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In recent years, Brazilian meteorological networks have introduced numerous automatic
stations to monitor global solar radiation at hourly intervals. Historically, large-scale climate
data measurement has supported aviation and agricultural activities. The need for a good
mathematical model to adequately describe a process is a great challenge, since the
performance of control and simulation systems can significantly impact both system
operation and/or automation and system planning. The design of control systems based
on predictive models should allow for describing the dynamic behavior of the process or
system under realistic conditions, as well as finding the simplest possiblemodel to optimize
the computational resources. The present work sought to predict solar radiation levels via
ARX and ARMAX linear mathematical modeling. During the simulations, global horizontal
radiation was defined as input, while the following parameters were outputs: extraterrestrial
normal radiation, infrared horizontal radiation, extraterrestrial horizontal radiation, direct
normal radiation, and diffuse horizontal radiation. It must be noted that a new simulation
was performed for each variable. The use of linear modeling (ARX and ARMAX) to predict
solar radiation data was efficient for extraterrestrial normal, infrared, and extraterrestrial
horizontal radiation with the mean square error equal to 2.51, 1.40 and 7.15%,
respectively.
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1 INTRODUCTION

According to Barnaby and Crawley (2011), large-scale climate data measurements historically
supported aviation and agricultural activities. However, in architecture or engineering it has been
used for only about 40 years. Up until the 1990’s, climate data were mainly collected manually and
then the procedures were automated. In Brazil, the availability of data from automatic stations is
even more recent, and most automatic stations started acquiring measurements in 2007 (Roriz
2012).

Representativeness is the greatest difficulty related to the data collected, since meteorological data
may significantly vary year after year. Thus, it is necessary to identify which data are representative
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for the local climate (Rossi et al., 2009; Chan 2011). According to
Rossi et al. (2009), this climatic representativeness can be
obtained by means of statistical methods, such as the
climatological normal, the identification of typical days of the
project, or by specific methodologies, such as the construction of
meteorological archives (Guimarães and Carlo 2015).

Although the methods provided meteorological data
representative of the location, the selection of different
methods tends to result in climate files with different data. In
addition, according to Barnaby and Crawley (2011),
meteorological parameters such as ambient temperature and
wind speed may differ significantly according to the site of the
measurement (Guimarães et al., 2014).

As a physical system, the atmosphere can be described by a
system of mathematical equations derived from the application
of Newton’s second law and the development of differential
calculus (18th century). However, the system of equations that
determines atmospheric movements is overly complex. Thus, it
cannot be solved in an exact and analytical way and demands a
series of approximations (INPE 2016). With the exponential
development of technology, computer simulation tools have
been used in several areas of knowledge. The main objective of
computational simulation is to provide users with results close
to real situations by means of tools that seek to provide a
solution similar to a realistic model, optimize projects and
productive processes. At the same time errors must be
minimized and results analyzed long before the start of the
project prototyping phase (Carlo and Lamberts 2008; Hensen
and Lamberts 2011).

The adjustment of the parameters of a mathematical model
used to represent a system is called System Identification
(G.J. Ríos-Moreno et al., 2007). According to Ljung (1999),
System Identification is grounded in standard statistical
techniques, and many of the basic routines have direct
interpretations, for example, least squares and maximum
likelihood. The control community had an important role in
the development and application of these basic techniques to
dynamic systems right after the birth and development of modern
control theory (Ljung 1999).

A reliable forecast of incident solar radiation, both in buildings
and in applications related to agriculture, photovoltaic and solar
thermal energy generation, is crucial for projects of interest to
these applications (Obukhov et al., 2018). The prediction of
meteorological data via computational mathematical models
aims to generate a set of numerical values with the same
statistical characteristics of a historical series of collected data.
A weather forecast is prepared for a certain period, location, or
region. Forecasts are associated with a certain degree of
uncertainty. These predictions are applied in several areas,
including renewable energy generation systems and precision
agriculture (Fruteira et al., 2011).

Therefore, according to Fruteira et al. (2011) and Ruslan et al.
(2017), the simulated data must undergo a validation process for
analysis of their reliability and representation of the actual
climatic conditions of the location of interest. This can assure
that the statistical properties contained in the historical series of
each meteorological variable have been preserved.

In general, several models have been used in the literature to
estimate and predict solar radiation. Thus, choosing the best
model for each type of application becomes a growing challenge
(Belmahdi et al., 2021; Suganthi and Samuel, 2012).

