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Deep learning–based nuclear intelligent fault detection and diagnosis (FDD) methods have
been widely developed and have achieved very competitive results with the progress of
artificial intelligence technology. However, the pretrained model for diagnosis tasks is hard
in achieving good performance when the reactor operation conditions are updated. On the
other hand, retraining the model for a new data set will waste computing resources. This
article proposes an FDD method for cross-condition and cross-facility tasks based on the
optimized transferable convolutional neural network (CNN) model. First, by using the
pretrained model’s prior knowledge, the model’s diagnosis performance to be transferred
for source domain data sets is improved. Second, a model-based transfer learning
strategy is adopted to freeze the feature extraction layer in a part of the training model.
Third, the training data in target domain data sets are used to optimize the model layer by
layer to find the optimization model with the transferred layer. Finally, the proposed
comprehensive simulation platform provides source and target cross-condition and
cross-facility data sets to support case studies. The designed model utilizes the strong
nonlinear feature extraction performance of a deep network and applies the prior
knowledge of pretrained models to improve the accuracy and timeliness of training.
The results show that the proposed method is superior to achieving good generalization
performance at less training epoch than the retraining benchmark deep CNN model.

Keywords: fault detection and diagnosis, deep learning, transfer learning, freezing and fine-tuning strategy, nuclear
power plants

INTRODUCTION

No matter how advanced the energy systems have progressed with state-of-the-art techniques,
operation safety and reliability will be a central research topic all the time. Especially for nuclear
systems, safeguards are even more critical and cannot be ignored (Perrault, 2019; Matteo et al., 2021;
Yao et al., 2021). Most of the severe nuclear leakage events throughout the history of humankind
have been caused by operators’ inappropriate responses and solutions. Therefore, it is critical to
provide administrators with auxiliary information under different nuclear system operation
conditions before an accident worsens (Wahlström, 2018; Yoo et al., 2018).

One predictive maintenance approach that has become increasingly valued is fault detection and
diagnosis (FDD), to judge (detection) and identify (diagnosis) the type of fault (Yangping et al., 2000;
Ma and Jiang, 2011). According to the review work from Zhao et al. (2021), the development of fault
diagnosis in nuclear power plants (NPPs) mainly goes through three essential stages: the model-
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based method, knowledge-based rule method, and currently
popular data-driven method. Model-based approaches fall into
twomain categories. One is through the statistical anomaly (fault)
and average state residuals, such as parity check, wavelet
transform, and time–frequency analysis of quantitative models
(Zhong et al., 2018). The other is a qualitative analysis based on
the physical or graph structure models. Besides, the rule-based
approaches are an essential branch of fault diagnosis research,
which by triggering specific “if–then” rules to determine results
related to measured/detected fault symptoms. The rule libraries
are developed using expert judgment and prior knowledge of
systems; the most famous rule of which is the fuzzy rule (Xu et al.,
2019).

However, modern industrial systems have a nonlinear,
considerable time delay, uncertainty factors, which makes it
challenging to build precise mathematical models. Therefore,
the application of model-based and rule-based methods is limited.

The data-driven method does not require prior knowledge of
the object system (mathematical model or expert experience). It
takes the monitoring data as the research object to estimate the
state of the target system, avoiding the shortcomings of the
physical model–based method. Feature extraction and classifier
design are two main parts of this method. The popular method in
feature extraction is principal component analysis, which reduces
the dimension of the data and extracts critical information (Peng
and Wang, 2018). The famous classifiers mainly include Support
Vector Machine (Yao et al., 2020a), Extreme Learning Machine
(Zheng et al., 2019), and artificial neural network (Xin et al.,
2019).

With the advances of the Internet of Things, big data, and the
continuous improvement of equipment scale (Lee et al., 2014;
Wang et al., 2015; Seabra et al., 2016), deep learning–based fault
diagnosis methods such as the automatic deep encoder–decoder
(Wang and Zhang, 2018), deep belief networks (DBNs) (Tang
et al., 2018), and deep convolutional neural networks (CNNs)
(Wen et al., 2017) are gradually coming into view. Compared with
traditional data-driven methods, high integrated and end-to-end
deep networks with multiple hidden layers can learn and fit any
nonlinear relationship under sufficient training data, widely
applied in different energy systems.

