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This study was aimed to examine the antiapoptotic effect of Ulmus davidiana extracts
through regulation of the intracellular cation mobilization in U937 human monocytic cells.
To investigate the modulatory effects on lipopolysaccharide-induced apoptosis and the
Ca2+ signaling pathway, we measured the levels of intracellular Ca2+ and various protein
markers such as Bax, Bcl-2, and PARP. To isolate biopotent molecules, the branches ofU.
davidiana were processed sequentially using 60% ethanol, supercritical fluid extraction,
and ethyl acetate extraction of the remaining samples to obtain single fractions and
catechin-glycoside, which is one of the known bioeffector molecules of U. davidiana.
Lipopolysaccharide increased intracellular Ca2+ mobilization in U937 cells by inducing
transient oscillations and markedly increased Bax and PARP protein expression and
decreased Bcl-2 expression. All U. davidiana and catechin-glycoside significantly reduced
lipopolysaccharide-induced intracellular Ca2+ mobilization and downregulated apoptosis-
related molecules. These results suggest that U. davidiana and catechin-glycoside may be
useful for improving immune system function.

Keywords: Ulmus davidiana extract, supercritical fluid extraction, intracellular Ca2+ signaling, LPS-induced
apoptosis, catechin-glycoside

INTRODUCTION

The branches of Ulmus davidiana var. japonica (ULDA) has been used as a traditional Korean
medicine for the treatment of inflammatory disorders (Lee, 1966; Hong et al., 1990; Kim et al., 2010).
Previous pharmacological studies have reported that ULDA possesses antioxidant, anti-angiogenic,
anticancer, and neuroprotective effects (Kim et al., 2005; Si et al., 2013a).
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Recently, ULDA has also been used as a functional food for
supplementation of amino acids (Oh et al., 2006), oligosaccharides
(Eom et al., 2006), and other unknown metabolites that are
involved in many biochemical metabolic processes (Carrillo and
Borthakur, 2021).

Many studies have confirmed that ULDA contains several
useful ingredients (Shin et al., 2000; Eom et al., 2006; Oh et al.,
2006; Lee and Lim, 2007); however, the composition of the extract
varies depending on the extraction method. The beneficial effects
of ULDA have been recognized worldwide, including Asia,
Europe, the United States (Xiu, 1988), and Korea, but its
underlying mechanism of action on innate immunity and
metabolism is not clear.

Recent studies indicate that ULDA extracts have various
ameliorative effects on acute inflammatory responses in rats (Lee
et al., 2013a; 2013b; Si et al., 2013b; Park et al., 2020), osteopenia
(Zhuang et al., 2016), and in vitro models (Kim et al., 2019).
Moreover, the supercritical fluid of ULDA has anti-inflammatory,
anti-angiogenic (Jung and Park, 2006; Si et al., 2009b), and anti-
melanin effects (Jeon et al., 2020; Xiong et al., 2021a; Xiong et al.,
2021b).

Lipopolysaccharide (LPS), an important molecule in the
microbial challenge, exerts an effect on intracellular Ca2+ levels
[(Ca2+)i], the release of cytokines, and upstream signaling
pathways (Azenabor et al., 2009). Intracellular Ca2+-dependent
pathways mediated LPS-induced activation of transcriptional
factors and iNOS expression in mouse J774 macrophages
(Chen et al., 1998).

ADP-ribosyl cyclase(s) modulate concentration of [Ca2+]i by
mobilizing intracellular Ca2+ stores or by Ca2+ influx through
plasmamembrane Ca2+ channels in various cells (Rah et al., 2007;
Kim et al., 2009; Park et al., 2011). Ca2+ signaling modulation via
ADP-ribose cyclase is involved in signal transduction, including
cell growth, differentiation, and death (Kim et al., 1993; Mehta
et al., 1996; Liu et al., 2022). In this study, we investigated whether
pharmaceutical inhibition of Ca2+ could be effective in protecting
cells against programmed cell death. To test this hypothesis, we
compared Ca2+ signals and apoptosis markers such as Bcl-2, Bax,
and PARP-1 in LPS and supercritical fluid-fractionated ULDA-
treated LPS groups of U937 cells.

Therefore, this study was performed to investigate the effects
of supercritical fluid-fractionated ULDA, including initial
fractions of polyphenols, hydrophobic substances, and

flavonoids, on innate immunity modulation and recovery of
innate immune function in an in vitro model.