With the advancements in computing technology for data
acquisition and processing, the parameters of the structural
models can be updated from the responses measured under
system excitation. This procedure is obtained using
identification techniques as an inverse problem. The inverse
problem can be defined as the determination of the internal
structure of a physical system from either the measured behavior
of the system or the estimation of an unknown input that gives
rise to a measured output signal (Khanmirza et al., 2011).

Recent studies have used linear and non-linear algorithms
intending to solve the problem of predicting solar radiation:
Huang et al. (2021) used different machine learning
algorithms and Implications for Extreme Climate Events;
Belmahdi et al. (2021) used neural networks to predict daily
global solar radiation for twenty-five Moroccan cities; Yang et al.
(2021) used Kalman filter photovoltaic (PV) power prediction
model based on forecasting experience.

In addition, several solar radiation prediction models have
been developed over the years and are categorized into three main
models: empirical or analytical models, machine learning models,
which use computational intelligence techniques, and satellite
remote sensing models (Yang et al., 2020). Thus, the present
article sought to perform a study on the prediction of solar
radiation using linear modeling (ARX, ARMAX).

2 METHODOLOGY

2.1 Meteorological Data and Climate Files
The automatic weather station collects meteorological
information every minute (temperature, humidity, atmospheric
pressure, precipitation, wind direction and speed, solar
radiation), representative of the area in which it is located
(Mellit and Pavan 2010; Zanetti et al., 2006). The set of
received data is validated by quality control and stored in a
database (INMET 2011). Literature analysis reveals that
prediction methods are based on historical series of energy
generation data. These prediction methods demand a large
amount of historical data and computational effort (Yang
et al., 2021).

Climate files are a set of meteorological data, usually composed
of a typical representative year, expressed through several
parameters, including temperature, relative air humidity, solar
radiation, wind speed and direction (Guimarães and Carlo 2015).
The most common climate files identified in Brazil can be found
in the Test Reference Year (TRY) and the Test Meteorological
Year (TMY) formats, whose statistical treatments select years and
months, respectively, without hourly temperature extremes
(Carlo and Lamberts 2008).

2.2 Modeling and System Identification
Control strategies based on predictive models are a class of
computational algorithms based on the dynamic behavior of a
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process explained by a mathematical model (Froisy 2006; Ren
et al., 2006). The need for a mathematical model able to
adequately describe a process is always a challenge, since
the performance of control systems is significantly dependent
on the modeling accuracy (Vasquez et al., 2008; Obukhov et al.,
2018).

The development of an efficient mathematical model is not an
ordinary issue, mainly because the criteria that make it applicable
depend not only on its purpose and application (Ruslan et al.,
2017). Design of control systems based on predictive models
should allow for simulating the dynamic behavior of the process
or system under the conditions as close to reality as possible, with
the simplest possible model to optimize computational resources
(Shakouri and Radmanesh 2009).

The representation theorem can be used to obtain several
forms of expressing the mathematical models of a system. The
linear mathematical representations most frequently used in
system identification (Aguirre 2007) are presented below.

It is usual to describe a linear time-invariant system with a
controlled input, U, and an uncontrolled input, i.e., noise, W.
These inputs present the direct network gain, G(z) and H(z),
respectively. In many cases the noise, also called disturbance, can
be described by a steady-state stochastic process with rational
spectral density. Thus, the Z-transform of the system output is
given by the application of the overlapping theorem of linear
systems and defined as the linear combination of the two inputs,
Eq. 1:

Y(z) � G(z)U(z) +H(z)W(z) (1)
in which G(z) is the transfer function of the deterministic part of
the system, and H (z) is the transfer function of the stochastic part
of the system. Both are rational and stable functions.

Assuming that the transfer functions of the deterministic and
stochastic parts generally have some poles in common,
representation of the system output can be written as follows:

Y(z) � z−dB(z)
F(z)A(z)U(z) + C(z)

D(z)A(z)W(z) (2)
where A(z), B(z), C(z), D(z), F(z) are polynomials as a function of z,
whose roots of the denominators and numerators are the poles and
zeros of the deterministic and stochastic parts of the system,
respectively, and d is the system transport delay. Application of the
inverse of the Z-transform and use of the back-shift operator provides:

A(q−1)y(k) � q−d
B(q−1)
F(q−1) u(k) + C(q−1)

D(q−1)w(k) (3)

where q−1 is the delay operator defined in a such a way that
y(k)q−1 � y(k − 1), w(k) is the white noise and A(q−1), B(q−1),
C(q−1), D(q−1), F(q−1) are polynomials defined as follows:

A(q−1) � 1 + a1q
−1 + . . . + anaq

−na (4)
B(q−1) � b0 + b1q

−1 + . . . + bnbq
−nb (5)

C(q−1) � 1 + c1q
−1 + . . . + cncq

−nc (6)
D(q−1) � 1 + d1q

−1 + . . . + dndq
−nd (7)

F(q−1) � 1 + f1q
−1 + . . . + dnf q

−nf (8)

The different identification models used in literature are
obtained according to the particular values of the polynomials
A(q−1), B(q−1), C(q−1), D(q−1), F(q−1).

