.883 0.881 0.582 0.611
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data and then the rest of them used for the testing purpose. Out of
all data sets, nearly half percent, that is, 0. 5% of the data set is
used for training and rest of them (0. 5%) used for testing are
shown in Figures 7A,B.

A computer code for the ANFIS model is developed through
MATLAB. The training of the model is continued until it gets the
optimum results with a lower MSE and higher regression value
(R). After fulfilling the optimal parameters with input and output
membership functions, the results are saved and further utilized
for training and testingANFISmodels (Figure 8). Depending on
the data sets, different training and testing curves are constructed
for better understanding.

The regression plot describes the accuracy between the
measured and the forecasted value of solar radiation. After
splitting the data set, input and output membership functions
used in this network are saved and used for training and testing
the ANFIS models. Figure 9 describes the training curve after

prediction. This curve shows the number of epochs with respect
to error, that is, the curve shows how the error varies with respect
to the number of epochs. The optimization is performed either by
using the hybrid learning algorithm or the back-propagation
method for identifying the MF (input and output) parameters.
The output membership function (linear or constant) is used for
training fuzzy inference system as mentioned in Figure 10.

To validate the accuracy of the developed ANFIS method, its
capability has been compared with the artificial neural network
(ANN) and support vector machine (SVM). The statistical
indicator helps the performance evaluation of the proposed
model which indicates lower values of RMSE and MAPE and
higher values of R2 during the comparison with ANN and other
model (Table 2).

The assortment of different parameters remains the most
important criteria for forecasting global solar-based radiation
of a particular place. So by means of ANFIS methodology,

TABLE 9 | Absolute relative error for the three cities mentioned with soft computing methods.

Month Kolkata Bhubaneswar Visakhapatnam

MLP ANFIS RBF MLP ANFIS RBF MLP ANFIS RBF

January 3.0165 0.0016 0.6961 5.9449 0.00,502 3.8024 0.1117 0.0135 1.709
February 4.2,324 0.0381 3.5534 5.3647 0.0033 6.4643 2.5307 0.0044 0.006
March 3.476 0.0053 5.6596 5.6702 0.0077 4.0527 0.86,201 0.0049 8.4653
April 2.7738 0.0426 7.5107 0.9199 0.0012 3.4472 0.3502 0.0355 4.6453
May 2.8363 0.0158 6.1261 3.3133 0.002 6.5792 1.1997 0.0064 5.4589
June 1.1139 0.0059 7.4124 0.8544 0.0047 3.7042 6.1806 0.0066 4.4648
July 1.5638 0.0036 6.193 8.7102 0.004 6.8342 6.0207 0.0089 6.7951
August 4.2,362 0.0091 3.6189 3.4637 0.0253 9.0297 6.7013 0.0119 8.1804
September 4.3099 0.0044 6.9943 8.9104 0.0063 8.3468 1.112 0.0232 6.036
October 4.5103 0.0082 0.8281 6.4035 0.0089 0.3072 3.7027 0.0004 5.8702
November 0.3375 0.0066 2.3547 0.9799 0.0062 3.7557 9.0403 0.0067 6.293
December 1.8914 0.0066 2.7157 6.7407 0.00,053 5.1809 2.3607 0.0065 0.5159

TABLE 10 | Different models of solar radiation forecasting from the latest literature works.

Reference Year Model type Input parameter Author

Jafarkazemi et al.
(2013)

2017 M1, M2, M3...M12 MBE, RMSE, and R2 Muhammed A. Hassan, A. Khalil, S. Kaseb, andM.
A. Kassem

Sobri et al. (2018) 2017 M1, M2, M3...M10 RMSE, RAE, MAE,
and R2

Achour, L., Bouharkat, M., Assas, O. and Behar, O

Achour et al. (2017) 2018 MARS, M5Tree, RSM, kriging MAE, RMSE, and MBE Keshtegar, B., Mert, C. and Kisi, O
Bhardwaj et al. (2013b) 2017 SBMsRS1. TBMsRT1, RT2, RT3. MBMs-RM1, RM2,

RM3, RM4. DBMs-RD1, RD2
MBE, RMSE, and
MPE, R2

Hassan, M. A., Khalil, A., Kaseb, S. and
Kassem, M

Bhardwaj et al. (2013b) 2017 RS1, DS1, PS1, AS1, and VS.1 MBE, RMSE, and
MPE, R2

Hassan, M. A., Khalil, A

Mellit et al. (2008) 2017 RFs, RFs-FFA, ANN, and ANN-FFA RMSE, MAPE, and MBE Ibrahim, I. A. and Khatib, T
Zou et al. (2017) 2017 ANFIS, E-IBCM, and IYHM RMSE, and MAE Zou, L., Wang, L., Xia, L., Lin, A., Hu, B. and Zhu, H
Meenal and Selvakumar
(2018)