MATERIALS AND METHODS

Extraction and Isolation of U. davidiana
In this study, extraction equipment was used for supercritical
fluid extraction of U. davidiana branch (with bark). U. davidiana
branch (with bark) was purchased from the Yangnyeongsi
Medicine Market (Seoul, Korea), and impurities were
removed, cleaned, and shaded for use as experimental
material. One hundred kilograms of Ulmus davidiana branch
(with bark) was extracted once with 60% edible ethanol at room
temperature. The extract was then concentrated by removing 60%
edible ethanol under vacuum to yield a quantity of 4.62 kg (U60E)
(Figure 1). The dried sample was pulverized by passing through a
200 mesh screen and maintained at a temperature of 50°C in the
pulverization tank. When the temperature stabilized, U. davidiana
branch (with bark) samples were kept under CO2 gas at an
equilibrium pressure of 400 bar, which was maintained through a
control valve controlled by a high-pressure pump. After reaching the
set pressure, extraction was performed by injecting 100 L of ethanol
(300ml/min) for 333min to the bottom of the extraction tank. The
high-pressure pumpwas set at a specific pressure and temperature for
30min to remove the residual ethanol in the sample, and the
extraction was completed by flowing CO2 gas. As described above,
after supercritical extraction of 100 kg of U. davidiana branch (with
bark) with 60% alcohol at room temperature, the extract was filtered,
concentrated under vacuum, and freeze-dried to obtain 4.81 kg of the
final product (USCFR) (Jeon et al., 2020). The filtrate (USCFR, 1 kg)
was fractionated with ethyl acetate, and the ethyl acetate extract was
concentrated under vacuum and freeze-dried to obtain 185.2 g of the
final product (USCFREA) (Figure 2), which was dissolved in water
and filtered through filter paper no. 20 (Hyundai Micro, Seoul, South
Korea). Purification and isolation were performed by liquid column
chromatography with TLC monitoring. In addition, 185 g of
USCFREA on Disogel (300 g, 3 × 50 cm) with 30% methanol
under isocratic conditions in a Prep-LC system (20ml/min,
280 nm) yielded catechin 7-O-β-D-apiofuranoside (compound 1)
(Figure 3).

Cell Culture
U937 cells were obtained from the American Type Culture
Collection and maintained in complete RPMI 1640 medium
supplemented with 10% fetal bovine serum and 1% antibiotics.
After at least 14 days of proliferation, U937 cells were used for
in vitro experiments.

Intracellular Ca2+ Measurement
Intracellular Ca2+ mobilization was measured as previously
described (Park et al., 2011). Cells were plated manually on
poly-L-lysine–coated confocal dishes (#100350; SPL, Pochun,
Korea) and loaded with 1 mM Fluo-4 AM (Molecular Probes,
CA, United States) at 37°C for 30 min. After washing with Hanks’
balanced salt solution medium containing 0.1% bovine serum
albumin, changes in fluorescence were determined at 488 nm

FIGURE 1 | Scheme of extraction of U60E.
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excitation/530 nm emission using an air-cooled argon laser
system with a TE-2000 inverted microscope (Nikon, Tokyo,
Japan) equipped with a temperature-controlled metal stage
(Tokai Hit Co., Ltd., Shizuoka-ken, Japan). The emitted
fluorescence at 530 nm was measured using a photomultiplier,
and time series were acquired with a frame interval of 4 s. For the
calculation of [Ca2+]i, the method described by Tsien et al. (1982)
was applied with Kd for Fluo-4 using the equation [Ca2+]i = Kd
(F − Fmin)/(Fmax − F). Each tracing was calibrated for maximal
intensity (Fmax) by adding 8 mM ionomycin and for minimal
intensity (Fmin) by adding 50 mM ethylene glycol tetraacetic acid
at the end of each measurement.

Western Blot Analysis
Cell protein extracts were prepared immediately before use as
follows: cells were solubilized by mixing with ice-cold lysis

buffer [20 mM HEPES (pH 7.2), 1% Triton X-100, 10%
glycerol, 1 mM EDTA, 1 mM phenylmethylsulfonyl
fluoride, 50 mM NaF, 1 mM Na3VO4, leupeptin (10 mg/ml),
pepstatin (10 mg/ml), and aprotinin (10 mg/ml)] by repeated
trituration using a micropipette. The samples were then
incubated for 1 h at 4°C. The supernatants were obtained
after centrifugation at 20,000 × g for 10 min. The
concentration of the extracted proteins in the supernatant
was determined by the Bradford assay using bovine serum
albumin as a standard protein. Equivalent micrograms of
proteins per lane were resolved on 7–12% SDS-
polyacrylamide gel and electrotransferred to a
polyvinylidene difluoride membrane (GE Healthcare).
Antibodies against Bax, Bcl-2, PARP, and actin were used.
Horseradish peroxidase-conjugated secondary antibodies
(Santa Cruz Biotechnology) were used and visualized using

FIGURE 2 | Scheme of extraction of USCFR and USCFREA.