Correa-Jullian et al. (2020) discussed several deep
networks–based methods. They applied them to prognose the
performance of solar hot water systems under different
meteorological conditions. Xu et al. (2020) combined the
CNNs with the variational mode decomposition algorithms to
accomplish the fault diagnosis of the rolling bearing of wind
turbines. Guo et al. (2018) proposed a fault diagnosis approach
using a DBN with a model optimization strategy for building
energy saving. In nuclear systems, Peng et al. (2018) utilized the
feature selection capability of correlation analysis for
dimensionality reduction and DBNs for fault identification.
Saeed et al. (2020) proposed a fault diagnosis model based on
the deep hybrid networks to achieve FDD with different levels.
Mandal et al. (2017) introduced a DBN-based detection and
diagnosis method for the thermocouple sensor fault. Yao et al.
(2022) presented a residual CNN with an adaptive noise
elimination procedure for the FDD in small modular reactors.

The designed deep network–based model can learn features
from the original data and have overwhelming advantages in
solving various fault classification problems. On the other hand,
the end-to-end deep learning model has integration advantages
compared with traditional machine learning–based manual
feature engineering selection. When training diagnostic models
based on data-driven methods, we usually default to the same
training and test data distribution. Suppose that there are enough
training samples for the fault diagnosis task of a given scene. In
that case, the model nonlinear relationship can be fitted through
parameter optimization to achieve a high-precision diagnosis.

However, in the actual system operation process, the nuclear
systems are in a stable operation state most of the time. The
difficulty of obtaining fault data leads to a small number of samples,
and most faults are in an unmarked condition. Traditional deep
learning models such as CNNs and DBNs will overfit when
training on small sample data sets and significantly reduce
diagnostic performance. On the other hand, the historical
training model fails to identify new data once the system runs
under different conditions or upgraded or updated environment.

The transfer learning (TL) method is proposed to solve the above
problems. It transfers the knowledge learned from the neighboring
domain to improve learning performance under insufficient target
task training data. In recent years, it has been developed and applied
in natural language processing, computer vision, and autonomous
driving (Ruder et al., 2019; Zhuang et al., 2020). Furthermore, to
apply TL in the FDDs is to relax the constraint that targets domain
data, and the source domain datamust obey the same distribution. It
will reduce the urgency of collectingmassive data combined with TL.
At present, relevant research in energy is scarce. For nuclear systems,
TL-based fault diagnosis, the initial exploration, has not been
involved.

To address the above problems, we propose a diagnosis
framework based on transferable CNN models to make full
use of the prior knowledge of the pretraining model.
Compared with the traditional deep network–based diagnosis
framework, the proposed method has the following advantages:

1) A novel freezing and tuning transfer strategy based on a
pretraining model can be applied in the nuclear systems’
fault diagnosis under different operating conditions and
equipment.

2) The proposed method does not need to train and optimize the
parameters of each layer of the model one by one. Still, it
makes full use of the high-dimensional feature extraction
capability of the pretraining model for source domain data.

3) The proposed method significantly reduces the model
retraining time. Under insufficient data, avoiding data
expansion technology minimizes the probability of model
overfitting and improves the training performance.

4) The proposed method has good portability. After simple
optimization for different target transfer environments,
future research can achieve ideal results.

The remainder of the article is organized as follows: Vanilla
CNN Structure briefly introduces the vanilla CNN structure.
Proposed Method proposes a TL-based fault diagnosis
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procedure. The case study is presented in Case Study. Results and
discussions are shown in Results and Discussion. Conclusion
concludes the article and makes an outlook for the future work.

VANILLA CONVOLUTIONAL NEURAL
NETWORK STRUCTURE

CNNs (LeCun et al., 2015) are traditional deep networks
commonly used in classification research. They are mainly
based on the feedforward networks to add the corresponding
convolution operation process to extract the high-dimensional
characteristics of the input data to be analyzed. From the initial
application in speech and image recognition to the current
machinery, energy, aerospace, and other fields of abnormal
detection, fault diagnosis, time-series prediction, and other
applications have a wide range of prospects. Compared with
traditional neural networks, neurons in the CNN structure are
arranged in three dimensions, as is shown in Figure 1.