Identification of systems and processes has the following steps:
data acquisition, data processing, selection of the model structure,
parameter estimation and model validation. These steps will be
discussed in more detail in the methodology section.

2.3 Autoregressive Model With Exogenous
Inputs and Autoregressive Model With
Moving Average and Exogenous Inputs
Models
Several models can represent a system in diverse ways, depending
on the perspective considered. Some of the models used to
simulate linear systems are autoregressive, including the
autoregressive model with exogenous inputs (ARX) and the
autoregressive model with moving average and exogenous
inputs (ARMAX), state variable and transfer functions models
(Aguirre 2007; Jorgensen et al., 2011).

The present work explored the autoregressive models with
exogenous inputs (ARX) and autoregressive model with moving
average and exogenous inputs (ARMAX). The simplest
model that can be adjusted to the data of a sample is an
autoregressive model with the inclusion of exogenous variables
(ARX–autoregressive with exogeneous inputs) (Piltan et al.,
2017).

A time series y(t) generally follows an ARX model when it can
be explained by the expression of Eq. 9 (Shumway and Stoffer
2006; Aguirre 2007; Moura and Montini 2012):

y(t) + a1y(t − 1) + a2y(t − 2) + . . . + anay(t − na)
� b1u(t − 1) + b2u(t − 2) + . . . + bnbu(t − nb) + e(t) (9)

where e(t) refers to white noise.
The application of a unit delay operator z−1y(t) � y(t − 1), in

Eqs 4,5 provides:

A(z) � 1 + a1z
−1 + a2z

−2 + . . . + anaz
na (10)

B(z) � b1z
−1 + b2z

−2 + . . . + anbz
nb (11)

A(z)y(t) � B(z)u(t) + e(t) (12)
Thus, the input-output relationship of the model is given by:

y(t) � B(z)
A(z) u(t) +

1
A(z) e(t) (13)

The ARX model can be improved with the use of a moving
average applied to the disturbance. Thus, we obtain:

y(t) + a1y(t − 1) + a2y(t − 2) + . . . + anay(t − na)
� b1u(t − 1) + b2u(t − 2) + . . . + bnbu(t − nb) + e(t)

+ c1e(t − 1) + c2e(t − 2) + . . . + cnbe(t − nc) (14)
Application of the unit delay in Eqs 4–6, similar to the

previous case, yields:

A(z) � 1 + a1z
−1 + a2z

−2 + . . . + anaz
−na (15)
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B(z) � b1z
−1 + b2z

−2 + . . . + anbz
−nb (16)

C(z) � 1 + c1z
−1 + c2z

−2 + . . . + cncz
−nc (17)

where, na, nb and nc refer to the orders of the models.
Thus, the input-output ratio of the ARMAX

(autoregressive–moving-average model with exogenous inputs
model) is given by:

A(z)y(t) � B(z)u(t) + C(z)e(t) (18)
y(t) � B(z)

A(z) u(t) +
C(z)
A(z) e(t) (19)

The present work used an experimental approach to
determine systems for achieving a mathematical model that
reproduces the dynamic characteristics of the process under
study. It was based on observed variables such as: output
signal or controlled variable y(t), the input signal x(t), and the
disturbances e(t) (Ljung 1999). Figure 1 shows a general outline
of the process used for system identification (Vasquez et al.,
2008).

In Figure 1A:

u(t): System input;
y(t): System output;
v(t): Error signal;
θ̂(t): Coefficients generated by the prediction model; and
ŷ(t): Output generated by the prediction model.

(1) The process for system identification followed the steps below:
(2) Acquisition and modeling of meteorological data: the system

must receive external excitation via the application of
different input signals and record the evolution of its
input and output signals during a predetermined fixed
time interval.

(3) Pre-processing of the acquired meteorological data: the
acquired data are usually accompanied by unwanted
noises and other types of imperfections. Therefore, they
must be treated before the start of the identification
process.

(4) Definition of the model to be used: it is desirable to obtain a
parametric model conditioned to the nature of the data used
during the modeling process. Thus, the first step was to
determine a structure suitable for the model. For such, it is
necessary to acquire previous knowledge of the dynamic
behavior of the process under study.

