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In order to reveal the effect of thermal hydraulic conditions on the PWR CIPS risk, the
evaluation of a PWR CIPS risk in the first cycle under different core flow rates, average
primary temperatures, power levels, and primary pressures was conducted by combining
thermal hydraulic codes LINDEN and CRUD (Chalk River unidentified deposit) analysis
software CAMPSIS. The research result illustrating the essential effect of thermal hydraulic
conditions on CIPS is changing the SNB (subcooled nucleate boiling) level of the fuel
assembly’s surface; thus, boron precipitation and local power distribution will be affected.
Theoretical evidence and statistical support of the effect of thermal hydraulic conditions on
the PWR CIPS risk could be obtained via this research.

Keywords: PWR (pressurized water reactor), thermal hydraulic, CIPS (crud-induced power shift), boron
precipitation, SNB (subcooled nucleate boiling)

INTRODUCTION

During power operation, the corrosion products in the primary circuit of the PWR (pressurized water
reactor) will deposit on the fuel surface and form a CRUD (Yoo et al., 2020) (Chalk River unidentified
deposit). As an additive to control reactivity, the precipitation of boric acid inside the CRUD might
induce local power abnormality, which will cause a CIPS (crud-induced power shift) risk in severe
circumstances (Frattini et al., 2001; Yang and Tang, 2012; Yang et al., 2020). Jiao et al. (2021) developed
a depositionmodel which could calculate the axial CRUD thickness and solid phase distribution of fuel;
Li and Lyu developed an analysis code for calculating the CRUD deposition and radioactivity level in
the PWR primary loop based on the concentration difference driving principle (Li, 2017; Li et al., 2018;
Lyu et al., 2020); Zou et al. (2013) developed a thermal-physical-chemical coupling CIPS analysis
model; Yang and other researchers used American commercial software to evaluate CIPS risks of
AP1000 and CAP1400 units during power operation (Yang and Tang, 2012; Yang et al., 2020). Zhou
and Jones (2002) developed a model to simulate boron precipitation inside the CRUD and verified the
model based on Callaway plant measurement data. Doncel et al. (2007) carried out a series of
experiments to simulate boron precipitation inside the CRUD and revealed the influence of the effect of
thermal-hydraulic and hydrochemical conditions on boron precipitation. The Global PWR operation
experience shows that SNB (subcooled nucleate boiling) on the fuel surface is an important factor
affecting the CIPS (Sabol et al., 1997; Deshon, 2004; Lange, 2017). Differences in PWR design
parameters and operating conditions will cause different thermal hydraulic conditions, changing the
overall and local SNB level of fuel assemblies, and finally impact the risk of the CIPS. Using the thermal-
hydraulic analysis program LINDEN (Bai et al., 2013) and CRUD analysis software CAMPSIS (China
Nuclear Power Technology Research Institute Co. and Ltd., 2021), which have been validated based on
12 operating reactors’ measurement data, the first cycle’s CIPS risk of a PWR unit is analyzed under
different core flow rates, average temperature of the primary loop, power levels, and primary loop
pressure, which provides theoretical basis and data support for systematic evaluation of the influence of
thermal hydraulic conditions on the CIPS risk of PWR units.
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CHEMICAL KINETIC MODEL

Deposition of Corrosion Products
PWR measurement data show that the main components of fuel
CRUD are nickel (Ni), iron (Fe), and chromium (Cr) mixing spinel
(Deshon, 2004; Riess, 2017). Along the axial direction of the fuel
assembly, nickel oxide (NiO) usually precipitates in the SNB region,
while nickel ferrite (NiFe2O4) andmagnetite (Fe3O4) aremore likely to
deposit in the region where SNB does not occur (Deshon, 2005; Riess,
2017). In addition, 58Co, 60Co, 54Mn, and other radioisotopes can be
detected in the primary coolant during PWR power operation, which
indicates that Co and Mn also exist in the CRUD, but their contents
are relatively small compared with Ni, Fe, and Cr, which can be
ignored in CIPS analysis. For Ni, Fe, and Cr, combined with the
corrosion potential–pH diagrams at high temperature-high pressure
and the experimental results (Tremaine and Leblanc, 1980; Frattini
and Fruzzetti, 2002; Liu et al., 2011; Riess, 2017), the following
chemical reactions were established to simulate the CRUD
formation process on the fuel surface:

Fe3O4 + 6H+ +H2 ↔ 3Fe2+ + 4H2O; (1)
Fe3O4 + 3H+ +H2 ↔ 3FeOH+ +H2O; (2)
Fe3O4 +H2 + 2H2O ↔ 3Fe(OH)2,aq; (3)