The neurons in the layers are not fully connected traditionally
but are only related to a small area of the previous layer. The CNN
structure is mainly composed of three essential parts: the
convolutional layer, pooling layer, and fully connected layer,
which are executed to make feature extraction, filtering, and
output with nonlinear combination, respectively.

PROPOSED METHOD

Brief Structure
Figure 2 shows the scheme of the proposed TL-based diagnosis
framework. It mainly contains four critical steps: data set
construction, model presetting, transferable model
construction, and model optimization and testing.

First, the source and target domains of the research data sets are
constructed through the existing comprehensive experimental
platform. The source domain data comes from the previous
data, and the target domain data comes from different working

FIGURE 1 | The comparison between fully connected neural networks and the convolutional neural network.

FIGURE 2 | Variations of training accuracy and loss in benchmark
convolutional neural network and the proposed transfer diagnosis model
aiming at different target domain data sets.
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conditions or new reactor types. Second, the CNN-based model
designed initially is used to complete sufficient training and
hyperparameter optimization for the source domain data. Third,
a part of the data set in the target domain data set is selected for the
transferred model training, which is completed by freezing and
tuning some layer parameters. Finally, the hyperparameter tuning
is performed on the transferred model, and the target domain data
sets are adopted to test the diagnostic performance of the proposed
method. The detailed procedure of model presetting and the
transferable model building will be introduced.

Model Presetting
The basic structure of the transfer model refers to the previous
design, which is modified compared with the vanilla CNN
structure (Yao et al., 2020b). It has one input layer, three
convolutional layers, three max-pooling layers, and two fully
connected layers. Meanwhile, the layers in the network are
grouped and divided into specific modules to discuss the
influence of different model parts on transfer performance
during freezing and tuning. The detailed introduction of the
model structure is shown in Table 1. On this basis, combined
with the state information imaging method, the network input is
a two-dimensional matrix image. Furthermore, the number of the
convolution kernel is set as a more considerable number (128) to
enhance the network feature learning ability. The number of the
following convolution kernels is settled as 32 and 64, respectively.

The criterion sets the number of convolution kernels from the
least to the most. It gradually increases in multiple relationships to
obtainmore discriminative features at the higher level of the network.
In addition, zero padding is used to make the feature output before
and after the convolution operation maintain the same size.
Moreover, batch normalization is adopted to avoid network
overfitting, thereby maximizing saving the original input
information. For the pooling layer parameter setting, the number
of feature maps in each component block is the same as that in the
convolution layer, verified in the previous work. The Softmax
function is selected as the classification function. The Adam

optimization method (Kingma and Ba, 2014) is used to make
gradient updating, introduced in reference Kingma and Ba (2014)
in detail.

Transferable Model Building
The transferable model is based on a fully pretrained CNN–based
diagnosis model for the source domain data set. The output of the
Softmax function should be replaced by the number of samples in the
target domain when constructing the forward transfer model for
samples in the target domain. For the hyperparameters of other
network layers, layer-by-layer freezing and optimization are adopted,
as is shown in Figure 3. The detailed procedure is as follows:

Step 1: Replace the output fault categories in the Softmax
function according to the target task category.

Step 2: Adopt the target domain data training in a small
sample environment, freeze the parameters of the pre-sequence
network layer.

Step 3: Adopt a small learning rate design to tune the
subsequent connection layer to realize the generalization
transfer of the network.

Step 4: Reduce the number of frozen, fixed layers and move
them to the transfer connection layer. Similarly, a small learning
rate is adopted to tune the transfer connection layer, and the
whole process is shown in Figure 3.

Step 5: The test data set samples are substituted into the model
to obtain its discriminant classes, and the diagnostic performance
of the model is tested.