(5) The model parameters were then estimated (specify the
names of the parameter here): to allow for determination
of the parameter values of the structure that best adapted
to the model response for the input and output
experimental data.

(6) Then the model was validated, which is the final step. This
step sought to determine if the obtained model satisfied the
application with the accuracy required for the process.
Otherwise, if the obtained model is considered invalid,
the following aspects should be analyzed as probable causes:

(i) The input and output data acquired do not provide
sufficient information about the dynamics of the system;
and/or

(ii) The structure selected was unable to adequately describe the
model; and/or

(iii) The criteria for determining the parameters were not
properly adjusted.

Thus, depending on the reason an invalid template was
obtained, the identification process should be repeated. The
system identification process is an iterative process whose
steps are illustrated in the flowchart shown in Figure 1B.

FIGURE 1 | (A) System identification process. (B) Steps of the system identification procedure. (Source: Vasquez et al., 2008).

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8225554

Silva et al. Solar Radiation Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


2.4 Modeling of the Solar Radiation
Database Based on Systems Identification
Initially, the average input and output data were removed in order
to normalize the database used. The data were then separated, so
that one part was used for simulation and the other for model
validation. The percentages used for both simulation and
validation were defined according to the size of the database
available for the work.

The parameters of the ARX and ARMAX models were
simulated using different values of polynomial orders and
delays. These values determine the degree of the ordinary
differential equation computationally solved for
determination of the coefficients of each model. This
means that for each value of na, nb and nc, a simulation
and validation model was created. In the present work the
order of the model (na, nb and nc) ranged from 1 to 7, while the
delay order (nk) ranged from 1 to 3. These values are justified
by the need for optimizing the use of computational
resources, since it is necessary to expand them as the order
of the models increases.

The model can be selected by means of the minimal Root
Mean Square Error–RMSE. It is a criterion for selecting an
appropriate estimator, which means selecting the order of the
model to be adopted. The RMSE is the square root of the
differences between the estimated value and the actual value of
the squared data, weighted by the number of terms and by the
estimated value, given by:

RMSE(%) �

���������������������
1
N
∑N
t�1
(y(t) − ys(t)/y(t))2

√√
(20)

Where:N = number of data;y(t) = original value of each datum;
andys(t) = simulated value

This work also used FIT, an estimator which according to
Mustafaraj et al. (2010) and Rachad et al. (2015), is solely the
variation of the output generated by the model. In other words,
it measures how well the output “fits” the data used in
validation of the model. The FIT is calculated by the
equation below:

FIT � 1 −
����������������∑N

t�1[y(t) − ys(t)]2√���������������������∑N
t�1[ys(t) − 1

N∑N
t�1y(t)]2√ (21)

In statistical modeling, these parameters are used to determine
to what extent the model fits the data, or if the removal of some
terms could simplify and benefit the model. That is, among other
things, it can be used to help determine the variables of interest to
be used in the work. It also provides a mechanism for selection of
the best estimators (Belmahdi et al., 2021).

In this case, selection depends on the RMSE and FIT in the
ARX and ARMAX models and the degree of each model.

Initially, a treated meteorological database provided by the
Laboratory of Technologies in Environmental Comfort and
Energy Efficiency of the Department of the Architecture and
Urban Planning, Federal University of Viçosa, was used for

modeling and data processing. It is important to use a treated
meteorological database, since the raw data presented several
uncertainties according to the scenario of the measurement and
the selection and assembling approach. Gross data tends to
present discrepancies, such as measurement errors due to
actions outside the meteorological station, sensor failures in
data acquisition and equipment defects.

Hourly data was used from 2005 to 2015 including: air
temperature (Tair), dew point temperature (Tdp), relative
humidity (Hr), atmospheric pressure (Patm), humidity ratio
(hr), air enthalpy (Eair), specific air mass (ρ), global horizontal
radiation, infrared horizontal radiation, extraterrestrial
normal radiation, extraterrestrial horizontal radiation, direct
normal radiation, diffuse horizontal radiation, global
horizontal illuminance, direct normal illuminance, diffuse
horizontal illumination, wind direction, wind speed and
precipitation.

3 RESULTS AND DISCUSSION

In the present work the variables of interest were the radiation
compositions, given their importance both for agriculture and the
generation of photovoltaic and solar thermal energy. Table 1
shows a sample of the database for a typical day in January 2015.
It should be noted that there is a range of variables that can be
analyzed.

Table 1-Sample of hourly weather data for a typical day in
January 2015. Continuation.

