
Optimal Dispatching Strategy of Active
Distribution Network for Promoting
Local Consumption of Renewable
Energy
Hua Xie1*, Wei Wang1, Weixing Wang2 and Lulu Tian1

1School of Electrical Engineering, Beijing Jiaotong University, Beijing, China, 2Research and Development Center, XJ Group
Corporation, Xuchang, China

Large-scale renewable energy sources (RESs) have been integrated into the active
distribution network (ADN). For promoting the local consumption of RESs within ADN,
an optimal dispatching strategy was proposed with two-stage hierarchical energy
management framework. On the spatial boundary, a two-layer energy management
framework was designed with the local optimization layer and the global optimization
layer. The local optimization layer was for optimal power flow in the branch feeder with the
objective functions of minimizing operation costs and maximizing the consumption of
RESs. The global optimization layer was for optimal power flow in the main feeder with the
objective functions of minimizing power loss and the voltage deviation of nodes. On the
time scale, two-stage optimal dispatching models were established, including the day-
ahead optimal models and intra-day optimal models. The day-ahead optimal models
identified the operation status of the controllable units, and then the intra-day optimal
models were updated with the ultra-short-term forecast results. A risk indicator was
introduced to quantify the uncertainty of RES, and a non-dominated sorting genetic
algorithm with elite strategy was adopted to solve the multi-objective nonlinear
programming problem. An actual project in northern China was used as the testing
system. The results of case studies verify that the proposed strategy can effectively realize
the maximum local consumption of RESs and support the economic operation of ADN.

Keywords: active distribution network, dispatching strategy, renewable energy, two-stage, global optimization,
local optimization

INTRODUCTION

The high penetration of renewable energy can pose challenges for the operation of a distribution
network due to uncertainty and variability. For the future low-carbon society, it is important to
design an optimal dispatching strategy of the active distribution network (ADN) to improve the
consumption of renewable energy and enhance the economy of the distribution network (Wu et al.,
2021).

The research on the dispatching strategy of ADN mainly focused on economical operation. The
objective function of the optimal dispatching model was generally set with minimizing power loss
(Gildenhuys et al., 2019; Bi et al., 2020; Wu et al., 2021) and the amount of electricity purchased from
grid (Wu et al., 2019; Zhang et al., 2020a; Omaji et al., 2020). Some references considered resilience in
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the objective functions (Wang and Wang, 2015; Zhou et al.,
2019). Renewable energy sources (RESs) were often integrated
with energy storage systems (ESSs) or controllable distributed
generators (CDGs) to form microgrids (MGs). Bi et al. (2020)
proposed a learning-based dispatching strategy of MGs with RES
and ESS. Ji et al. (2021) proposed a continuous-control, deep
reinforcement learning-based online scheduling method for
MGs. Dubuisson et al. (2020) proposed a bacterial foraging
optimization algorithm for power management in stand-alone
MGs. Omaji et al. (2020) established a cooperative game model
for MGs. Younesi et al. (2021) proposed bi-level resilience-
oriented stochastic scheduling that integrates the economic
perspective considering MG resilience function. In Zhang and
Yan (2018), an ADN optimal control strategy for energy storage
systems and controllable loads was considered and solved by an
improved particle swarm algorithm. The above-mentioned
literature greatly benefits this paper on objective functions and
constraints.

Actually, the difficulty lies in the uncertainty of RESs. At present,
most papers established a stochastic programming model to solve
the problems of ADNs with RESs. Sampling and clustering were
commonly used in some literature so that deterministic scenarios
were derived for ease in solving. Ahmadi et al. (2016) proposed a
stochastic programming model for distribution companies trading
in the electricity market, in which the variability of wind speed was
dealt with roulette wheel mechanism. Somma et al. (2017)
formulated a stochastic multi-objective linear programming
problem for the operation strategies of ADN by using Monte
Carlo simulation method to model 24-h scenarios related to solar
irradiance. The Monte Carlo simulation in Wang and Wang (2015)
was based on the forecasted power and uncertain prediction errors to
generate scenarios for distributed generator (DG) outputs. Fang et al.
(2017) evaluated the primary frequency response of the power
system with important wind power generation, which considered
the uncertainty of wind power output. Fan et al. (2021) evaluated the
influence of RESs on ADN dynamic performance, in which
K-means clustering technique was adopted to select the
approximation samples of input variables. Sannigrahi et al. (2019)
used K-means algorithm to present a stochastic framework for ADN
planning framework. Sampling and clustering algorithms are useful
and simple in modeling the uncertainty of RESs. However, multiple
scenarios increase the solving times, and it is not convenient for
dispatchers to quantitatively evaluate the operation risk caused by
the uncertainty of RESs.

