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Maintaining accurate and fast transient stability is essential for safe operation of the power
system. With the development of wide-area measurement system, machine learning–based
transient stability assessment has become the trend. However, in realistic application of the
power system, the impacts on evaluation rules between critical samples and noncritical
samples are different. Thus, an improved cost-sensitive coefficient assignment method
based on fault severity is proposed. First, the fault severity of each unstable sample is
calculated. Then, the correction coefficient of the loss function of the unstable sample is
linearized according to different fault severities. The closer the sample is to the critical case,
the higher the cost coefficient is. Finally, the improved cost-sensitive method is combined
with the deep learning model and tested in the IEEE-39 bus system. As shown in the results,
the improved cost-sensitive method, which gives different correction coefficients to samples
according to different fault severities, has better performance.
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INTRODUCTION

The safety and stability of the power systems guarantee social stability and national economy stability
(Sobajic and Pao, 1989; Han et al., 2018a; Han et al., 2018b; Zhou et al., 2019). Ensuring the stability
of the power system is an important issue for maintaining stability. If the stability of the power system
cannot be predicted accurately, the stability of the systemwill be destroyed, causing cascading failures
or even large-scale power outages. Therefore, it is very necessary to find a fast and timely method for
stability assessment and strengthen the monitoring of the power system.

The existing traditional transient stability assessment (TSA) methods are mainly the time-domain
simulation method (Tang et al., 1994), (Zadkhast et al., 2015) and direct method (Hiskens and Hill,
1989; Chang et al., 1995; Xue, 1998). The mathematical model of the time-domain simulation
method is detailed, and the calculation accuracy increases with the complexity of the model, which
can be used to verify the effectiveness of the control strategy. However, the time-domain simulation
method requires a large amount of calculation, and it is difficult to be applied online. The stability of
the system can be quickly calculated and evaluated by the direct method, but the model of the direct
method is simple and has adaptability problems in large power systems.

With the development of the wide-area measurement system (Zhu et al., 2017; Yu et al., 2018;
Zhang et al., 2018), it is possible to evaluate the power system state in real time. The rise of statistics
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and data mining technology results in the introduction of
machine learning methods into TSA. By data processing and
information mining, machine learning can fit the complex
mapping relationship between the input and output. Machine
learning includes shallow learning and deep learning. Compared
with shallow learning, deep learning has stronger data mining
capability. Moreover, deep learning can mine complex
relationships in massive data. Commonly used deep learning
methods include convolutional neural network (Hou et al., 2018;
Yan et al., 2019; Li et al., 2021), stacked sparse autoencoder
(Mahdi and Genc, 2018; Wang et al., 2020a; Chen et al., 2021;
Wang and Wang, 2022), generative adversarial networks (Hu
et al., 2021a; Hu et al., 2021b), and deep belief network (DBN)
(Wang et al., 2020b; Zheng et al., 2017). Deep belief network
(DBN), one of the most popular algorithms, is taken as an
evaluation model for its outstanding feature extraction ability
and fast convergence speed in this study.

Presently, machine learning–based TSA focuses on the
improvement of model accuracy, but 100% accuracy cannot be
reached. Therefore, practical research of the TSA model has been
paid attention to in recent years. In the large-scale power system, the
misclassification costs in stable samples and unstable samples are
obviously different. Once stable samples are judged as unstable,
certain control measures can be taken, and the stabilitymargin of the
power system can be strengthened. On the other hand, if unstable
samples are judged as stable, catastrophic accidents such as power
system disassembly and grid collapse will be caused (Yan et al.,
2018). Therefore, more attention should be paid to the accuracy of
unstable samples, and the misclassification probability of unstable
samples should be reduced. The introduction of cost-sensitive
methods has effectively achieved the points. A higher weight value
of unstable samples is endowed by the cost-sensitive method so that
the trained TSA model fits the unstable sample more closely. In this
way, the misclassification probability of the unstable samples will be
reduced. In the study by Chen et al., (2016), a TSA method based on
cost-sensitive extreme machine learning is proposed, which can meet
the requirement of real-time power system application Tan et al.,
(2019) propose an imbalanced correction TSA model based on
machine learning. By combining nonlinear data synthesis with
cost-sensitive integrated learning methods, the accuracy of
unstable samples is improved effectively.