FIGURE 3 | Chemical structure of compound 1 isolated from Ulmus davidiana branch (with bark).
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enhanced chemiluminescence (ECL). All immunoreactive
signals were analyzed using densitometric scanning
(LAS4000; GE Healthcare, United States).

Quantitative Chromatographic Analysis of
U. davidiana Branch (With Bark)
HPLC analysis was conducted using a Waters 2,695 Separation
Module (Waters Co., Milford, MA, United States) with a vacuum
degasser, a binary pump, a 2,487 dual λ absorbance detector, a
column compartment, and Empower software for data
acquisition and integration. HPLC-grade reagents (J.T. Baker
Co., Ltd., United States) were used for HPLC analysis (Si
et al., 2008b, 2009a; An et al., 2019; Liu et al., 2021f). All
solvents were filtered and degassed prior to use. The branches
(with bark) of U. davidiana were accurately weighed to 2 g and
dissolved in 50 ml of methanol. Samples were ultrasonicated for
15 min and filtered through filter paper no. 20 (600 × 600 mm,
HYUNDAI Micro, Korea). The filtrate was further filtered
through a 0.45-μm syringe filter (PVDF, Gelman,
United States). Catechin 7-O-β-D apiofuranoside (1) was
separated on a Phenomenex KJ0-4282 guard column and a
SkyPakC18 column (5 μmC18 HPLC column, 5 μm, 250 ×
4.6 mm; SK Chemical) with a linear gradient of [D.W.MeOH:
P2HO4 (940:50:1)]: [MeOH:P2HO4 (990:1)] = 100:0 to 0:100 for
30 min. The column temperature was maintained at room
temperature, and the flow rate was maintained at 1.0 ml/min.
The sample injection volume was 20 μL. Eluted samples were
monitored at 280 nm, and compound 1 was eluted at 14.45 ±
0.14 min. Compound 1 was detected inU. davidiana extracts. For
these experiments, compound 1, U60E, USCFR, and USCFREA
were prepared at a concentration of 1 mg/ml in methanol; the
stock solutions were then diluted to 1,000, 500, 250, 125, and
62.5 ppm.

Statistical Analysis
All data are expressed as the mean ± SEM. One-way analysis of
variance followed by Tukey’s multiple range test was used to
compare each group (Si et al., 2008a; Du et al., 2019, 2022; Li et al.,
2019, 2020; Liu et al., 2020a). Student’s t-test was used for
comparison between the groups. Statistical analyses were
conducted using SPSS for Windows (version 10.0; Chicago, IL,
United States), and data indicated with different superscript
letters represent significant difference at p < .05.

RESULTS AND DISCUSSION

Identification of Single Compound and
Function
Catechin 7-O-β-D-apiofuranoside (Figure 3) from the U60E
[12.16 ± 0.15 μg/ml], USCFR [131.45 ± 0.18 ppm (μg/ml)],
and USCFREA [350.98 ± 0.16 ppm (μg/ml)] fractions and
the catechin-glycoside–rich fraction (Com.1 rich fraction)
were determined using a calibration equation (y =
6,857.3x–42,331; R2 = 0.9985) (Figures 2, 3) (Table 1 and
Table 2). The chemical structure of purified compound 1

(Figure 3) was determined using ChemDraw (PerkinElmer,
MA, United States).

Definition of Compounds
In this study, we established a methodology to produce a high-
content extract (Com.1 rich fraction) having a content of Com.1
10–30 times higher than that in general alcohol extracts, which
overcame the obstacle to developing pharmaceuticals or
functional materials derived from natural products. We believe
that this new method will be helpful in obtaining large quantities
of active substances (Figure 4).

Regulation of Ca2+ Signal by ULDA Extracts
and Catechin-Glycoside
We assessed whether LPS would increase intracellular Ca2+

mobilization in U937 cells, mimicking cell exposure to Gram-
negative bacteria, and whether ULDA extracts and catechin-
glycoside could protect cells from LPS exposure (Figure 5).
Intracellular Ca2+ mobilization in LPS-treated U937 cells was
monitored by confocal microscopy. We observed that LPS at
micromolar concentration induced transient Ca2+ oscillations
with medium amplitude in U937 cells (Figures 5B,E,H,K).
Therefore, we determined whether ULDA extracts and
catechin-glycoside (each 50 μg/ml) reduced Ca2+ mobilization
in response to LPS treatment (Figures 5C,F,I,L). All types of
ULDA extracts (U60E: Figures 5A–C panels; USCFR: Figures
5D–F panels; USCFREA: Figures 5G–I panels) and catechin-
glycoside (Figures 5J–L panels) reduced LPS-induced Ca2+

mobilization within a few minutes of pretreatment. These
results suggest that LPS induces Ca2+ mobilization and that
ULDA extracts and catechin-glycoside can reduce LPS-induced
damage signals in U937 cells.