There were some studies on the energy management
framework of ADNs. Kong et al. (2019) constructed a two-
layer distributed optimization model for ADNs and MG with
different interests, in which one layer is the active judgment
modules and another layer is the active control modules. The
active judgment modules included power flow calculation,
voltage quality judgment, and supply margining judgment.
The active control modules were those controllable units such
as CDGs. Li et al. (2018) proposed a three-layer collaborative
dispatch system for ADNs, in which the first layer is the
distribution network dispatching layer, the second layer is the
coordinated control layer, and the third layer is the local control
layer. Radhakrishnan and Srinivasan (2016) and Upadhyay and

Sharma (2016) constructed a multi-agent system for the
distributed energy management system. The son-agent dealt
with the uncertainty of RESs, and the parent-agent dealt with
the coordination between son-agents. The energy management
framework with multiple layers or agents has a clear architecture
and reduces the difficulty of solving complex problems. However,
the above-mentioned literature needs to consider the
coordination relationship between multiple agents or layers
and increases the complexity of the controller.

This paper proposed a two-stage hierarchical optimal
dispatching model to promote the local consumption of RESs
within ADN. The main contributions of this paper are as follows:

(1) A hierarchical energy management framework is proposed
for ADN. The global optimization layer of ADN optimizes
the load flow in the main feeder for improving the
consumption of RESs, and the local optimization layer
optimizes the load flow in the branch feeder for the local
consumption of RESs. The structure of the dispatching
system is simple without the additional coordinated
controllers.

(2) The optimal dispatching model is established with two-stage
energy management. The day-ahead optimal model identifies
the operation status of the controllable units. The intra-day
optimal model is updated with ultra-short-term forecast
results, and the risk indicator is introduced for quantifying
the uncertainty caused by the forecast errors. The optimal
dispatching model is easier to be solved.

The rest of this paper is organized as follows: Section 2
presents the hierarchical energy management framework for
optimal dispatching of ADN. Section 3 establishes a two-stage
hierarchical optimal dispatching model of ADN. Section 4
supports the solving algorithm. Case studies are carried out in
Section 5. Finally, Section 6 presents the conclusion of the
whole paper.

PROBLEM FORMULATION

This paper studies an ADN with RESs connected to nodes. As
shown in Figure 1, the energy management framework for
dispatching ADN is divided into three levels, namely, the
global optimization layer, the local optimization layer, and the
unit layer.

Bi-direction power flow is permitted in the tie line between grids
with ADN. The node in ADN may serve as a load to absorb the
power from ADN or as a power source to inject power into ADN.
The global optimization layer is for energy management of
ADN, which issues the power references to the local
optimization layer. The local optimization layer is for the energy
management of nodes, which is set as the node controller. Unit
layer is for energy management of devices connected with nodes,
which is responsible for executing the dispatching instructions
from the node controller. In the hierarchical energy management
architecture, the corresponding demand of dispatching should be
considered. Furthermore, the safe operation of ADN should be
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satisfied effectively, and renewable energy should be absorbed
locally.

The global optimization layer of ADN optimizes the load flow
in the main feeder for improving the consumption of RESs. The
renewable energy shall be absorbed within ADN as much as
possible. If the output of renewable energy is greater than the
demand of the load, the curtailed energy can be sold to grid or be
stored in energy storage systems. If the output is far less than the
demand, the energy will be supplied by grid or regulated by nodes.

The local optimization layer optimizes the load flow in the
branch feeder for the local consumption of RESs. It takes the
optimized power issued by the energy management center as a
constraint, and the regional autonomous control is completed by
the unit layer according to the optimization objective of the local
optimization layer. The devices in the unit layer are regulated to
absorb RESs nearby, which may be CDGs such as hydro, micro-
gras turbine (MT), energy storage systems such as battery energy
storage (BES), and demand-side response loads (DRLs) such as
transferable load (TL) and interruptible (IL).

The information flow in ADN is a loop in which the state
information is collected from the unit layer to the local optimization
layer and then to the global optimization layer, and the instruction
information is released from the energy management center to the
node controllers and then to the schedulable units.

At present, the forecast accuracy of renewable energy output is
related to the forecast time scale. Generally speaking, the longer
the time scale is in the forecast horizon, the worse the forecast
accuracy is. In this paper, two-stage hierarchical optimal model
will be established for the dispatching strategy of ADN to
promote the local consumption of RESs. In the following
discussion, day-ahead dispatching plans for the global
optimization layer and the local optimization layer will be
designed, and then an intra-day optimal dispatching strategy
of and will be developed.

TWO-STAGE HIERARCHICAL OPTIMAL
DISPATCHING MODEL OF ACTIVE
DISTRIBUTION NETWORK
Two-stage hierarchical optimal dispatching model is established
on the spatial and temporal dimensions. On the spatial boundary,
there is a two-layer optimal dispatchingmodel with consideration
of promoting the local consumption of RESs, in which the local
optimization layer is for the branch feeders (BFs) and the global
optimization layer is for the main feeders. On the time scale, there
is a two-stage optimal dispatching model with the consideration
of reducing the negative influence of the forecast error of RESs, in
which the day-ahead optimization is for the states of controllable
units and the intra-day optimization is for the updated dispatch
strategy.