In the power system, critical samples and noncritical samples
have different effects on the evaluation rules of the deep
learning–based model. In this study, the ratio of the mean loss
of critical samples and noncritical samples is calculated. The
calculation results show that most of misjudgments occur on the
critical samples. Moreover, the critical samples have more
important influence on the evaluation rules. However, existing
cost-sensitive methods pay the same attention to critical samples
and noncritical samples. If the recognition of critical samples can
be improved and attention to noncritical samples can be reduced
simultaneously, the evaluation accuracy of critical samples can be
effectively improved. The impact of noncritical samples on
evaluation rules can be reduced; furthermore, the whole
accuracy of the model can be improved. Hence, different
weights based on fault severity are set to each sample. By
increasing the misclassification cost of critical samples and

reducing the misclassification cost of noncritical samples, the
model will pay more attention to critical samples.

This study takes the deep belief network (DBN) as an evaluation
model for its outstanding feature extraction ability and fast
convergence speed. A cost-sensitive method based on fault
severity is introduced. According to the fault duration of each
sample, the fault severity can be calculated. Then, the cost
coefficient of each unstable sample is assigned by the fault
severity. The closer noncritical samples are to the critical zone,
the larger the cost coefficient is. That is, the cost coefficient of critical
samples is the largest. The improved cost-sensitive method can not
only retain a high fit degree of the evaluation model to unstable
samples but also improve the whole accuracy of the model by
enhancing the discrimination against critical samples.

DEEP BELIEF NETWORK

Deep belief network (DBN) is a multi-hidden-layer generative
structure model (Wang et al., 2020b), (Zheng et al., 2017). It
uses a restricted Boltzmann machine (RBM) as the basic unit.
The DBN comprises several RBMs and a layer of BP neural
network. The training process of the DBN includes two stages,
unsupervised pre-training and supervised parameter fine-tuning.
In the pre-training process, each RBM is individually trained
unsupervised. The former RBM is used as the input of the next
RBM. In this way, each RBM is trained layer by layer. In the fine-
tuning stage, the backpropagation (BP) network is used to calculate
the classification error, and the parameters of each network are
fine-tuned through backpropagation to achieve the optimal result.
The structure of the DBN model is shown in Figure 1.

FIGURE 1 | Structure of the DBN.
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When all RMBs are fully trained, a layer of the BP classifier is
added to the top layer to output the classification results. In this
study, the classification error is measured by the cross-entropy
loss function. The mini-batch stochastic gradient descent is used
to supervise and fine-tune the parameters of the whole DBN. The
adjustment amount of each backpropagation depends on the
value of the loss function and the learning rate in the fine-
tuning stage.

COST-SENSITIVE MODEL BASED ON
FAULT SEVERITY

In the power system, the misclassification costs of stable samples
and unstable samples are obviously different. In addition, the
impact of each training sample on the evaluation rules is also
different. Therefore, a cost-sensitive method based on fault
severity is proposed in this study.

Cost-Sensitive Method
The weight of the sample is changed, and one class is given
a higher weight by the cost-sensitive method. In this way,
the fitting degree of the evaluation model to the mentioned
class is improved. For the machine learning–based model, the
misclassification in the training process can correct the model.
In general, the weight coefficients of all samples of the
evaluation model are equal. For a binary classification
problem, the cross-entropy function (Chen and Wang,
2021) is usually used as the loss function, as shown in
Equation 1.

Li � −g(i) logg’(i) − (1 − g(i))log(1 − g’(i)), (1)
where g(i) is the true label of the ith sample; g’(i) is the predicted
label of the ith sample.

The prediction accuracy of each sample is considered by the
cross-entropy function. If the model is of low accuracy, the
model will give a larger loss value to strengthen the learning of
samples; otherwise, a smaller loss value is given. However,
when the numbers and misclassification costs of various
types are different, the traditional cross-entropy function is
no longer applicable. Hence, a cost-sensitive method is
introduced.