NiFe2O4 + 6H+ +H2 ↔ Ni2+ + 2Fe2+ + 4H2O; (4)
3NiFe2O4 + 6H+ +H2 ↔ 3Ni2+ + 2Fe3O4 + 4H2O; (5)

NiFe2O4 + 2H+ ↔ Ni2+ + Fe2O3 +H2O; (6)
NiO + 2H+ ↔ Ni2+ +H2O; (7)

NiO +H+ ↔ NiOH+; (8)
NiO +H2O ↔ Ni(OH)2,aq; (9)
Ni + 2H+ ↔ Ni2+ +H2; (10)

Ni +H+ +H2O ↔ NiOH+ +H2; (11)
Ni + 2H2O ↔ Ni(OH)2,aq +H2; (12)

FeCr2O4 + 2H+ ↔ Fe2+ + Cr2O3 +H2O; (13)
FeCr2O4 + 2H2O ↔ Fe(OH)−3 + Cr2O3 +H+; (14)
FeCr2O4 + 6H+ +H2 ↔ Fe2+ + 2Cr2+ + 4H2O. (15)

Diffusion caused by turbulent mixing and intense precipitations
caused by SNB are the main reasons for the formation of the
CRUD (Kang and Sejvar, 1985). Assuming that there is a diffusion
layer between the bulk coolant and fuel surface, the formation
process of the CRUD could be divided into the mass transfer from
the bulk coolant to diffusion layer and the diffusion layer to fuel
surface (Kang and Sejvar, 1985; Lee, 1990). For fuel per unit area,
assuming the mass transfer process reaches a steady state in the
diffusion layer, based on the mass balance principle, following
formulas could be derived:

wse,i + wms,i − ws,i � 0; (16)
wse,i � _me · Ci; (17)

wms,i � kms,i · (Ci − Cw,i); (18)
ws,i � ks,i · (Cw,i − C0,i), (19)

where wse,i represents the deposition rate caused by SNB, in g/
(cm2·s); wms,i and ws,i represents the deposition rate of the bulk

coolant to diffusion layer and the diffusion layer to fuel surface,
respectively, in g/(cm2·s); _me represents the SNB rate, calculated
by LINDEN, in g/(cm2·s); kms,i and ks,i represent the deposition
coefficients from the bulk coolant to diffusion layer and from the
diffusion layer to fuel surface, respectively, which can be
calculated by the Chilton–Colburn formula (Meng et al.,
2021),in g/(cm2·s); Ci and C0,i represent the solubility of
corrosion products in the bulk coolant and fuel surface,
respectively, which are fitted according to Gibbs’ law and
experimental data of the simulated PWR primary loop water
environment (Rummery and Macdonald, 1975; Chen et al., 1983;
Beverskog and Puigdomenech, 1997a; Beverskog and
Puigdomenech, 1997b; Beverskog, 1997; Huang et al., 2009;
Henshaw et al., 2016), in g/g; Cw,i represents the solubility of
corrosion products in the diffusion layer, in g/g; i corresponds to
Ni, Fe, and Cr.

Combining Eqs 16–19 and eliminating Cw,i, the deposition
rate of corrosion products can be calculated by the following
formula:

ws,i � ks,i _me

ks,i + kms,i
Ci + ks,ikms,i

ks,i + kms,i
(Ci − C0,i). (20)

Boron Precipitation
A serious CIPS event occurred in the Callaway plant (Deshon,
2004), and the measurement data showed that boron
precipitated in the SNB region in the form of bonaccordite
(Ni2FeBO5) (Sawicki, 2007); Henshaw et al. (2008) developed a
model for calculating the boron precipitation based on wick
boiling, assuming that boron mainly precipitated in the form
of lithium metaborate (LiBO2); in the boron precipitation
model developed by Zhou and Jones (2002), it is assumed
that all boron precipitates in the form of crystal boric acid
(H3BO3) under the action of SNB; Doncel et al. (2007) not only
detected LiBO2 and H3BO3 but also found lithium tetraborate
(Li2B4O7) in artificial CRUD. Based on the aforementioned
operation experience and experimental results, the boron
precipitation model in this study has been hypothesized and
simplified as follows:

1) At present, only the Callaway plant detected boron
precipitation in the form of Ni2FeBO5, and the maximum
thickness of the Callaway plant CRUD exceeds 100 microns,
which belongs to the PWR with a very high scale level. In
addition, Ni2FeBO5 has stable thermodynamic properties and
can only be formed under extreme conditions, so the
precipitation of boron in the form of Ni2FeBO5 is not
considered;

2) Referring to the experiment on the influence of the artificial
CRUD on boric acid adsorption behavior carried out by the
Electric Power Research Institute (Deshon and Frattini, 2002),
it is assumed that boron precipitated in the form of H3BO3

depends on the physical adsorption of boric acid by the
CRUD, and SNB of the coolant will significantly accelerate
the physical adsorption rate. Physical adsorption is mainly
driven by the concentration difference and does not involve
borate-related chemical reactions;
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FIGURE 1 | Calculation flow of the boron precipitation model.