The forecast error of RESs is collected with the history data.
The day-ahead forecast outputs of RESs are given by the short-
term forecasting system, which will be used in the day-ahead
optimal models. The intra-day forecast outputs in each interval
are given by the ultra-short-term forecasting system, which is
more accurate than the day-ahead forecast outputs. The
dispatching interval of ADN is set as 15 min following the
grid dispatching intervals.

Day-Ahead Optimal Model of the Local
Optimization Layer
In the local optimization layer, the day-ahead optimal model is
for optimal power flow in the branch feeders. The decision
variables include the consumption power of RESs connected
with the branch feeder, the interactive power of the nodes
with the main branch, the outputs and the status of
schedulable units connected at the branch feeder, such as the
on/off status of CDGs and their generation power, the charge/

FIGURE 1 | Hierarchical energy management architecture of active distribution network.
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discharge status of ESSs and their outputs, and the operation
status of DRLs and their power.

OBJECTIVE FUNCTIONS

In order to improve the local consumption of RESs as much as
possible, Eq. 1 is chosen as the objective function. Meanwhile, the
operation cost of the branch feeders should be minimized to
manage the economic operation of ADN. Therefore, another
objective function is expressed as Eq. 2, which includes the
generation costs of CDGs (Eq. 3), operation cost of ESSs (Eq.
4), dispatching costs of schedulable loads (Eq. 5), environment
cost (Eq. 6), and purchasing cost of electricity from the node
(Eq. 7).

maxf1 � ∑T
t

(PPV,t + PWT,t)Δt (1)

minf2 � ∑T
t

[CCDG,t + CESS,t + CDRL,t + Ce,t + CPE,t] (2)

Ct
CDG � ∑NCDG

i�1
{μtif(PCDGi,t) + (μti − μt−1i )λCDGi} (3)

CESS,t � ∑M
j�1
⎛⎝Cinv

μtjP
dis
j,t − μtjP

ch
j,t

2Nlife(t)EBr
Δt + closs[(1 − ηchj )Pch

j,t

+ (ηdisj − 1)Pdis
j,t ]Δt⎞⎠ (4)

CDRL,t � ∑NTL

n�1
cTLPTLn,tΔt + ∑NIL

m�1
cILPILm,tΔt (5)

Ce,t � ∑NDG

i�1
∑NS

s�1
VesQis,tPDGi,t (6)

CPE,t � cgrid,tPPE,t (7)
In Eq. 4 constraints, the cycle life of ESSs was calculated with

the charge/discharge depth by the rain flow counting method. For
the sake of simple calculation, this paper assumes that all TLs
have the same unit scheduling cost and all ILs have the same unit
scheduling cost. The environment cost refers to the purification
cost of pollutant emissions by CDGs connected with the branch
feeder.

CONSTRAINTS

The power flow balance meets constraint Eq. 8. It should be noted
that the outputs of RESs are uncertain, and the power supported
by grid is limited by tie-line carrying capacity as shown in Eq. 9.

∑NCDG

i�1
PCDGi,t + PG,t + (PPV,t + PWT,t) +∑M

j�1
(ηdisj,t P

dis
j,t − ηchj,tP

ch
j,t)

� PL,t + PTL,t + PIL,t (8)
PG,t ≤PG,max (9)

Eqs 10–12 are the operation constraints of CDGs, in which
Eq. 10 limits the output power, Eq. 11 and Eq. 12 describe the
ramp rate, and Eq. 13 guarantees the minimum operating time.

PCDG,min ≤PCDGi,t ≤PCDG,max (10)
PCDGi,t − PCDGi,t−1 ≤UR (11)
PDGi,t−1 − PDGi,t ≤UD (12)
Td,min ≤Td,s ≤Td,max (13)

The operation constraints of BESs include Eqs 14–19. Eq. 14
limits the state of charge (SoC) of battery, which is to prevent
over-charge and over-discharge. Eq. 15 guarantees battery
capacity to serve the next dispatching cycle, which is usually
set at half of the battery capacity. Eq. 16 and Eq. 17 calculate the
real-time SoC, and Eq. 18 and Eq. 19 limit the permitted power in
charging and discharging.

SoCB,min < SoCB,t < SoCB,max (14)
SoCB,0 � SoCB,T � 0.5 (15)

SoCB,t � (1 − δ)SoCB,t−1 + ηchPch,tΔt
EBr

(16)

SoCB,t � (1 − δ)SoCB,t−1 + Pdis,tΔt
ηdisEBr

(17)
0<Pch,t <Pch,max (18)
0<Pdis,t <Pdis,max (19)

The schedulable loads here include ILs and TLs. Eq. 20 limits
the interruptible power of IL, and Eq. 21 limits the interruptible
duration of IL. The Eq. 22 and Eq. 23 constrain operation status
of IL and TL cannot be changed continuously in adjacent periods.
Eq. 24 demands TL to transfer as a whole.