A weight coefficient is introduced in the cost-sensitive method
on the basis of (1) so that the calculation of the loss function is
biased toward the expected direction. In power system
application, the weight coefficient of unstable samples is
increased to make the evaluation rules tend toward unstable
samples, thereby improving the accuracy of unstable samples.
The loss function combined with the cost-sensitive method is
modified as (2).

L′i � −g(i) logg’(i) − α(1 − g(i))log(1 − g’(i)), (2)
where α is the misclassification cost coefficient of unstable
samples. The larger the value of α is, the better the model fits
the unstable samples and the higher the accuracy of unstable
samples.

Cost-Sensitive Method Based on Fault
Severity
In this work, the relative clearing time is used as a measure of fault
severity. The fault severity xi of each unstable sample is calculated
by (3). The smaller the absolute value of xi, the closer the sample is
to the critical state.

xi � tL − ti
tL

, (3)

where xi represents the fault severity of the ith sample; ti
represents the fault duration of the ith sample; and tL
represents the fault critical clearing time of the ith sample.

In the power system, fault samples can be divided into
critical samples and noncritical samples according to fault
severity. Since critical samples and noncritical samples have
different influences on the evaluation rules, the influence
degree of the two should be compared. The loss function
can be used to measure the difference between the predicted
value and true value. It can quantify the sample fitting situation
and reflect the evaluation performance of the model. The
model parameters are modified based on the loss function
to improve the sample fitting degree in the training process.
Therefore, the ratio of the mean loss of critical samples and
noncritical samples is calculated. Then, the influence of the
critical samples and the noncritical samples on the evaluation
rule can be compared.

The influence difference of critical samples and noncritical
samples on evaluation rules is not considered in the traditional
cost-sensitive method. The traditional cost-sensitive method
treats the two types in the same way and assigns them equal
weights. For critical samples are more easily to be misjudged than
noncritical samples, critical samples should be assigned a larger
weight. In this way, the model will pay more attention to the loss
value of critical samples and improve the accuracy of critical
samples. Therefore, a cost-sensitive method based on fault
severity is proposed in this study. Different weights of critical
samples and noncritical samples are assigned so that the cost
coefficient of critical samples is increased and that of noncritical
samples is reduced at the same time. By this method, the
evaluation model focuses on the judgment of critical samples
and improves the rationality of cost-sensitive assignments,
thereby improving the global accuracy of the model.

Firstly, the fault severity xi of each unstable sample is
calculated; then, according to the fault severity xi, weight
coefficient βi is assigned to each sample. A linear or nonlinear
function can be used as the cost function, as long as the weight
coefficient of critical samples is higher than that of noncritical
samples in the cost function. The simplest and clearest linear
function as shown in Equation 5 is utilized in this study to prove
the feasibility of the proposed method. The loss function of the ith
sample is expressed as (4).

L″i � −g(i) logg’(i) − βi(1 − g(i))log(1 − g’(i)), (4)
βi � (xi + k) × b, (5)

where b is the adjustment coefficient, which determines the slope
of the cost coefficient of the unstable samples; k is any positive real
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number; and k and b jointly determine the maximum value of the
cost coefficient of the unstable samples.

Taking the fault severity as the abscissa and the cost coefficient
as the ordinate, Figure 2 shows the assignment method of the cost
coefficient based on fault severity.

The improved cost-sensitive method linearizes the cost
coefficient of unstable samples. The closer unstable samples to
the critical situation, the higher the cost coefficient. Compared
with traditional cost-sensitive methods, the proposed method
assigns lower cost coefficients to noncritical samples and higher
cost coefficients to critical samples so that the evaluation rules are
more reasonable.

TRANSIENT STABILITY ASSESSMENT
MODEL

The construction of the DBN-based TSA model includes feature
extraction, sample labeling, model training, and performance
evaluation. Specific steps are as follows.