2017 SVM and ANN R, MBE, RMSE, and
RANK

Meenal, R. and Selvakumar, A. I

Kadhambari et al.
(2012)

2017 BPNN, BPNN-PSO, and BPNN-GA R, RMSE, and MAE Xue, X

Halabi et al. (2018) 2018 ANFIS, ANFIS-PSO, ANFIS-GA, and ANFIS-DE MAPE, RMSE, RRMSE,
and MABE

Halabi, L. M., Mekhilef, S. and Hossain, M

Quej et al. (2017) 2017 ANN, ANFIS, and SVM RMSE, R2, and MAE Quej, V. H., Almorox, J., Arnaldo, J. A. and Saito, L
Despotovic et al. (2016) 2018 ReliefF, MCUVE, TandomFrog, and Laplace score RMSE, MAE, and MBE Almaraashi, M
Mohammadi et al.
(2016b)

2016 ANFIS (9 models) MABE, RMSE, and R Mohammadi, K., Shamshirband, S., Kamsin, A.,
Lai, P. C. and Mansor, Z
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FIGURE 13 | (A–C) Surface plots combining two most important parameters for Bhubaneswar, Kolkata, and Vizag.

FIGURE 14 | (A–C) MSE(MJ/m2) for the most appropriate blend of parameters with one, two, and three inputs of Bhubaneswar city during training and testing.
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parameters are chosen and dissimilar models are created
(Table 3).

Case No 1: Parameter Selection (1 Input)
During the training and testing of the model, only one input is
considered. The performance outcome of both training and
testing are presented in (Table 4) considering the sunshine
input as the most favorable parameter.

The performance evaluation of different models with respect
to the number of inputs is described in Table 4.

Case No 2: Parameter Selection (2 Inputs)
Here, two input parameters are combined for the purpose of
training and testing. In total, six models have been created. The
output obtained has been shown in Table 6. The statistical result
shows for state Bhubaneswar model 1 with input temperature and
sunshine duration produces improved results in comparison to
other input combinations. But in the case of Visakhapatnam and
Kolkata, model two with inputs (sunshine duration and Relative
Humidity) will give a superior outcome compared to other input
combinations.

Table 6 shows the statistical analysis with ANFIS models for
cities Bhubaneswar, Kolkata, and Visakhapatnam.

Case No 3: Parameter Selection (3 Inputs)
Considering three vital input parameters, models have been
formulated. Furthermore, all the statistical results have been
verified providing better outcome with inputs such as sunshine

duration, temperature, and humidity. The outputs after training
and testing have been presented in Table 7. Proper knowledge
about the inputs helps a lot in forecasting solar radiation at any
particular place.

In the past, several initiatives have been taken in India
regarding solar radiation data forecasting with conventional
empirical models. Three important cities of Eastern India have
been taken as case studies to carry out analysis for solar radiation
prediction purposes. Furthermore, input parameters are fixed
such as proportion of surface air pressure P/PO, temperature
T/TO, sunshine span S/SO, and relative humidity R/RO. Few
statistical tests such as MBE, MSE, and correlation coefficient
[R] have been calculated from the measured and predicted output
(GSR). This can be carried out after utilizing the dissimilar
input–output membership function of ANFIS. Furthermore,
this ANFIS model utilizes the grid participating method and
follows dual output membership functions such as constant and
linear membership functions. Adaptive neuro-fuzzy (Krishnaiah
et al., 2007a; Awasthi and Poudyal, 2018) system has been utilized
to identify most pertinent parameters for the forecasting of daily
GSR. Different cities of central and southern Iran are considered
for case studies. This work discussed (Kadhambari et al., 2012;
Premalatha and Arasu, 2012; Bhardwaj et al., 2013b; Citakoglu,
2015; Meenal and Selvakumar, 2018; Sobri et al., 2018) the
accuracy and performances of different soft computing
techniques such as ANFIS, ANN, and SVM for the forecasting
of daily horizontal GSR. The performance of the model is assessed
from statistical indicators such as (RMSE,MAE, and coefficient of