0≤PIL,t ≤PIL,max (20)
TIL,min ≤TIL,t ≤TIL,max (21)∣∣∣∣μIL,t − μIL,t−1

∣∣∣∣ � μIL (22)∣∣∣∣μDL,t − μDL,t−1
∣∣∣∣ � μDL (23)

PTL,t � PTL (24)

Day-Ahead Optimal Model of the Global
Optimization Layer
In the global optimization layer, the day-ahead optimal model is for
optimal power flow in the main feeders. The decision variables
include the consumption power of RESs connected with the main
feeder, the power supported by grid, the power of node injected into
the branch feeders, and the outputs and the status of schedulable
units connected at the main feeder, such as on/off status of CDGs
and their generation power, charge/discharge status of ESSs and their
outputs, and operation status of DRLs and their power.

OBJECTIVE FUNCTION

The power flow in the main feeder is optimized to obtain the
economic operation of ADN. Eq. 25 is designed as the objective
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function to promote the local consumption of RESs. The less the
power loss is in the main feeder, the more RESs is absorbed
locally. Besides this, the key factor restricting the consumption
capacity of RESs is the voltage deviation in ADN caused by the
fluctuation of RESs. Eq. 26 is designed as the objective function to
support the power quality.

minf3 � ∑T
t�1

∑
ij∈ΩL

Zij(P2
ij,t + Q2

ij,t)Δt
V2

j,t

(25)

minf4 � ∑T
t�1

∣∣∣∣∣∣∣∣Vi,t − Vi
N

Vi
N

∣∣∣∣∣∣∣∣ (26)

CONSTRAINTS

The power flow constraints are expressed as Eq. 27 and Eq. 28,
the power interactive with nodes meets Eq. 29, and the node
voltage constraints are expressed as Eq. 30. The other constraints
include Eqs. 9–24.

PG,t −∑N
i�1
Pi,t � Vi,t∑N

j�1
Vj,t(Gij cos δij,t + Bij sin δij,t) (27)

QG,t −∑N
i�1
Qi,t � Vi,t∑N

j�1
Vj,t(Gij sin δij,t − Bij cos δij,t) (28)

Pi,t ≤Pi,max (29)
Vmin ≤Vi,t ≤Vmax (30)

Intra-day Updated Optimal Model
It is necessary to update the dispatching strategy designed above
because the intra-day forecast outputs of RESs are relatively
accurate. Figure 2 shows the intra-day updated dispatching
framework. The operation status of units are determined
according to the day-ahead optimal model, and the
dispatching strategy is updated with intra-day forecast outputs
of RESs in every 15-min interval.

As mentioned above, the operation status of the units are
known in the intra-day optimal model, including the on/off status
of CDGs, the charge and discharge status of EESs, and the

operation status of DRLs. Whether it is the intra-day updated
optimal model of the local optimization layer or the intra-day
updated optimal model of the global optimization layer, the
constraints are the same as that of the day-ahead optimal
models. In the following sections, the objective functions will
be discussed.

The intra-day optimal model of the local optimization layer is
updated with the ultra-short-term forecast outputs of RESs
connected with the branch feeder. The decision variables of
the intra-day optimal model are the consumption power of
RESs, the power of the node injected into the branch feeders,
the outputs of CDGs, the outputs of EESs, and the interruptible
power of ILs.

For promoting the local consumption of RESs in the branch
feeder, Eq. 1 is chosen as the objective function as that of the
day-ahead optimal model of the local optimization layer.
Besides this, there is another objective function expressed as
Eq. 31, which is to minimize the adjustment costs. Adjustment
costs refer to the additional operation costs brought about by
updating the forecast outputs of RESs.

minf′2 � ∑T
t

[ΔCCDG,t + ΔCESS,t + ΔCDRL,t] (31)

Since the on/off status of CDGs is determined by the day-
ahead scheduling plan, the adjustment cost only considers fuel
costs during each dispatching period t. The adjustment cost of
CDGs is calculated asEq. 32.

ΔCCDG,t � ∑NCDG

i�1
f(PCDGi,t − P’CDGi,t) (32)

Similarly, the adjustment cost of ESSs can be expressed as
Eqs 33–35. As to the adjustment cost of DRLs, it is
expressed as Eq. 36 for ILs while ignoring TLs which keep
the optimal operation status of the day-ahead schedule plan.

ΔCESS,t � ∑M
j�1
(Clife,t + Closs,t) −∑M

j�1
(C′life,t + C′loss,t) (33)

C′life,t � Cinv

P′disj,t − P′chj,t
2N′life,tEBr

Δt (34)

FIGURE 2 | Intra-day updated dispatching framework.
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C′loss,t � closs[(1 − ηchj )P′chj,t + (ηdisj − 1)P′disj,t ]Δt (35)

ΔCDRL,t � ⎡⎣∑NIL

l�1
cILPILl,tΔt⎤⎦ − ⎡⎣∑NIL

l�1
cILP′ILl,tΔt⎤⎦ (36)

The objective functions of the intra-day optimal model
of the global optimization layer is the same as that
of the day-ahead optimal model of the global
optimization layer.