In the Proposed Method, Part A, we have selected the basic
structural hyperparameters of the CNN model, which includes the
step size, number of kernels, batch size, etc. However, the influence of
the learning rate on model training is not to be further considered.
When using the gradient descent algorithm, if the learning rate is too
low, the convergence of the model will be slow. Furthermore, more
epochs are needed to complete the training, thus wasting
computational power.

On the other hand, if the setting is too large, the model will not
converge, reducing the model’s diagnostic performance. The

TABLE 1 | Pretrained convolutional neural network model structure.

Layer no Module no Layer type Kernel size Output size Stride Padding

1 Input — 200 p 316 p 3 — —

2 M 4 Convolution 128 100 p 158 p,128 2 Yes
3 BN — 100 p 158 p,128 — —

4 ReLU — 100 p 158 p,128 — —

5 Max pooling 128 50 p 79 p,128

6 M 3 Convolution 32 25 p 40 p 32 2 Yes
7 BN — 25 p 40 p 32 — —

8 ReLU — 25 p 40 p 32 — —

9 Max pooling 32 13 p 20 p 32

10 M 2 Convolution 64 7 p 10 p 64 2 Yes
11 BN — 7 p 10 p 64
12 ReLU — 7 p 10 p 64
13 Max pooling 64 4 p 5 p 64

14 M 1 Dense — 256
15 Dense — 128

16 Softmax 11
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learning rate decay (LDR) is a commonly used method in deep
network training. Although the adaptive gradient descent
algorithm (Adam) is adopted in the pretraining model to
optimize the updating strategy of the gradient, the LDR is still
applicable to the training of the model.

Therefore, to improve the efficiency of freezing and fine-tuning
the procedure, we divided the training epoch into several parts and
adopted an exponential LDR strategy in each part to enhance the
training effect of the model, which is as follows:

α � Depoch
p pα0 (1)

where Dp represents the LDR in each epoch. P represents the
number of division parts. α0 represents the initial value of the
learning rate.

CASE STUDY

Research Platform
Since 2011, the project to build the accelerator-driven systems for
nuclear waste transmutation has been developed and researched
by the Chinese Academy of Science, including three key stages.
Gen-IV China LEAd-based Reactor (CLEAR) was proposed as
the reference for the above project (Wu, 2016a).

And then, to test the 1:1 prototype key component and verify
the thermal hydraulic performance of the designed CLEAR-I, the
integrated nonnuclear test facility CLEAR-S was built
commissioning at the end of 2017 (Wu, 2016b). In 2018, the
basis experimental hardware system CLEAR assistant simulator
was made for the neutron transportation simulation, structure
engineering design, and accident security analysis. It utilizes a
computerized man–machine interface and digitalized
instrumentation and control system. We are currently

conducting research and analysis based on nonnuclear test
devices and a hardware-in-the-loop simulation experimental
platform, which provides data support for further study.

Data Set Description
The data set in this study comes from the CLEAR-I and
CLEAR-S accident simulation data stored in the previous
research on the simulation experiment platform with the
RELAP5 simulation calculation program–based core, which
is shown in Figures 4, 5.

The RELAP program is a thermo-hydraulic program
developed by Idaho National Laboratory to simulate a
transient accident in a light water reactor (Li et al., 2014). It is
a one-dimensional transient, two-phase fluid, six hydrodynamic
equation and one-dimensional heat conduction. Moreover, point
reactor dynamics models are widely used in NPP’s accident safety
analysis, accident evaluation, experimental analysis, and other
fields. RELAP5-HD is a new version developed based on
RELAP5. Its most significant feature is that it highly integrates
the functions of RELAP5-HD and its three-dimensional (3D)
thermo-hydraulic and neutron dynamics modeling capabilities,
which can achieve more accurate 3D reactor construction. It can
meet the real-time simulation requirements of the simulator. It
can be adopted as a simulation program for the thermal-hydraulic
system of the reactor simulator.

Source Domain Data Set
The source domain data set Ds is acquired from the CLEAR-I
operation data. In the study, 10 typical operation scenarios are
included which contain one scenario under standard steady
scenario [100% rate full power (RFP)], two power step
scenarios (from 100 to 120% and 150% RFP), a severe
accident scenario (loss of coolant with a small break), and six
scenarios of rotating machinery of component faults in the fan or

FIGURE 3 | The process of adopted freezing and fine-tuning transfer strategy.
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a pump. Table 2 shows the detailed information about each
operation scenario in Ds.