Hourly data from 2005 to 2015 were used, containing: Air
Temperature (Tair), Dew Point Temperature (Tdp), Relative Air
Humidity (Hr), Atmospheric Pressure (Patm), Enthalpy, Air
Density, Global Horizontal Radiation, Horizontal Infrared
Radiation, Normal Extraterrestrial Radiation, Horizontal
Extraterrestrial Radiation, Direct Normal Radiation, Horizontal
Diffuse Radiation, Global Horizontal Illuminance, Direct Normal
Illuminance, Horizontal Diffuse Illuminance, Wind Direction,
Wind Speed and Precipitation.

Hourly data from all the years were grouped into a single file
for simulation. From this, half of the data were used to create the
models and the other half for validation. During the simulations,
global horizontal radiation was defined as the input and the
others as outputs. It must be noted that a new simulation was
performed for each variable, Table 2.

In each simulation, a sample of 64,992 values was used, of
which 32,496 were used to create the model and 32,496 for
validation. In validation, the data generated from the models
were compared with the existing data by the RMSE analysis and a
performance coefficient (FIT).

In creation of the ARX and ARMAX models, the order of
the models (na, nb and nc) ranged from 1 to 7, while the delay
order (nK) ranged from 1 to 3. Therefore, the models were
simulated and the RMSE and FIT values for each model were
obtained. Results related to the outputs with the best and worst
RMSE were presented for discussion: infrared horizontal
radiation and direct normal radiation, according to
Tables 3–6.
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Eachmodel generates 32,496 hourly radiation values, but graphs
with 100-h samples were presented in order to facilitate
comparison of the original data with that generated by the
models. In order to provide a notion of the dimension of the
data, Figure 2 shows a graph of 1000 h with all the data.

Work involving modeling and identification of systems
generally uses analysis of errors to evaluate the quality of
the predictors. In the paper published by Mateo et al.
(2013), it is suggested to use the absolute mean error as a
parameter for the comparison between linear and non-linear
predictors. This error measures the average magnitude of the
errors in a set of predictions, without considering its direction.
Santos et al. (2007) used the comparison between prediction
methods based on linear models with an exchange rate
approach and used the RMSE as one of the criteria for
evaluating the predictors.

Typically, the models of auto regressive prediction try to
minimize the prediction errors of a function. The outputs are
calculated considering that the system changes slowly over

TABLE 1 | Sample of hourly weather data for a typical day in January 2015. (Source: Guimarães et al., 2014).

Hour Tair (°C) Tdp (°C) Hr (%) Patm (Pa) hr (kgH20/kgdried air) Eair (kj/kgdried air) ρ

(kg/m³)

09:00 27.4 19.4 62 93.610 0.01542 66.90631 1.05883
10:00 28.6 18.9 56 93.560 0.01493 66.90469 1.05486
11:00 30.3 19.9 54 93.500 0.01591 71.17780 1.04666
12:00 31.1 19.2 49 93.420 0.01511 69.94738 1.04433
13:00 32.2 19.4 47 93.300 0.01545 71.96627 1.03867
14:00 32.2 17.6 42 93.260 0.01378 67.67861 1.04096
15:00 31.7 19.2 47 93.240 0.01502 70.34427 1.04041

Hour Extraterrestrial
Hourly Radiation

(Wh/m2)

Normal Extraterrestrial
Radiation (Hourly)

(Wh/m2)

Infrared Horizontal
Hourly Radiation

(Wh/m2)

Global Horizontal
Radiation (Hourly)

(Wh/m2)

Direct Normal
Radiation (Hourly)

(Wh/m2)

Diffuse Hourly
Radiation
(Wh/m2)

09:00 1257 1119 414 860 541 252
10:00 1374 1337 420 984 719 246
11:00 1411 1409 430 1045 811 234
12:00 1364 1318 434 1031 785 219
13:00 1238 1085 441 960 672 194
14:00 1041 767 438 828 490 164
15:00 786 437 437 492 166 193

TABLE 2 | Inputs and outputs used in the linear modeling.

Input x(t) Output y(t)

Global horizontal radiation Extraterrestrial normal radiation
Global horizontal radiation Infrared horizontal radiation
Global horizontal radiation Extraterrestrial horizontal radiation
Global horizontal radiation Direct normal radiation
Global horizontal radiation Diffuse horizontal radiation

TABLE 3 | RMSE and FIT values for horizontal infrared horizontal radiation model ARX.