SOLVING ALGORITHM

The day-ahead optimal model is a mixed-integer nonlinear
programming problem. There are continuous variables, such
as the outputs of CDGs, consumption power of RESs, power
supported by grid, power of node injected into the branch feeders,
and so on, and there are discrete variables such as the on/off status

of CDGs, charge/discharge status of ESSs, operation status of
DRLs, and so on. The models can be established as follows:

{minf(P, μ), P � [P1, P2, · · ·, Pn], μ � [μ1, μ2, · · ·μm] s.t. h(P, μ)
� 0 �g≤g(P, μ)≤ g P ∈ R, μ ∈ {0, 1}

(37)
The intra-day optimal model is a nonlinear optimization

problem. There are continuous variables, such as outputs of
CDGs, consumption power of RESs, charging and discharging
power of RESs, and so on. The models can be built up as
follows:

⎧⎪⎨⎪⎩
minf’(P),ΔP � [P1, P2, · · ·, Pn]
s.t. h’(P) � 0
�P≤Pj ≤ P, j � 1, 2, · · ·, D

(38)

FIGURE 3 | A distribution network with three branch feeders.
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As mentioned above, the historical data set can be derived
to describe the probability distribution of the forecast errors of
RESs. Eq. 8 can be transformed as Eq. 39 with the forecast
errors.

∑NCDG

i�1
PCDGi,t + PG,t + (�PPV,t + RPV,t) + (�PWT,t + RWT,t)

+∑M
j�1
(ηdisj,t P

dis
j,t − ηchj,tP

ch
j,t)

� PL,t + PTL,t + PIL,t (39)
Taking into account the uncertainty of the forecast error, a

risk indicator is introduced with a certain confidence level of
probability distribution. Under the given confidence level α,
the risk indicator can be quantified by quantiles, as shown
inEq. 40.

R � CDF−1(1 − α) (40)

The optimal dispatching model established is a multi-objective
optimization problem. As it is known, a single-objective
optimization problem only has one objective function, which
makes it relatively easy to get the global optimal solution.
However, when multiple objectives are considered, there are
often conflicts between these objectives, so it is difficult to find

an appropriate solution. It is common that weight coefficients are set
for each sub-objective to convert a multi-objective into a single
objective. Although it is simple to obtain the solution, the results are
influenced by the weights, and the solution quality is not high
enough.

This paper adopts the NSGA-II algorithm to obtain the
Pareto optimal solution. The NSGA-II algorithm is a multi-
objective intelligent optimization algorithm based on the Pareto
optimal solution theory, with the advantages of fast operation
and good convergence (Zhang et al., 2020b; Pant et al., 2021).
The crowding distance comparison operator is used to quickly
obtain the fitness values of different elements. It competes
between parent and offspring individuals to produce the
next-generation population, which is conducive to
maintaining excellent individuals and improving the overall
evolution level of the population. The algorithm decomposes the
multi-objective optimization problem into multiple single-
objective optimization sub-problems and efficiently
approaches the whole Pareto frontier by setting the
weight vector. When the population size is set to N,
the initialization weight vector is { 0

N−1,
1

N−1,/, N−1
N−1}.

The solution process of algorithm is detailed as Algorithm 1:

Algorithm 1.

TABLE 1 | Parameters of micro-gas turbine.

Rated power (MW) Maximum up climbing
rate (MW/h)

Maximum down climbing
rate (MW/h)

Startup cost (yuan/times) Fuel cost (yuan/MWh)

1 0.5 0.5 0.96 573

TABLE 2 | Emission parameters of various electricity generation technologies
(g/kWh).

Generation technologies CO2 NOx CO SO2

Thermal power generation 623 2.88 0.1083 6.48
PV 0 0 0 0
WT 0 0 0 0
HD 0 0 0 0
MT 184.0829 0.6188 0.1702 0.000928

TABLE 3 | Processing costs of pollutant emission (yuan/kg).

Pollution type CO2 NOx CO SO2

Environmental management fee 0.0125 2.5 0.2 1.25

TABLE 4 | Energy storage system parameters.

Rated power
(kW)

Rated capacity
(MW)

Min SOC Max SOC Initial SOC Efficiency (%)

500 2 0.1 0.9 0.5 95

TABLE 5 | Price of interactive power between branch feeders and active
distribution network.

Period Time Price (yuan/kWh) Selling

Purchasing

Peak period 18:00–22:00 0.83 0.65
Flat period 7:00–18:00, 22:00–0:00 0.49 0.38
Valley period 0:00–7:00 0.17 0.13
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CASE STUDY

Overview of the Actual ADN in Northern
China
A case study was carried out using an actual distribution network
in an area of Yiyang, Henan Province, China, as shown in
Figure 3. The ADN contains 203 nodes. The voltage level of
the system is 10 kV. The optimization horizon is 24 h, and the
dispatch interval is 15 min. Three optimal models can be
established with consideration of the combination RESs,
CDGs, BESs, and loads. BF1 is connected with node 143, BF2
is connected with node 146, and BF3 is connected with node 103.
The installed capacity is 10 MW for each PV, 10 MW for each
WT, 2 MW for each BESS, 2 MW for each HD, and 1 MW for
each MT.