Each scenario starts instantaneously except for scenario 1
(steady-state). The corresponding transient operation or fault
is introduced from t = 0 to track the development trend. The
sampling time set in the program is 0.25 s, and the sample length
is 200, i.e., a total of 50 s. Each scenario contains 100 data samples,
50% of which are obtained through data enhancement. The
method adopted is the sliding window method introduced in a
previous work (Yao et al., 2020b). Each sample consists of 316
monitoring points from different components. The 316

monitoring points are distributed in 17 key node parameters,
which are detailed as follows:

Core (5): Reactivity, power, control rod position, core
temperature, and flow rate.

Steam Generator (6): SG primary side temperature, flow rate,
and pressure; SG secondary side temperature, flow rate, and
pressure.

Pump (2): Main pump flow rate and secondary pump
flow rate.

Fan (4): Primary temperature, flow rate, and secondary
temperature and flow rate.

FIGURE 4 | Research platform. (A) The designed schematic diagram of China LEAd-based Reactor (CLEAR)-I. (B) The experiment and designed schematic of
CLEAR-S. (C) Control room.

FIGURE 5 | RELAP5–HD communication interface in research platform.
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Target Domain Data Sets
The target domain data sets in this study are constructed
according to specific transfer tasks. Two different target data
sets for the cross-condition and cross-facility mission are built in
the case study to verify the validity of the proposed model-based
transfer method.

The target domain data sets Dt1 and Dt2 are settled to evaluate
the ability of the network’s transfer and generalization capability
under different steady states. Dt1 shares the same reactor type
(CLEAR-I) as Ds but operates at a much higher steady-state
power (120% RFP). The sample size in each failure case is 30% of
the source domain data set, but the data sample’s length is the
same. Dt2, based on Dt1, improves the difficulty of cross-operating
conditions transfer, including 80 and 120% RFP steady-state
operating conditions of the reactor. Because the monitored
parameters will be changed with different operating conditions
under accident, the diagnosis task for Dt2 will be more challenging
than that of Dt1. To ensure the comparability of experimental
results, the total number of samples between two target data sets

is unified. Table 3 shows details of the cross-condition target
domain data set.

Dt3 and Dt4 are constructed for cross-facility transfer tasks
built from a completely different reactor (CLEAR-S), as is shown
in Table 4. The steady-state and power step operation data were
derived from the experimental data on the existing facility.
Compared with cross-condition data sets, cross-facility data
sets differ significantly from source domain data in
distribution characteristics, improving transfer complexity. The
purpose of building this type of target domain data set is to
explore the ability of the proposed transfer strategy between
different facilities. It is worth noting that there are differences
in structure between CLEAR-S and CLEAR-I nodes (CLEAR-I
nodes are more precisely divided). To ensure that the cross-
facility data set is dimensionally the same as the source data, we
use zero padding for the default nodes to unify the data
dimension, avoiding data heterogeneity.

To be similar to the procedure in the cross-condition transfer
task, when compared with Dt3, Dt4 is replaced with the data in

TABLE 2 | China LEAd-based Reactor-I source domain data set.

Data set type Scenario no Scenario description Data size

Ds 1 Steady-state with 100% rated full power 200 p 316 p100
2 20% increasing power steps from steady-state 200 p 316 p100
3 50% increasing power steps from steady-state 200 p 316 p100
4 LOCA with the small break 200 p 316 p100
5 One of the main pump rotor seizures 200 p 316 p100
6 Two main pump rotor seizure 200 p 316 p100
7 One of the feed pump rotor seizures 200 p 316 p100
8 Two feed pump rotor seizure 200 p 316 p100
9 Fan rotor seizures 200 p 316 p100
10 Fan speed decreases by 10% 200 p 316 p100
11 Fan speed decreases by 30% 200 p 316 p100

LOCA, loss of coolant accident.

TABLE 3 | China LEAd-based Reactor (CLEAR)-I source domain data set.