FIGURE 15 | (A–C) Measured and predicted data using different soft computing approaches for Visakhapatnam.
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determination (R2). Authors in this particular work (Choubin
et al., 2018b) have advocated standalone ANFIS and hybrid
models to predict global solar radiation using several
meteorological parameters such as sunshine duration, air
temperature, and optimization techniques such as PSO and
genetic algorithms are used. Monthly solar radiation values
(Melin and Castillo, 2005; Pousinho et al., 2011; Melin et al.,
2012; Pérez et al., 2012; Choubin et al., 2017; Choubin et al.,
2018a) have been modeled with the help of ANN, ANFIS, and
empirical equations. Input variables such as meteorological data
and month numbers are used as input variables. Authors in this
work have emphasized the accuracy (Aguilar et al., 2003;
Mohanty et al., 2016a; Mohanty et al., 2017a) of SVM, ANN,
and empirical solar radiation models with different combinations
of input parameters such as month, latitude, longitude, bright
sunshine hours, day length, relative humidity, and maximum and
minimum temperature. Four novel empirical models have been
introduced and validated with experimental data. Authors have
proposed (Choubin et al., 2018b) several models such as ANFIS,
E-IBCM, and IYHM and evaluated in order to predict global solar
irradiance whereas improved empirical models have been found
to be better than other original models for solar radiation
forecasting. The ANFIS model produces the best global solar
irradiance capability in China among the three models.
Algorithms such as MLP, ANFIS, and SVMs have been used.
The models have been divided into four groups including
sunshine, temperature, and other meteorological parameters.
The first network uses five inputs to predict the solar
irradiance (N1) while the second network is the time-series
prediction of solar radiation (N2). MLFFNN, RBFNN, FIS, and
SVR models are developed for N1. MLFFNN, SVR, FIS, and three
ANFIS models are developed for N2. Authors have (Choubin
et al., 2018a) compared the neuro-fuzzy model with that of the
time-series model for the modeling of the drought. Research
studies (Mohanty et al., 2016b; Mohanty et al., 2020) have focused
on the novel application of classification and regression
tree–based (CART) model. (Mohanty et al., 2016a; Mohanty
et al., 2016b; Mohanty et al., 2020). After the process of
training and testing, monthly average solar radiation data and
statistical analysis have been attempted for three cities Kolkata,
Bhubaneswar, and Visakhapatnam (Tables 5–7, Figures 11, 12).

Figures 13A–C show the surface plot for the optimal
combination of inputs of three cities at the time of training
and testing. The significant combination of parameters having
one, two, and three inputs of three cities of Eastern zone of India
during training and testing are shown in Figures 14A–C. The
measured average monthly GSR was compared with measured
values of Kolkata, Bhubaneswar, and Visakhapatnam (Tables 8, 9).
Due to recurrent cyclonic effects, it is essential to devise new
computational methods such as soft computing–based algorithms
and their applications. ANFIS predicts better outcomes with
calculated values (Figure 15).

In spite of its efficiency and computational ability, additional
inputs are always needed for enhanced accuracy and robustness.
More emphasis should be given to the input factors where error in
computation of training data is found. Further data fluctuations
are taken care of because of ANFIS’s robustness and

computational skill. In this regard, a lot of work(Krishnaiah
et al., 2007a; Ajil et al., 2010; Kadhambari et al., 2012;
Premalatha and Arasu, 2012; Chandra et al., 2013; Joshi, 2013;
Citakoglu, 2015; Awasthi and Poudyal, 2018; Verma et al., 2019)
has been done in recent days emphasizing the combination of
different models and input parameters for better forecasting
studies (Table 10).

CONCLUSION

This research work has been prepared as a review study, which
focuses on ANFIS-based solar radiation forecasting in Eastern
part of India. Several studies have been undertaken with soft
computing techniques. Suitable models have been developed
based on several inputs and detailed analysis has been
performed to show the minimum MSE and maximum
regression (R) values in different places of Eastern India after
training and testing. Themain idea behind this study is to find out
the significance of forecasting in solar radiation data collection
and study its applications in agricultural crop production,
hydrological, industrial, and ecological studies along the
eastern coast of India. The performance of the ANFIS model
in comparison with other prediction models has been studied to
establish the significance of the proposed model in estimating
solar radiation. After several studies, the ANFIS model seems to
be computationally efficient and adaptable in managing different
parameters. Consequently, the model is engaged in the estimation
of the solar radiation–based data with extensively available
meteorological information. It also overcomes errors, as it
seems highly robust and efficient in dealing with data
fluctuations. It may also be fused with additional soft
computing approaches to get better network accuracy. The
study also surveys similar ANFIS-based work in different areas
of India in particular and other important places in the world.
Further improvements are expected with several other
combinations of meteorological data such as air pressure,
humidity, sunshine duration, cloud index, and many more
that can be associated with the model for future studies.
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