TABLE 1 | Criteria for CIPS risk.

Number
of fuel assemblies/box

Low risk/g Medium risk/g High risk/g

121 90 290 570
157 110 370 740
177 130 420 830
193 140 450 910
217 150 500 1000
241 170 540 1130

Note: The level of the CIPS to low risk, medium risk, and high risk is −3%, −5%, and
−10%, respectively.

FIGURE 2 | Analysis flow of the influence of thermal hydraulic conditions
on the CIPS.
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3) The bottom temperature of the CRUD increases due to wick
boiling, while the solubility of LiBO2 decreases with the
increase in temperature (Sabol et al., 1997) and precipitates
after reaching the threshold. The precipitation process of
Li2B4O7 is the same as that of LiBO2. According to the
molar ratio of boron to lithium of these two borates, the
amount of boron precipitated in LiBO2 is multiplied by two,
which can be used as the estimated value of boron precipitated
in Li2B4O7.

To sum up, the boron precipitation model involves two major
effects: physical adsorption and borate precipitation. For the
region where SNB occurs, physical adsorption always exists,
while borate precipitation occurs only when the CRUD
increases to a certain thickness. The calculation flow of boron
precipitation is shown in Figure 1, and the formulas involved are
as follows:

Cclad � Cbulk · exp( _meδc
ρsDε

); (21)
madsorp � aC2

clad + b; (22)
SLiBO2 � 5 × 10−6 + T2 − 6.02 × 10−2 × T + 1.5889; (23)

T ≈ Ts + 0.4qk1.5c ε1.5������
rcNche

√ ; (24)

mpre � 3MBε

MLiBO2

ρLiBO2
(δc − δp), (25)

where Cclad and Cbulk represent the boron concentration in the
CRUD bottom and bulk coolant, respectively, in mol/kg; δc and δp
represent CRUD thickness and the CRUD thickness threshold which
can reach boron precipitation, respectively, in cm; ρs represents the
coolant saturation density, in g/cm3;D represents the diffusion rate of
boron in the CRUD, which can be calculated according to the
Stokes–Einstein equation, in cm2/s; ε represents porosity,
dimensionless number; madsorp represents the adsorption amount
of boron per unit mass of the CRUD, in g/g; a and b are physical
adsorption curve coefficients, which are fitted according to
experimental points (Deshon and Frattini, 2002); SLiBO2 represents
the solubility of LiBO2 (Sabol et al., 1997; Frattini et al., 2001), in
mol/kg; T and Ts represent the coolant temperature and non-ideal
solution saturation temperature (Henshaw et al., 2008), respectively, in
°C; q represents power density which could be calculated by LINDEN,
in W/m2; he represents the boiling heat transfer coefficient, in W/
(m2·k); kc represents the coefficient of thermal conductivity, in W/
(m·k); rc represents the radius of the steam channel, in cm; Nc

represents the steam channel density, in 1/cm2; mpre represents the
amount of boron precipitated in per unit area of the fuel surface, in
g/cm2;MB andMLiBO2 represent themolarmass of boron and LiBO2,
respectively, in g/mol; ρLiBO2 represents the density of LiBO2, in g/cm

3.

FIGURE 3 | Boron precipitation under different thermal hydraulic conditions.
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EFFECT OF THERMAL HYDRAULIC
CONDITIONS ON THE CIPS

CIPS Risk Criteria
According to the PWR operation data of the CIPS and the
software developed by American research institutions, the
total amount of boron precipitation is selected as the CIPS
risk judgment standard (Yang and Tang, 2012; Yang et al.,
2020; Lange, 2017), as shown in Table 1. Some researchers
believe that the CIPS is a phenomenon caused by the local
increase of boron precipitation mass of fuel assemblies. It is
necessary to simulate the local CRUD behavior of fuel
assemblies in more detail (Haq et al., 2011; Hu et al., 2019)
and calculate the power offset degree of fuel assemblies by
coupling nuclear physics calculation codes to accurately
predict the CIPS risk of the PWR. However, Table 1 is still
the most widely accepted CIPS risk criteria.