Data set type Reactor type Scenario label Scenario description Data size

Dt1 CLEAR-I 1 Steady state with 120% rated full power 200 p 316 p 80
2 20% increasing power steps from steady state 200 p 316 p 80
3 LOCA with the small break 200 p 316 p 80
4 One primary pump rotor seizure 200 p 316 p 80
5 Double primary pump rotor seizures 200 p 316 p 80
6 One secondary pump rotor seizure 200 p 316 p 80
7 Double secondary pump rotor seizures 200 p 316 p 80
8 Fan rotor seizures 200 p 316 p 80
9 Fan speed decreases by 30% 200 p 316 p 80

Dt2 CLEAR-I 1 Steady state with 80% or 120% rated full power 200 p 316 p 40&40
2 20% increasing power steps from steady state 200 p 316 p 40&40
3 LOCA with the small break 200 p 316 p 40&40
4 One primary pump rotor seizure 200 p 316 p 40&40
5 Double primary pump rotor seizures 200 p 316 p 40&40
6 One secondary pump rotor seizure 200 p 316 p 40&40
7 Double secondary pump rotor seizures 200 p 316 p 40&40
8 Fan rotor seizures 200 p 316 p 40&40
9 Fan speed decreases by 30% 200 p 316 p 40&40

LOCA, loss of coolant accident.
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Table 4 | Cross-facility target domain data set.

Data set type Reactor type Scenario label Scenario description Data size

Dt3 CLEAR-S 1 Steady state with 100% rated full power 200 p 316 p 40
2 20% increasing power steps from steady state 200 p 316 p 40
3 50% increasing power steps from steady state 200 p 316 p 40
4 LOCA with the small break 200 p 316 p 40
5 Main pump rotor seizures 200 p 316 p 40
6 Secondary pump rotor seizures 200 p 316 p 40
7 Fan rotor seizures 200 p 316 p 40
8 Fan speed decreases by 10% 200 p 316 p 40
9 Fan speed decreases by 30% 200 p 316 p 40

Dt4 CLEAR-S 1 Steady state with 100% or 120% rated full power 200 p 316 p 20&20
2 20% increasing power steps from steady state 200 p 316 p 20&20
3 50% increasing power steps from steady state 200 p 316 p 20&20
4 LOCA with the small break 200 p 316 p 20&20
5 Main pump rotor seizures 200 p 316 p 20&20
6 Secondary pump rotor seizures 200 p 316 p 20&20
7 Fan rotor seizures 200 p 316 p 20&20
8 Fan speed decreases by 10% 200 p 316 p 20&20
9 Fan speed decreases by 30% 200 p 316 p 20&20

LOCA, loss of coolant accident.

FIGURE 6 | Variations of diagnostic accuracy using the freezing-and-tuning strategy with different training data ratios and tuning modules ((A) Dt1; (B)Dt2; (C)Dt3;
(D) Dt4).
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120% operating conditions to increase the transfer complexity. It
is more challenging to transfer the model under different steady-
state operating conditions simultaneously under cross-facility
conditions.

RESULTS AND DISCUSSION

To highlight the effectiveness of the proposed transfer model, we
discussed and analyzed the screening results of model layers. The
comparison results between transfer and non-transfer models.
We also considered the final training and optimization results for
cross-condition and cross-facility transfer tasks. The training
procedure of the proposed transfer model was implemented in
Keras v2.2.4 onMicrosoftWindows 10 operating system based on
an Intel Core i7-10750 2.6 GHz CPU with 64 GB RAM and
accelerated by the Cuda v11.1 environment with NVIDIA
RTX 3070 GPU.

Freezing and Fine-Tuning Result
To discuss the influence of the ratio of training samples on the
transfer model’s freezing-and-tuning process, we further divide
Dt1 to Dt4 into three parts, which include 25, 50, and 100%
training samples. Meanwhile, the training and test samples’ ratio
is the same as the pretraining model in the source domain, set as
4:1. All training and testing sites were cross-validated by a
percentage of five folds to ensure accuracy. Meanwhile, all the
test results are averaged 10 times.