RMSE–ARX–Infra. Rad. (Wh/m2)–Without Zero Suppression FIT–ARX–Infra. Rad.–Without Zero Suppression

Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

na = k nb = k nc = 1 6.25 5.37 5.24 5.18 5.14 5.11 5.09 na = k nb = k nc = 1 0.756 0.790 0.795 0.798 0.799 0.800 0.801
na = k nb = k nc = 2 6.63 5.31 5.23 5.20 5.16 5.14 5.12 na = k nb = k nc = 2 0.741 0.792 0.796 0.797 0.798 0.799 0.800
na = k nb = k nc = 3 6.53 5.31 5.22 5.20 5.18 5.15 5.13 na = k nb = k nc = 3 0.745 0.793 0.796 0.797 0.798 0.799 0.799
na = k nb = k nc = 1 1.69 1.45 1.42 1.40 1.39 1.38 1.38 na = k nb = k nc = 1 75.57 78.99 79.53 79.75 79.91 80.03 80.11
na = k nb = k nc = 2 1.79 1.44 1.41 1.40 1.39 1.39 1.38 na = k nb = k nc = 2 74.10 79.25 79.56 79.70 79.84 79.92 80.00
na = k nb = k nc = 3 1.77 1.43 1.41 1.40 1.40 1.39 1.39 na = k nb = k nc = 3 74.47 79.26 79.59 79.69 79.77 79.86 79.93

TABLE 4 | RMSE and FIT values for horizontal infrared horizontal radiation model ARMAX.

RMSE - ARMAX - Infrared Rad. (Wh/m2) - Without Zero Suppression FIT - ARMAX - Infrared Rad. - Without Zero Suppression

Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

na = k nb = k nc = k nk = 1 5.91 5.10 4.87 4.86 4.69 4.72 4.60 na = k nb = k nc = k nk = 1 0.769 0.801 0.810 0.810 0.817 0.815 0.820
na = k nb = k nc = k nk = 2 5.95 5.12 4.90 4.79 4.61 4.64 4.49 na = k nb = k nc = k nk = 2 0.768 0.800 0.808 0.813 0.820 0.819 0.825
na = k nb = k nc = k nk = 3 5.84 5.15 5.13 4.83 4.61 4.69 4.50 na = k nb = k nc = k nk = 3 0.772 0.799 0.799 0.811 0.820 0.817 0.824
na = k nb = k nc = k nk = 1 1.60 1.38 1.32 1.31 1.27 1.28 1.24 na = k nb = k nc = k nk = 1 76.90 80.07 80.98 80.99 81.67 81.54 82.01
na = k nb = k nc = k nk = 2 1.61 1.38 1.32 1.29 1.25 1.25 1.21 na = k nb = k nc = k nk = 2 76.76 79.98 80.85 81.28 81.98 81.88 82.47
na = k nb = k nc = k nk = 3 1.58 1.39 1.39 1.31 1.25 1.27 1.22 na = k nb = k nc = k nk = 3 77.16 79.88 79.95 81.11 81.97 81.65 82.40
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time, by a set of parameters that are estimated via system
identification (Huang and Jane 2009).

Comparing the ARX and ARMAX models and graphs applied
to the infrared horizontal radiation, it is concluded that in
this case it becomes more feasible to use the ARX model,
since it requires fewer computational resources than the
ARMAX model.

Because zero-suppression infrared horizontal radiation data is
all greater than zero, zero suppression was not used in this
analysis. As can be seen in Tables 3, 4, the percent difference
between the RMSE and FIT values in the ARX and ARMAX
models is not very significant. Both maintain the error below 2%

and FIT around 80%; and errors tend also to stabilize for k = 3. In
Figures 3 and 4 it is possible to graphically observe the behavior
of mathematically generated data with respect to the data used for
validation.

When analyzing Table 5, it can be observed that for the
normal direct radiation, in the ARX model without zero
suppression the error does not tend to decrease by increasing

TABLE 5 | RMSE and FIT values for direct normal radiation model ARX.

RMSE - ARX - Nor. Direct Rad. (Wh/m2) - Without Zero Suppression FIT - ARX - Nor. Direct Rad. - Without Zero Suppression

Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

na = k nb = k nc = 1 78.33 75.36 73.81 73.37 73.19 73.02 72.72 na = k nb = k nc = 1 0.440 0.461 0.472 0.475 0.476 0.478 0.480
na = k nb = k nc = 2 81.83 75.57 74.87 74.85 74.66 74.29 73.99 na = k nb = k nc = 2 0.415 0.459 0.464 0.465 0.466 0.469 0.471
na = k nb = k nc = 3 81.70 79.50 76.64 76.56 76.21 75.87 75.75 na = k nb = k nc = 3 0.415 0.431 0.452 0.452 0.455 0.457 0.458
na = k nb = k nc = 1 126.34 121.55 119.04 118.3341 118.05 117.77 117.29 na = k nb = k nc = 1 43.96 46.08 47.20 47.51 47.64 47.76 47.97
na = k nb = k nc = 2 131.98 121.89 120.76 120.72 120.41 119.82 119.33 na = k nb = k nc = 2 41.46 45.94 46.43 46.45 46.59 46.85 47.07
na = k nb = k nc = 3 131.77 128.23 123.61 123.48 122.91 122.37 122.18 na = k nb = k nc = 3 41.55 43.12 45.17 45.23 45.48 45.72 45.80
na = k nb = k nc = 1 149.83 143.08 139.34 137.38 136.82 136.36 135.67 na = k nb = k nc = 1 0.441 0.466 0.480 0.487 0.489 0.491 0.494
na = k nb = k nc = 2 161.97 144.76 141.91 141.42 141.08 140.29 139.62 na = k nb = k nc = 2 0.396 0.460 0.470 0.472 0.474 0.477 0.479
na = k nb = k nc = 3 160.80 152.60 146.49 146.09 145.52 144.88 144.37 na = k nb = k nc = 3 0.400 0.431 0.453 0.455 0.457 0.459 0.461
na = k nb = k nc = 1 68.10 65.03 63.33 62.45 62.19 61.98 61.67 na = k nb = k nc = 1 44.07 46.60 48.00 48.73 48.94 49.11 49.37
na = k nb = k nc = 2 73.62 65.80 64.50 64.28 64.13 63.77 63.46 na = k nb = k nc = 2 39.55 45.98 47.05 47.23 47.35 47.65 47.90
na = k nb = k nc = 3 73.09 69.37 66.59 66.41 66.15 65.86 65.62 na = k nb = k nc = 3 40.00 43.06 45.33 45.48 45.70 45.94 46.13

TABLE 6 | RMSE and FIT values for direct normal radiation model ARMAX.

RMSE - ARMAX - Nor. Direct Rad. (Wh/m2) – Without Zero Suppression FIT - ARMAX - Nor. Direct Rad. - Without Zero Suppression

Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 Model Order k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

na = k nb = k nc = k nk = 1 76.55 73.47 72.32 72.14 70.84 70.83 70.55 na = k nb = k nc = k nk = 1 0.452 0.474 0.483 0.484 0.493 0.493 0.495

na = k nb = k nc = k nk = 2 79.45 75.08 73.55 73.00 72.20 71.34 69.48 na = k nb = k nc = k nk = 2 0.432 0.463 0.474 0.478 0.483 0.490 0.503

na = k nb = k nc = k nk = 3 81.20 76.45 75.94 75.36 74.20 70.93 71.51 na = k nb = k nc = k nk = 3 0.419 0.453 0.457 0.461 0.469 0.492 0.488

na = k nb = k nc = k nk = 1 123.47 118.50 116.65 116.36 114.26 114.25 113.79 na = k nb = k nc = k nk = 1 45.23 47.44 48.26 48.38 49.31 49.32 49.53

na = k nb = k nc = k nk = 2 128.14 121.09 118.64 117.74 116.46 115.06 112.06 na = k nb = k nc = k nk = 2 43.16 46.29 47.38 47.77 48.34 48.96 50.29

na = k nb = k nc = k nk = 3 130.96 123.31 122.48 121.54 119.68 114.41 115.34 na = k nb = k nc = k nk = 3 41.91 45.30 45.67 46.09 46.91 49.25 48.84

na = k nb = k nc = k nk = 1 145.90 137.51 134.92 134.16 130.75 129.84 130.16 na = k nb = k nc = k nk = 1 0.455 0.487 0.497 0.499 0.512 0.516 0.514

na = k nb = k nc = k nk = 2 155.54 142.77 138.99 138.72 134.82 134.85 135.73 na = k nb = k nc = k nk = 2 0.419 0.467 0.481 0.482 0.497 0.497 0.494

na = k nb = k nc = k nk = 3 160.33 146.76 143.46 143.36 142.80 132.56 128.91 na = k nb = k nc = k nk = 3 0.402 0.452 0.465 0.465 0.467 0.506 0.519

na = k nb = k nc = k nk = 1 66.32 62.50 61.33 60.98 59.43 59.02 59.16 na = k nb = k nc = k nk = 1 45.54 48.68 49.65 49.94 51.22 51.56 51.44

na = k nb = k nc = k nk = 2 70.70 64.89 63.18 63.05 61.28 61.29 61.69 na = k nb = k nc = k nk = 2 41.95 46.73 48.14 48.24 49.69 49.68 49.37

na = k nb = k nc = k nk = 3 72.88 66.71 65.21 65.16 64.91 60.26 58.60 na = k nb = k nc = k nk = 3 40.17 45.24 46.47 46.51 46.73 50.56 51.93

FIGURE 2 | Model ARX (na = 4, nb = 4, nc = 3) for prediction of normal
extraterrestrial radiation data without zero suppression.