(Ⅰ) Feature extraction: four important moments (the moment
before the fault occurs, the moment when the fault occurs, the
moment when the fault is cleared, and the moment after the
fault is cleared) are selected as the feature extraction time step.
The power angle, angular velocity, active power, and reactive
power of each generator of the four moments are extracted.
(Ⅱ) Sample labeling: The transient stability state of samples is
determined according to the maximum power angle difference
of any two generators. (6) is used to determine whether the
sample is stable.

φ � 360o − |Δδmax|. (6)
If φ ≤ 0, the sample is stable and the label is 1; if φ > 0, it is

unstable and the label is 0.

(Ⅲ) Model training: Unsupervised pre-training and supervised
fine-tuning are adopted. Unsupervised pre-training can make

the model search for a better initial value; supervised fine-
tuning can ensure that the trained model matches the real
evaluation rules.
(Ⅳ) Performance evaluation: The test set is utilized to test the
performance of the DBN after training. The evaluation indexes
are the recall rate R0 of unstable samples, the recall rate R1 of
stable samples, and the whole accuracy rate A of all samples.
Those evaluation indexes are defined as follows.

R0 � TN

TN + FP
, (7)

where TN is the number of unstable samples accurately predicted;
FP is the number of unstable samples mispredicted.

R1 � TP

TP + FN
, (8)

where TP is the number of stable samples accurately predicted;
FN is the number of stable samples mispredicted.

A � TP + TN

TP + FP + TN + FN
. (9)

CASE STUDY

The IEEE 39-bus system is adopted as the test system; its topology
is shown in Figure 3 (Ma et al., 2021; Zhang et al., 2019). The
system frequency is 60 Hz. The simulation software PSD-BPA of
Chinese Academy of Electric Power Sciences is adopted for time-
domain simulation. The load level of the IEEE39-bus system is 90,
95, 100, 105, and 110%. Three-phase short-circuit faults are set at
10, 50, and 90% of each transmission line length. The system
frequency is 60Hz. The fault duration is 6–18 cycles. A
simulation test is carried out every half cycle, a total of 25
types. 12,375 kinds of fault conditions are randomly simulated
by PSD-BPA. 4,374 samples are randomly selected as the training
set and 2000 as the test set. The ratio of unstable samples and
stable samples is 1: 1 in the training set and test set.

Performance Analysis of the DBN Model
To verify the effectiveness of the DBN, it is compared with two
commonly used machine learning algorithms, support vector
machine (SVM) (You et al., 2013) and decision tree (DT)
(Zhang et al., 2019). In this study, the five-fold cross-
validation is applied to select DBN parameters. Finally, the
learning rate in the pre-training stage of the DBN is 0.5, and
the learning rate in the fine-tuning stage is 0.2. The number of
neurons in each hidden layer is 256, 128, 64, and 32. The number
of training times is 100. SVM uses radial basis function as the
kernel function. DT uses the CART algorithm. Five training sets
are randomly simulated, and the average of the five results is used
as the final result, as shown in Table 1.

It is shown in Table 1 that the whole accuracy of DBN, SVM,
and DT all can reach more than 95%. The evaluation indexes R0,
R1, and A are higher than those of other models. DBN has
powerful feature extraction capabilities and its deep
architecture can abstract deep features layer by layer so that it

FIGURE 2 | Cost sample based on fault severity.
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can improve the evaluation accuracy. Compared with other
shallow learning methods, DBN has better evaluation
performance.

Effectiveness of the Improved
Cost-Sensitive Method
In this part, the improved cost-sensitive method is compared with
the original data and traditional cost-sensitive methods to verify
the feasibility of the proposed method. The cost coefficients of the
unstable samples of the improved cost-sensitive method b, k are
taken as 3 and 3, respectively; the cost coefficients of the unstable

FIGURE 3 | Structure of the IEEE 39-bus system.

TABLE 1 | Accuracy of different models.

Model R0 (%) R1 (%) A (%)

DBN 97.72 98.08 97.90
SVM 96.66 97.10 96.88
DT 95.94 95.94 95.94

FIGURE 4 | Unstable sample cost-sensitive assignment method of
different models.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8227295

Lin et al. A Transient Stability Assessment Model

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


samples of the traditional cost-sensitive method α are taken as 3,
6, and 9.