The parameters are displayed in Tables 1–5. Figure 4 shows
the forecast curves of the day-ahead load and RESs, and Figure 5
indicates the forecast curves of the ultra-short-term load
and RESs.

Dispatching Strategy of ADN
The non-dominated genetic algorithm (NSGA-II) is used to solve
the multi-objective optimization problem. The parameters of the
algorithm are set as follows: population size is set to 100, the
maximum iterations of genetic operations is 100, selection
probability is 0.9, and mutation probability is 0.1. The
simulation took 6.174 s with high model convergence.

Figure 6 shows the day-ahead optimal results. When the
RESs output is larger than the load, the ESS is charging, and

when the RESs output is less than the load, the ESS is
discharging and DGs begin to work. The fluctuation of RES
generation is mainly compensated by the ADN when local DGs
and ESSs in BFs cannot compensate it. When the PV output
cannot meet the load, ESSs start to discharge at this time. HD is
on with high-level output power. The total interactive power
fluctuates between 7 and -5 MW.

Figure 7 presents the dispatching strategy of the intra-day
optimal model. The intra-day optimal dispatching strategy
modifies the outputs of CDGs and BESs without changing the
status set by the day-ahead dispatch plans. There is a certain
deviation between the dispatch command of the BFs obtained
with optimizing the operation of the ADN and the interactive
power curve obtained with optimizing the operation of the BFs.
This is due to the different focus of optimal dispatching. In
the optimized results, the nodes with BFs are equivalent to the
controllable distributed power source, which accepts the
dispatching instructions from the energy management center
of ADN. Therefore, the local optimization layer executes the
dispatching instructions of the globe optimization layer and
adjusts the outputs of the controllable units in the branch
feeders in time.

According to the power flow calculation, the equivalent
voltage amplitude of BF2 is lower than 0.93. Therefore, the
intra-day dispatching program of the main feeder needs to be
started. The main feeder is optimized with minimizing the node
voltage deviation. Then, the node controller accepts the
dispatching instructions from the energy management center.
Therefore, the outputs of the controllable units connected with
branch feeders will be adjusted in time.

FIGURE 4 | Day-ahead load and renewable energy output forecast curve.
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FIGURE 5 | Ultra-short-term load and renewable energy output forecast curve.

FIGURE 6 | Day-ahead optimal results.
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Local Consumption of RESs
The local consumption rate of RESs is defined as Eq. 41. It is the
proportion consumed by the branch feeder and the maximum
output of RESs. The forecast results are used as the maximum
outputs of RESs.

σ � ∑T
t�1

Preal
RES(t)

Pmax
RES(t)

Δt (41)

For a convenient illustration, SO is corresponding to the
optimal results with single-layer energy management
framework, and HO is corresponding to the optimal results
with hierarchical energy management framework proposed in
this paper. Table 6 presents the local consumption rate on site
of BF.

As shown in Table 6, the dispatching strategy proposed in this
paper can effectively promote the local consumption of RESs. If
the node voltage exceeds the operation limit, the global
optimization layer optimizes the power curve of the
interaction between the nodes and the main feeder with the
voltage deviation as the objective. The node controllers will adjust
the outputs of the controllable units at the same time with
maximizing the local consumption of renewable energy. On
the one hand, it can reduce the power loss caused by power
transmission. On the other hand, nodes accept the dispatching
instructions of ADN center, which is convenient for management
without an additional coordinated controller. Upon comparing

FIGURE 7 | Intra-day optimal results.

TABLE 6 | Renewable energy consumption rate on site of branch feeder.

BFs Day-ahead Intra-day SO, σ
(%)

HO σ

(%)
After adjustment,

σ (%)SO, σ
(%)

HO, σ
(%)

BF1 63.71 68.14 64.91 69.82 69.35
BF2 76.53 79.75 80.21 87.04 86.98
BF3 86.27 87.8 87.18 87.73 87.71

TABLE 7 | Day-ahead optimal operation cost of branch feeders.

Type BF1 BF2 BF3 HO SO HO

SO HO SO

Environmental cost (yuan/day) 390.59 377.97 1,164.59 1,083.91 708.27 713.65
Operation cost of battery energy storage system (yuan/day) 611.28 570 532.56 524.88 555.096 545.88
MT cost (yuan/day) — — 6,876.12 6,446.25 8,251.43 7,671.03
Electricity cost (yuan/day) 4,734.18 4,357.37 16,728.55 16,241.52 18,911.59 16,468.8
Total cost (yuan/day) 6,916.05 6,437.22 25,301.82 24,296.56 28,426.386 25,399.36
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the results of day-ahead optimization and intra-day optimization,
it was shown that the forecast errors of loads and RESs affect the
optimal results and verifies the proposed method with two-stage
hierarchical optimization.

Table 7 and Table 8 give the day-ahead and intra-day optimal
operation cost of BFs, respectively.