FIGURE 3 | ARXmodel (na = 3, nb = 3, nk = 1) for prediction of horizontal
infrared horizontal radiation data without suppression of zero.
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the order of the model, presenting order values of more than
100% in all degrees of the analyzed model. Furthermore, the FIT
is less than 50% in both cases. Normal direct radiation is of
immense importance for simulations in the area of energy
efficiency in buildings. Thus, it can be concluded that ARX

modeling is not effective in its use for prediction of normal
direct radiation data.

In Figures 5, 6 it is possible to graphically observe the behavior
of the data generated by the simulation with respect to the data
used for validation.

FIGURE 4 | ARMAX model (na = 3, nb = 3, nk = 1) for prediction of horizontal infrared radiation data without suppression of zero.

FIGURE 5 | ARX model (na = 4, nb = 4, nk = 1) for prediction of normal
direct radiation data without suppression of zero.

FIGURE 6 | ARX model (na = 4, nb = 4, nk = 1) for prediction of normal
direct radiation data with suppression of zero.
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In the ARMAX model (Table 6) the same effect observed in
the ARX model for direct normal radiation composition
occurred. Order values of more than 100% were obtained in
all grades of the analyzed model. With the suppression of zero the

errors become much lower, but they are not yet within an
acceptable range. Additionally, the FIT is less than 50% in both
cases. It can therefore be concluded that the ARMAX model
generates a poorer approximation than those previously
discussed when it comes to their use for prediction of normal
direct radiation data.

In Figures 7, 8 it is possible to graphically observe the behavior
of mathematically generated data with respect to the data used for
validation.

The use of linear modeling (ARX and ARMAX) to predict
solar radiation data was efficient for the components: normal,
infrared horizontal and horizontal extraterrestrial. For these
cases, the smallest errors found between the data used in
validation and the data generated by the models, as well as
their corresponding FIT, took into consideration the
computational cost-benefit in the choice of k. The best FIT
among the models can be seen in Table 7.

System identification is the procedure of mathematical
construction of models, utilizing input and output data
previously available for specific analyzes (Haykin 1999;
Ljung 1999). Erdoğan and Gülal (2009) defined the
system identification as “a matter of finding the
numerical values of the model parameters that provide
the best agreement between the computed and observed
system outputs”.

4 CONCLUSION

The description of the behavior of meteorological variables,
more specifically of solar radiation, is of extreme importance in
several areas including aviation, meteorology, power
generation, agriculture, hydrology, and others. This
description deserves better investigation such as the volume
of meteorological data available, since advent of the
installation of automatic meteorological stations is still less
than expected to increase the level of research that depends on
this variable.

Even if there is already a mathematical and physical
definition that satisfactorily explains the behavior of solar
radiation, it is also necessary to develop and apply
predictive methods contribute to the improvement of
research that uses solar radiation as the input data variable.
The use of RMSE places greater weight on large errors than on
small ones, thus emphasizing discrepant data inconsistently
with the median of sample data. This explains why the analyzes
of horizontal direct radiation and horizontal diffuse radiation
have a high RMSE when compared to the others.

Furthermore, a non-sinusoidal arrangement of radiation
compositions can be seen graphically in which high RMSE
values and low FIT values were found. This result
demonstrates that linear modeling of the ARX or ARMAX
type works well for variable databases that vary cyclically, as
if it were a composition of sines and cosines.

It was noticed that the ARX or ARMAX linear models worked
satisfactorily for databases including variables that vary cyclically,
as is the case of most

TABLE 7 | RMSE and FIT of the most accurate models for each radiation
component generated from horizontal global radiation.

RMSE FIT

Normal extraterrestrial radiation ARX (4,4,2) – 2.51% 97.33%
Infrared horizontal radiation ARX (4,4,1) – 1.40% 79.75%
Horizontal extraterrestrial radiation ARX (3,3,2) – 7.15% 91.34%
Normal direct radiation ARMAX (5,5,5,1) - 59.43% 51.22%
Horizontal diffuse radiation ARMAX (6,6,6,3) - 42.75% 53.83%

FIGURE 7 | ARMAX model (na = 5, nb = 5, nc = 5. nk = 1) for prediction
of Normal Direct Radiation data without suppression of zero.

FIGURE 8 | ARMAX model (na = 5, nb = 5, nc = 5. nk = 1) for prediction
of normal direct radiation data without suppression of zero.
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