Figures 6A,B show the influence of different training data
ratios and tuning modules on the diagnosis accuracy in cross-
working condition data sets (Dt1 to Dt2). The horizontal axis
shows the included tuning modules. For example, M 1 represents
that only the last fully connected layer is tuned. At the same time,
M 1–4 illustrate that all modules from 1 to 4 are adjusted layer by
layer. The vertical axis shows the diagnostic accuracy of the target
domain test data set.

It can be concluded that the diagnostic accuracy of all transfer
models aiming at Dt1 and Dt2 can reach more than 70% under the
most extreme condition of the 25% training samples when only
the latter fully connected layers in the model are fine-tuned.
These results indicate that the designed model transfer scheme is
feasible for cross-condition target domain data sets. On the other
hand, the diagnostic accuracy is also improved in the increasing
proportion of fine-tuning modules after transfer. Significant
improvement has been made in learning the lowest level
convolutional pooling module with the M 1–2 strategy.
However, the effect of this promotion is gradually decreasing,
indicating that the low-level features of the training process of the
transfer model have universal value. By contrast, the transfer of
high-level features is more complex and abstract. It is challenging
to obtain ideal training effects.

When all modules are fine-tuned, the diagnosis accuracy only
improves 0.66% compared to that of theM 1–3 strategy under the
condition of 100% training samples. To make matters worse, the
diagnostic performance of the model decreased by 1.79% under
the condition of 25% training samples. According to the structure
of the model in the Proposed Method, Part B, it can be seen that

the large size of the convolution and pooling layer makes it
impossible to train a large number of neurons for parameter
optimization and update when the number of samples is small.
Therefore, over-fitting problems occurred in model training,
introducing the decrease in diagnostic performance.

However, we do not need to be pessimistic because this
situation will be improved as the number of training samples
increases. Therefore, it is often necessary to fix the weight of the
underlying parameters rather than fine-tune all model
parameters in the whole transfer procedure.

Figures 6C,D show the results of variations of diagnostic
accuracy in cross-facility data sets (Dt3 to Dt4). It can be found
that when all the training data are used for training and the
number of tuning layers is more remarkable than three, the
diagnostic accuracy of the target domain sample can reach an
ideal result, which is more than 75%. By comparing the data of
different transfer modules, it can be found that the freezing and
tuning transfer strategies significantly improve the diagnosis
accuracy under the cross-facility transfer task.

It shows that the high-dimensional features of the source
domain in the transferred layer are beneficial to the
generalization of the model in the target domain. In addition,
the improvement of diagnostic accuracy of data samples is more
significant, indicating that for cross-facility condition data with
apparent differences in distribution, sufficient trainable samples
are more important for advancing model performance.

Meanwhile, Table 4 shows the influence of the amount of
training data and the number of transferred layers on the training
time of the model. It can be found that the increase in the number
of tuning layers will significantly prolong the model training time.
Compared with M 1–3, tuning all layers in the model (M 1–4)
improved 97.36, 86.06, and 77.25% in three different training data
levels. The above results mean that tuning a high level with high
dimensional characteristics increases model complexity. However,
usingmore training data does not significantly increase the training
time of the model compared with tuning more layers. Combined
with the above discussion results related to Figure 6, we finally
selectedM 1–3 as the transferred tuningmodel structure compared
with the benchmark CNN in the following discussions.

Compared With the Benchmark
Convolutional Neural Network Model
In this section, we verify the effectiveness of the proposed method
by comparing the accuracy and loss changes of different models.
The benchmark CNN model and the pretraining model are
identical in structure to ensure the fairness of comparison
results, as is shown in Table 1. The former directly uses the
insufficient data of the target domain for direct training. By
contrast, the latter uses the M1-3 structure for different
transfers to perform full pretraining on the CLEAR-I source
domain data and then migrates the source domain knowledge to
the target domain network.

Figure 7 shows the variations of accuracy and loss of the
benchmark CNN model and the proposed transfer model in the
training process of 100 epochs for different transfer target data
sets. According to the cross-condition target data set results,
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which are shown in Figures 7A,B, both models get 98.5%
accuracy after 100 epochs training. The training loss in the
proposed transfer model gradually approaches a fixed value. It
remains stable after 50 epochs, but the similar target losses of the
benchmark CNN model for Dt1 and Dt2 gradually stabilized after
60 and 90 epochs, respectively.