By comparing the calculation results SO and HO, it is shown
that the energy management strategy proposed in this paper
can reduce the operating cost of nodes. At the same time,
considering the voltage quality of the main feeder, the
operating costs of BFs are increased less than before. The
cost of purchasing electricity from the main feeder still
occupies a large proportion.

The confidence level of the forecast error of RES affects the
operation economy of ADN. The smaller the confidence level is
set, the worse the operation economy is shown to be. Table 9
shows a list of the total operation cost of ADN under different
confidence levels. It shows that a larger confidence level can help

reduce the operation cost of ADN. In engineering projects, the
confidence level should be selected reasonably.

Figure 8 shows the total power loss of ADN.
As shown in Figure 8, the power loss of ADN is 10.570 MW,

and it is reduced by 29.06%, in contrast with the power loss of SO
at 14.9 MW. It indicates that the proposed strategy can effectively
reduce power loss.

Table 10 presents the voltage deviation of ADN in day-ahead
optimization results.

Table 11 imposes the carbon emissions at all scheduled times.
In Table 11, before optimal dispatching, the total carbon

emission of all BFs was 79,676.357 kg. Using the energy
management strategy proposed in this paper, the total carbon
emission of all BFs was 62,217.997 kg, and the carbon emission
was reduced to 17,458.36062 kg. That is, the carbon emission is
reduced by 21.91%. It shows that the proposed strategy in this
paper can effectively reduce carbon emissions. On the one hand,

TABLE 8 | Intra-day optimal operation cost of branch feeders.

Type BF1 BF2 BF3 HO SO HO

SO HO SO

Environmental cost (yuan/day) 459.33 459.33 1,067.23 914.25 637.22 587.13
Operation cost of battery energy storage system (yuan/day) 617.19 572.52 541.23 532.43 552.17 547.96
Micro-gas turbine cost (yuan/day) — — 6,776.12 7,092.3 8,251.43 7,385.97
Electricity cost (yuan/day) 5,334.08 5,321.9 16,728.55 11,547.3 14,931.74 12,069.22
Total cost (yuan/day) 6410.6 6322.93 25113.13 20086.28 24392.05 20590.28

TABLE 9 | Total cost in different confidence levels (yuan/day).

Confidence level
(%)

BF1 BF2 BF3 Intra-day Day-ahead Intra-day

Day-ahead Intra-day Day-ahead

90 6,437.22 6,322.93 24,296.56 20,086.28 25,399.36 20,590.28
95 6,503.23 6,365.56 24,330.82 20,138.96 25,469.16 20,637.26

FIGURE 8 | Total power loss of active distribution network.

TABLE 10 | Voltage deviation of active distribution network (ADN).

Time (h) SO (p,u) HO (p,u) Time (h) SO (p,u) HO (p,u)

1 2.265 2.044 13 2.770 2.155
2 2.269 2.042 14 2.676 2.157
3 2.264 2.044 15 2.472 2.148
4 2.276 2.051 16 2.463 2.151
5 2.615 2.133 17 2.605 2.151
6 2.774 2.246 18 2.771 2.246
7 2.881 2.262 19 2.847 2.242
8 3.082 2.559 20 3.150 2.583
9 2.588 2.067 21 2.906 2.437
10 2.453 2.050 22 2.801 2.569
11 2.582 2.075 23 2.460 2.343
12 2.877 2.256 24 2.282 2.059

The day-ahead voltage deviation of ADN, with SO, is 63.129 p.u. By implementing the
proposed dispatching strategy, the voltage deviation of ADN decreases to 53.07
p.u—that is, it decreases by15.93%. It identifies that the proposed strategy can
effectively reduce the voltage deviation of ADN.
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it reduces the amount of fossil fuels, and on the other hand, it
reduces the emissions of environmental pollutant gases.

In order to verify the superiority of NSGA-II algorithm, the
multi-objective evolutionary algorithm based on decomposition
(MOEA/D) (Zhang and Li, 2007) is selected as the comparison
algorithm to solve the proposed model. MOEA/D is also
commonly used in multi-objective optimization models to
avoid local optimization and approach the Pareto frontiers
efficiently. The same parameters are set in two algorithms, and
the confidence level is 90%. Figure 9 shows the Pareto frontiers
with different algorithms.

Figure 9 indicates that the result of NSGA-II algorithm is
more economical than that of MOEA/D. Besides this, the
calculation time used by NSGA-II algorithm is 6.174 s, and the
calculation time used by MOEA/D algorithm is 7.351 s.
Therefore, the NSGA-II algorithm applied in this paper has an

advantage in solving the multi-objective complex optimization
model.

In summary, the dispatching strategy proposed in this paper
can effectively promote the local consumption of RESs and the
economy operation of ADN and reduce carbon emission and
power loss while supporting the power quality of nodes.

CONCLUSION

This paper proposes the optimal dispatching strategy of ADN for
promoting the local consumption of RESs. The two-stage
hierarchical energy management framework is proposed, in
which the structure of the dispatching system is simple and the
optimal dispatching model is easier to be solved. The power flow in
the main feeder and in the branch feeder is respectively optimized
to improve the local consumption of RESs and the economical
operation of ADNs. Besides this, the operation risk caused by the
uncertainty of RES is quantified, so optimal results are friendly to
the operators of ADNs.
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TABLE 11 | Carbon emissions at all scheduled times.