TABLE 1 | Retention time of compound 1 from Ulmus davidiana branch (with
bark).

Material Retention time (min)

Compound 1

Standard 14.449 ± 0.14
U60E 14.271 ± 0.12
USCFR 14.482 ± 0.16
USCFREA 14.687 ± 0.15

The results are expressed as the mean ± S.D. (n = 3).

TABLE 2 | Concentration of compound 1 from Ulmus davidiana branch (with
bark).

Material Concentration (μg/ml)

Compound 1

U60E 12.16 ± 0.15
USCFR 131.45 ± 0.18
USCFREA 350.98 ± 0.16

The results are expressed as the mean ± S.D. (n = 3).
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FIGURE 4 | Representative HPLC chromatograms of (A) compound standard, (B) U60E [branch (with bark) 60% pre-ethanol A extract], (C) USCFR [branch (with
bark) supercritical extraction residue 60% edible ethanolic extract from U. davidiana], (D) USCFREA [ethyl acetate layer extract of USCFR], and (E) catechin-
glycoside–rich fraction. U60E = 1,000 ppm, USCFREA = 1,000 ppm, USCFR = 1,000 ppm, and catechin-glycoside–rich fraction = 1,000 ppm.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8203305

Yun et al. Apoptosis Regulation by Ulmus davidiana

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Antiapoptotic Effects on U937 Cells
Next, we examined apoptotic signaling response in U937 cells treated
with 1 μg/ml LPS (Figures 6A–D). Administration of LPS increased
the expression of apoptosis markers such as Bax and PARP and
reduced the expression of Bcl-2, an antiapoptotic protein.
Pretreatment with ULDA extracts (Figures 6A–C) and catechin-
glycoside (Figure 6D) markedly reversed Bax and PARP protein
expression levels; moreover, Bcl-2 expression was significantly
elevated in a dose-dependent manner. Future comprehensive
experimental studies might improve our understanding of other
molecular pathways activated by ULDA extracts and catechin-
glycosides in various disease-related signaling processes and help

guide prospective clinical studies evaluating their effects and
appropriate usage.

Lipopolysaccharide is a major virulence factor, and previous
studies have demonstrated that LPS induces apoptosis in the
murine macrophage-like cell line J744.1 (Suzuki et al., 2008; Ude
et al., 2020), but not in humans. In this study, we emphasized the
important role of the nuclear apoptotic pathway leading to Bax
and PARP activation in LPS-induced apoptosis of human
macrophages, U937 cells, and suggested that catechin-
glycoside is a good candidate for amelioration of
inflammatory disorders. However, when using natural
materials with excellent physiological activity, it is necessary

FIGURE 5 | LPS-induced Ca2+ signaling and inhibition effects of U60E, USCFR, USCFREA, and catechin-glycoside–rich fraction. Cells were plated on confocal
dishes and loaded with Ca2+-specific dye as detailed in Materials and Methods. LPS (1 μg/ml) was added and Ca2+ mobilization was monitored at the indicated time
points. Normal (A,D,G,J) and LPS (B,E,H,K). (C) U60E, (F) USCFREA, (I) USCFR, and (L) catechin-glycoside–rich fraction (each 50 μg/ml) were pretreated for 10 min
before LPS treatment. Data are representative of three independent experiments and values are expressed.
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to review and consider the optimal process for biological
manufacturing.

Intracellular Ca2+ mobilization is a universal signaling
pathway in which cells respond to a wide range of external
stimuli such as hormones, chemicals, and other organic/
inorganic compounds (Lee and Zhao, 2019; Dara et al., 2021).
Stimulation of Ca2+ mobilization is initiated by the activation of
second messenger production in the cytosol, which activates Ca2+

release from stores, such as the endoplasmic reticulum and
endolysosomes (Streb et al., 1983). Ca2+ influx played an
important role in the [Ca2+]i mobilization pathway in U937
cells and well-defined LPS-induced cytokine production
(Wehrhahn et al., 2010) via the transient receptor potential
melastatin 2 (TRPM2) pathway. In addition, LPS-induced
U937 apoptotic signaling is mediated by the transient receptor
potential vanilloid subtype 1 (TRPV1) channel along with the
cytosolic ROS signaling pathways (Güzel and Akpınar, 2021).
These LPS-induced apoptotic signals are dependent upon
mitochondrial dysfunction (Kuwabara and Imajoh-Ohmi,
2004), which is expected to be a parallel mechanism. In this
study, we observed the effect of [Ca2+]i mobilization on LPS-
induced cell apoptosis and inhibitory effects of ULDA extract
fractions and catechin-glycoside in U937 cells, but the critical
pathway was not defined clearly and needs to be further
investigated.