The results indicate that the CNN model is more prone to
over-fitting for sample data in target domains, thus falling into
local optimal solutions. The proposed method adopts the transfer
strategy based on the pretraining model, effectively reducing the
network’s dependence on training parameters and sample
numbers. On the other hand, it makes the network parameters
establish a better initial value in the searched parameter space,
conducive to faster training and convergence of the model.

Figures 7C,D show the training results of the transfer model
for cross-facility data sets. It can be found that compared with the
benchmark CNN model, the training loss of the transfer model
decreases faster in the initial stage, indicating that source domain
knowledge plays a specific role in the transfer process. However,
with the epoch increases in the later period, training loss was not

further reduced, mainly because of the significant difference in
sample distribution among different devices. The prior
knowledge obtained from the source domain data could not
be further generalized to target domain data set to improve
diagnostic accuracy. As the CNN model is retrained, its
accuracy could be further improved with the epoch increase,
which is better than the transfer model after 100 epochs.
However, the ideal training effect cannot be achieved due to
insufficient samples in the cross-facility target domain.

FIGURE 7 | Variations of training accuracy and loss in benchmark CNN and proposed transfer diagnosis models aim at different target domain datasets ((A) Dt1;
(B) Dt2; (C) Dt3; (D) Dt4).

TABLE 5 | Cross-facility target domain data set.

Tuning module Training time cost/epoch (s)

25% training
data

50% training
data

100% training
data

M 1 0.22 0.44 0.53
M 1–2 0.69 0.83 1.21
M 1–3 1.14 1.65 2.11
M 1–4 2.25 3.07 3.74
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Since the proposed strategy can achieve good generalization
performance at the initial training stage, we discuss the proposed
method with the benchmark CNN’s training time and diagnostic
accuracy after only 50 epochs. At the same time, we also give the
results after 100 epochs, as is shown in Table 5.

It can be found that compared with the benchmark CNN
model, after training with 100-epoch, the proposed transfer
strategy saves 53.21% on average in the overall training time
for the target domain data sets. Similar training accuracy is
achieved on the cross-condition data sets (Dt1 and Dt2). What
is more noteworthy is that after 50 training sessions, the test and
diagnosis accuracy of the proposed method for Dt1 and Dt2 is
close to 90%, which achieves a high model training effect in less
time, proving the effectiveness of the proposed transfer strategy.
However, the transfer strategy has not achieved satisfactory
results in cross-facility data sets (Dt3 and Dt4). Although the
accuracy was significantly improved initially, it could not be
further improved due to the difference in data distribution,
which proved that the existing high-dimensional
feature extractor did not realize its function in the target
domain samples.

CONCLUSION

In this article, we proposed an FDD method based on the
optimized transferable CNN model. The priority knowledge
and proposed fine-tuning strategy improved the diagnosis
performance of the pretrained model aiming at a new target
domain data set. It saved 53.21% of the training time compared
with the benchmark CNNmodel. In addition, acceptable training
accuracy could be achieved no more than 50-epoch training,
proving that the proposed method has good generalization
performance and timeliness.

On the other hand, although the proposed transfer strategy
could not achieve ideal diagnostic accuracy for the cross-facility
diagnosis task, the model performance increased at the initial
stage of training. It indicates that the training model with
characteristic information in the source domain data set
provided a specific help. However, the data distribution

difference is too big between the two data sets. The available
training data are limited, leading to worse diagnosis results.
Similarly, the CNN model could not obtain ideal training
results when the data were missing.

In general, the proposed method ideally solved the problem of
cross-condition transfer. Besides, collecting fault data of different
domains at the initial stage is time-consuming and essential,
which is also to prepare for future TL-related tasks. We will
optimize the diagnostic performance of the deep TL model to
resolve data distribution differences. In addition, the transferred
non–deep learning method can be equally valuable, which will be
further discussed and attempted.
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