Thermal Hydraulic Sensitivity Analysis
Results
The CRUD analysis software CAMPSIS realizes the function of
the chemical kinetic model (China Nuclear Power Technology
Research Institute Co. and Ltd., 2021). Based on the whole core
flow field and temperature field distribution input by the thermal

hydraulic analysis code LINDEN, the CIPS risk assessment is
carried out for the first cycle of a PWR (the core assembly number
is 157 boxes) under different core flow rates, average temperature
of the primary circuit, power levels, and primary circuit pressure.
The process is shown in Figure 2. The total amount of boron
deposition in the first cycle of a PWR under different thermal and
hydraulic conditions is obtained by reasonably disturbing the
upper and lower intervals of the benchmark thermal hydraulic
parameters, as shown in Figure 3. The variation trend of SNB
corresponding to each condition is shown in Figures 4, 5, in
which the maximum SNB rate indicates the SNB situation of the
hottest fuel assembly, while the total mass evaporation rate
reflects the intensity of SNB in the whole core. The analysis
results show that

1) By reducing the reference core flow rate (Deshon, 2004)
(82800 m3/h) by 5%, the maximum boron precipitation
increases from 96 to 128 g, and the CIPS risk level elevates
from a low risk to medium risk. Accordingly, the maximum
SNB rate and total mass evaporation rate increase by 12.97
and 74.61%, respectively. On the contrary, with the increase of
5% reference core flow rate, the maximum boron precipitation
decreases from 96 to 87 g, and the maximum SNB rate and
total mass evaporation rate decrease by 3.32 and 43.79%,
respectively;

FIGURE 4 | Maximum SNB rate under different thermal hydraulic conditions.
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2) By increasing the reference temperature (Deshon, 2004)
(293.06°C) by 3°C, the maximum boron precipitation
increases from 96 to 115 g, and the CIPS risk level elevates
from a low risk to medium risk. Accordingly, the maximum
SNB rate and total mass evaporation rate increase by 16.60
and 58.72%, respectively. On the contrary, with the decrease of
3°C reference temperature, the maximum boron precipitation
decreases from 96 to 68 g, and the maximum SNB rate and
total mass evaporation rate decrease by 9.27 and 23.24%,
respectively;

3) By increasing the reference power (Deshon, 2004) (3411 MW)
by 2%, the maximum boron precipitation increases from 96 to
145 g, and the CIPS risk level elevates from a low risk to
medium risk. Accordingly, the maximum SNB rate and total
mass evaporation rate increase by 12.97 and 33.39%,
respectively. On the contrary, with the decrease of 2%
reference power, the maximum boron precipitation
decreases from 96 to 68 g, and the maximum SNB rate and
total mass evaporation rate decrease by 3.32 and 33.39%,
respectively;

4) By reducing the reference pressure (Deshon, 2004)
(15.50 MPa) by 0.5 MPa, the maximum boron
precipitation increases from 96 to 122 g, and the CIPS
risk level elevates from a low risk to medium risk.
Accordingly, the maximum SNB rate and total mass

evaporation rate increase by 9.63 and 31.85%, respectively.
On the contrary, with the increase of 0.5 MPa reference
pressure, the maximum boron precipitation decreases
from 96 to 80 g, and the maximum SNB rate and total
mass evaporation rate decrease by 0.28 and 5.06%,
respectively.

To sum up, the intensity of SNB changes with different
thermal hydraulic conditions, which affects the axial CRUD
distribution of fuel assemblies and finally leads to the
difference of boron precipitation; thus, the risk of the CIPS
changes accordingly. Thermal hydraulic conditions are
developing in the direction of intensifying SNB, and the risk
of the CIPS is increasing, which is consistent with the
international PWR operation experience (Sabol et al., 1997;
Deshon, 2004; Lange, 2017), further proving the importance of
SNB’s influence on the CIPS.

CONCLUSION

The CIPS risk of a PWR first cycle under different thermal
hydraulic conditions is analyzed by using LINDEN and
CAMPSIS, based on the international common CIPS risk
criteria. The conclusions are as follows:

FIGURE 5 | Total steam production rate of core under different thermal hydraulic conditions.
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1) CIPS is a special phenomenon which combines
thermodynamic hydraulics and chemical kinetics;

2) The change in thermal hydraulic conditions finally
reflects the influence on the intensity of SNB of fuel
assemblies;

3) The degree of SNB is an important factor affecting the CIPS.
The more severe SNB is, the more boron precipitates in the
fuel assembly, and the risk of the CIPS increases accordingly.

4) The risk of the CIPS in the PWR can be reduced by controlling
material corrosion (reducing the total amount of the CRUD),
adjusting the chemical parameters of the primary circuit
(changing the solubility of corrosion products), and
updating fuel management strategies (inhibiting the
severity of SNB).

The research methods and analysis results in this study can be
used in many PWR reactor types, but the wider applicability, the
difference between predicted values and actual PWR operating
conditions, and how to accurately carry out the CIPS risk
assessment of a continuous cycle still need further demonstration.
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