In many similar studies, an optimal extraction method was
developed to obtain large quantities of effective substances
from the same amount of natural raw materials while
considering cost, space, facilities, and infrastructure (Liu
et al., 2017; Hu et al., 2018; Lu et al., 2019; Kumar et al.,
2020; Wang et al., 2020; Xu et al., 2020c; Yang et al., 2020; Ha

et al., 2021; Huang et al., 2021; Zheng et al., 2021). Accordingly,
the most commonly used extraction methods in academia and
industry include hot water extraction, ethanol extraction,
ultrasonic extraction, pressurized extraction, and
supercritical extraction (Si et al., 2011; Chen et al., 2016; Hu
et al., 2017; Xie et al., 2018, 2019; Yang et al., 2019; Xu et al.,
2020a, Xu et al., 2020b, Xu et al., 2021a, Xu et al., 2021b; Wang
et al., 2021a; Liu et al., 2021a, 2021b, 2021c). Each extraction
method has its advantages and disadvantages that should be
considered in many ways at the laboratory level and future
commercialization level (Dai et al., 2020a; Liu et al., 2020b; Liu
et al., 2021d; Liu et al., 2021e; Dai et al., 2020b; Chen et al.,
2020; Chen et al., 2021; Ma et al., 2021; Zhang et al., 2021).
Among various extraction methods, supercritical extraction
technology has the advantages of being eco-friendly, use of safe
organic solvents, and avoidance of environmental pollution.
Thus, we used supercritical extraction technology for obtaining
U. davidiana extracts with low cytotoxicity (Mun et al., 2018;
Seo et al., 2018). Traditionally, water and alcohols (methanol or
ethanol) have been used for the extraction of basic ingredients
in local and industrial fields, but the risks and advantages of
nonspecific classification between molecules exist (Cho et al.,
2017). Therefore, fractionation with various solvents following
polarity, ionic strength, hydrophilicity, and hydrophobicity
along with purification has been performed worldwide, and
techniques for the synthesis of the same molecules have been
developed (Rho et al., 2004; Nan et al., 2013; Ravichandiran
et al., 2019; Fang et al., 2020; Wang et al., 2021b). In this study,
we extracted effective molecules from the residual material by
supercritical fluidic extraction (Mun et al., 2018; Seo et al.,
2018). Considering that these residues could retain relatively

FIGURE 6 | Inhibition effects of U60E, USCFREA, USCFR, and catechin-glycoside–rich fraction on LPS-induced apoptosis signaling in U937 cells. Cells were
treated with LPS (1 μg/ml) in the presence or absence of the indicated doses of (A)U60E, (B)USCFR, (C)USCFREA, and (D) catechin-glycoside–rich fraction. Lysed cell
extracts were analyzed by Western blotting using the indicated antibodies. U60E, USCFREA, USCFR, and catechin-glycoside–rich fraction were pretreated for 10 min
before LPS treatment. The Western blot is representative of three independent experiments.
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hydrophilic molecules after supercritical fluid extraction, we
performed common hydrophilic and hydrophobic extraction
methods using 60% edible ethanol and ethyl acetate,
respectively.

In this study, to examine the value of the supercritical
extraction residue, physiological activity study was performed
by extracting the supercritical extract of U. davidiana using 60%
alcohol. In addition, ethyl acetate solvent analysis was conducted
as a part of the production method to examine the added
physiological value of U. davidiana supercritical extract and to
verify the possibility of U. davidiana supercritical extraction
residue as a new natural material.

CONCLUSION

The branches of Ulmus davidiana var. japonica (ULDA)
has traditionally been used in Korea and other Asian
countries. ULDA extracts are complex substances
consisting of many components; a few of them have
pharmaceutical applications in various diseases, such as
inflammation and other chronic problems, and as
antimicrobial agents.

In this study, we investigated the effects of supercritical fluid-
fractionated ULDA, including initial fractions of polyphenols,
hydrophobic substances, and flavonoids, on innate immunity
modulation and recovery of innate immune function in an
in vitro model. Future experiments are needed to investigate
the beneficial effects of these resources in other diseases using in
vivo models.
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