Figure 4 shows the cost-sensitive assignment of five models to
unstable samples.

To overcome the interference caused by the randomness of the
data, the training set and the test set are randomly sampled five
times, and the average of the five experimental results of the test
set is taken as the final result. The three evaluation indexes R0, R1,
and A of each method are calculated to reflect the model
performance. The results are shown in Table 2. The number
of samples is taken as the horizontal axis, and each evaluation
index is taken as the vertical axis to show the results in
Figure 5–7.

It can be seen from the results that compared with the original
data, the traditional cost-sensitive method has a certain
improvement in the evaluation accuracy of unstable samples.
However, the evaluation accuracy of stable samples is reduced
more. This is because traditional cost-sensitive samples pay more
attention to unstable samples. Though the fitting degree of
unstable samples is significantly improved, and the results
tend to be judged as unstable, the evaluation accuracy of
stable samples is greatly reduced. Moreover, the whole
accuracy of the TSA model is also decreased. With the
increase of α in the traditional cost-sensitive method, the
whole accuracy of the method is decreased accordingly.

According to different fault severities, different weight values
are assigned by the improved cost-sensitive method. This
improved method ensures that the model performance is
better than that of the traditional cost-sensitive method.
Compared with the original data, the accuracy of unstable
samples is significantly improved while the accuracy of stable
samples is not decreased greatly. Of course, the proposed method
performs best in whole accuracy with 97.85%. Compared with the
traditional cost-sensitive method (α = 3, α = 6), the accuracy of
unstable samples and stable samples is higher in the proposed
method. Compared with the method with higher cost-sensitive
value (α = 9), the accuracy of unstable samples is not much
different, while the accuracy of stable samples of the proposed
method is greatly improved.

TABLE 2 | Evaluation results of different models.

Model R0 (%) R1 (%) A (%)

Original data 97.72 97.28 97.50
α = 3 98.54 95.54 96.98
α = 6 98.96 94.70 96.83
α = 9 99.12 94.10 96.61
Improved cost-sensitive method 98.98 96.72 97.85

FIGURE 5 | Accuracy of test set unstable samples.

FIGURE 6 | Accuracy of test set stable samples.

FIGURE 7 | Global accuracy of test set samples.
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Real-Time Performance of the Improved
Cost-Sensitive Method
In order to illustrate the real-time performance of the improved
cost-sensitive method, the simulation time is calculated. A
computer with i7-9750H 2.6 GHz CPU and 16 GB RAM is
applied for simulation. The training time is 100. The
simulation time is shown in Table 3.

It can be seen from Table 3 that the training time of the
improved cost-sensitive method is 81.18s, while the prediction
time of a sample is only 0.26 ms. For the deep learning–based
TSA, the training process is carried out offline, so it can be
allowed a long training time. At the same time, due to short
prediction time, sufficient time is reserved for the implementation
of the next control measures. In addition, with the improvement
of computer performance, the evaluation performance of the
proposed model will be further improved. Consequently, the
proposed method can meet the requirements of real time.

CONCLUSION

A cost coefficient assignment method based on fault severity is
proposed in this study. By this method, the fault severity of each
unstable sample is calculated according to the fault duration time.
Different weights are assigned to samples with different fault
severities. The closer to the critical situation, the greater the
weight value is. This assignment method takes full account of the
different impacts of critical samples and noncritical samples on

the evaluation model. Moreover, the recognition of critical
samples is improved by the proposed method. At the same
time, the interference of noncritical samples to the evaluation
rules is reduced, making the rules more reasonable. DBN is taken
as an example to carry out simulation tests.

Combined with the proposed cost-sensitive method, the DBN-
based TSA model can achieve the optimization of the evaluation
results. Compared with traditional cost-sensitive methods, the
proposed method not only retains the high fitting degree of
unstable samples but also improves the evaluation accuracy of
stable samples and whole accuracy. Therefore, in the power
system, the improved cost-sensitive method can enable the
machine learning–based TSA model to be better applied to
transient stability.
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