Time(h) Carbon emissions
(kg)

Time (h) Carbon emissions
(kg)

SO HO

SO HO

1 880.219 357.493 13 6,929.482 6,344.616
2 825.083 501.824 14 4,611.475 4,327.891
3 795.179 254.827 15 3,414.025 2,851.513
4 701.729 269.516 16 2,501.120 2,084.275
5 701.729 171.921 17 2,452.211 2,214.638
6 803.590 483.388 18 4,340.106 3,630.196
7 2,417.627 1,725.690 19 4,048.019 2,695.415
8 5,163.787 4,372.198 20 7,266.420 5,365.835
9 3,534.150 3,197.696 21 5,500.492 3,917.355
10 3,038.716 2,992.126 22 4,972.577 3,294.039
11 3,341.260 2,973.446 23 3,806.736 2,110.375
12 5,102.475 4,927.074 24 2,528.150 1,154.650

FIGURE 9 | Pareto frontiers with different algorithms.
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GLOSSARY

ADN active distribution network

BESS battery energy storage system

BF branch feeder

CDG controllable distributed generator

DRL demand-side response loads

ESS energy storage system

HD hydro

HO hierarchical optimization

MT micro gas turbine

PV photovoltaics

RESs renewable energy sources

SoC state of charge of battery

SO single-layer optimization

WT wind turbine

TL transferable load

T index of scheduling periods, t = 1, 2, . . . , T

I index of controllable DGs, i = 1,2, . . . , NDG

j index of ESSs, j = 1, 2, . . . , M

N index of transferable load, n = 1, 2, . . . , NTL

M index of interruptible load, m = 1, 2, . . . , NIL

α confidence level

σ local consumption rate

Parameters

PG,max/min maximum/minimum exchange power between ADN and BF

PG,t purchase and sale of electricity at time t

PCDGi,t output power of the ith CDG at time t

PCDG,max/min maximum/minimum power of CDG

PL,i、QL,i active and reactive load of ADN at time t

Nlife life cycle of ESS at corresponding discharge depthcycle life at charge
discharge depth

PTLn,t dispatching power of the nth TL at time t

PILm,t dispatching power of the mth IL at time t

Pch/dis
j,t charging/discharging power of jth ESS at time t

Pch/dis,max maximum charge/discharge power of ESS

Pline,t transmission power of the ADN

Pline,max maximum transmission power of ADN

Pmax
RES(t) the maximal output power of RESs at time t

�PPV/WT,t forecast power of PV/WT at time t in the BF

PPV/WT,t power of PV/WT at time t in the BF

PTk,i,t、QTk,i,t active power and reactive power from kth BF at time t

NTL/IL number of transferable/interruptible loads

PPCC,i,t、QPCC,i,t active and reactive power from the upper grid

PT,max/min maximum andminimum exchange power between ADN and BF

PPCC,max maximum power injected by the upper grid

Preal
RES(t) the power of RESs consumed by BFs at time t

PPE,t purchase and sales of electricity at time t

Pij,t active power flowing through the line ij at time t

Qij,t reactive power flowing through the line ij at time t

RPV/WT,t forecast error power of PV/WT at time t in the BF

cCDG,t generation cost of CDGs at time t

cESS,t operation cost of ESSs at time t

Cinv the initial investment cost of ESS

cPE,t electricity purchasing cost at time t

cTL unit dispatch cost of transferable load

cIL unit dispatch cost of interruptible load

cDRL,t dispatching cost of schedulable loads at time t

ce,t environment cost at time t

cgrid,t electricity purchase and sale cost at time t

closs unit charge and discharge loss cost of ESS

Nlife life cycle of ESS at corresponding discharge depthcycle life at charge
discharge depth

μch/disj charging/discharging efficiency of jth ESS

DoD,t dispatch depth of ESS at time t

EBr rated capacity of BESS

ηch/disj charge/discharge efficiency of ESS

SoCB,t state of charge of BESS at time t

SoCB,max/min maximum and minimum SOC of BESS

Xij reactance of branch k between node i and j

Gij、Bij real and imaginary parts of the admittance matrix between node i
and node j

Zij impedance of line ij

Vij,t end voltage of line ij at time t

Vi,t the voltage amplitude of node i at time t

Vi
N the rated voltage of node i

Vmax/min maximum and minimum voltage

Ves environmental value of class s pollutants

δij,t voltage phase difference between node i and j

Td,s operating time of CDG

Td,min minimum operating time of CDG

Td,max maximum operating time of CDG

UR maximum ramp down rate of CDG

UD maximum ramp up rate of CDG

μti operating status of the ith CDG at time t

λCDGi startup cost of the ith CDG

Qis,t emission of class s pollutants of the ith CDG at time t

Δt scheduling interval
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