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The study investigates helical vortices, which are fundamental structures in fluid
dynamics, and a basic model of tip vortices behind wind turbines. In connection with
the intensive development of wind energy, interest in modeling helical vortex wakes
behind the rotors has increased. Therefore, the purpose of this mini-review is to compare
the existing methods for calculating the induced velocities of screw vortices. The three
methods for calculating the motion of helical vortices are compared. Two typical forms of
vorticity with uniform (Rankine-type) and Gaussian distributions in the core of helical
vortices are compared, and the minimum distance between the vortex filaments or their
turns is identified with sufficient accuracy in both cases. The results presented in this
mini-review can be used to model the helical vortices in the rotor wakes, central helical
vortices in vortex devices, or natural phenomena such as tornadoes, dust tornadoes,
and waterspouts.
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1 INTRODUCTION

Helical vortices are fundamental objects in fluid dynamics (Alekseenko et al., 2007). These vortices
have played an important role in the development of hydrodynamics as the oldest mathematical
idealization of tip vortices in the wake behind a screw, propeller, or wind turbine (Okulov et al., 2015;
Sørensen et al., 2013; Okulov et al., 2021) and describe one of the main states of swirling flows caused
by concentrated vortices in tornadoes, six to eight vortex devices and rotating tanks, and pipes
(Alekseenko et al., 2007). Nevertheless, unlike the theory of point vortices (White, 2015) and vortex
rings (Saffman, 1992), helical vortex theory has not been systematically described in the literature
and is not generally considered in textbooks andmonographs on classical fluidmechanics. This is not
because of an absence of simple closed solutions for helical vortices, but is most likely due to a lack of
comparisons between the current approximations.

In the dynamics of slender vortices (or thin vortex tubes), the size of their core is usually assumed
to be much smaller than any other linear sizes (radius of the vortex curvature or a distance between
their sections or turns under vortex deformation). It is difficult to calculate the dynamics of deformed
vortex filaments directly due to the significant nonlinearity of the interacting vortex structures. The
Biot–Savart law for vortex tubes with a finite core is usually applied. In simulations, a transition to an
infinitely thin vortex filament is used as a simplification. The concentration of the vorticity on the
axis of the vortex tube reduces the integration to one direction along the axis, but this produces the
new problem of calculating the self-induced velocity at points on the axis associated with singular
behavior. This problem can be avoided by using various regularization methods.

The first successful regularization of the Biot–Savart integration for the motion of a helical vortex via a
singular filament was performed numerically using the cutoff method (Crow, 1970), which involves

Edited by:
Stefan Ivanell,

Uppsala University, Sweden

Reviewed by:
Davide Astolfi,

University of Perugia, Italy
Thomas Leweke,

UMR7342 Institut de recherche sur les
phénomènes hors équilibre (IRPHE),

France

*Correspondence:
V. L. Okulov
vaok@dtu.dk

Specialty section:
This article was submitted to

Wind Energy,
a section of the journal

Frontiers in Energy Research

Received: 18 November 2021
Accepted: 25 January 2022

Published: 15 February 2022

Citation:
Okulov VL and Fukumoto Y (2022)

Review of Analytical Approaches for
Simulating Motions of Helical Vortex.

Front. Energy Res. 10:817941.
doi: 10.3389/fenrg.2022.817941

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8179411

PERSPECTIVE
published: 15 February 2022

doi: 10.3389/fenrg.2022.817941

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.817941&domain=pdf&date_stamp=2022-02-15
https://www.frontiersin.org/articles/10.3389/fenrg.2022.817941/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.817941/full
http://creativecommons.org/licenses/by/4.0/
mailto:vaok@dtu.dk
https://doi.org/10.3389/fenrg.2022.817941
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.817941


eliminating a filament section of length δ on both sides before and
after the calculated point in the Biot–Savart integration on the
filament. Figure 1A shows a sketch of the cutoff method applied
to a helical vortex filament. This length δ is calculated using
equivalent touching vortex rings that have the same core radius as
the helical vortex.

In addition to the numerical cutoff method, there are two
successful analytical techniques for determining the self-induced
motion of helical vortices. These methods are based on
regularization of the solution with respect to averaged velocities
calculated at a finite distance (usually equal to the vortex core
radius) from the singular filament (Figure 1B). The velocities in
the vicinity of a whole helical filament can be determined using a
transformation of the Biot–Savart integral to the sum of the Kapteyn
series (Kawada, 1936; Hardin, 1982; Ricca, 1994; Fukumoto et al.,
2015). A more accurate result allows one to obtain an approximation
of the Kapteyn series with the pole and the logarithm (Okulov, 2004)
separated from each component and explicitly summed, with a

controlled error of neglected terms (Okulov and Sørensen, 2020).
However, there is a difference between the self-induced velocity of a
helical vortex with a finite core and the regularization given by
calculating the average velocity at finite distances from the filament.
One correction method uses the equivalent touching vortex rings,
similar to the cutoff method. This representation of the helical vortex
using touching vortex rings was proposed by Moore and Saffman
(1972), and is hereinafter referred to as the VR (vortex ring)
correction. This VR correction of the helical vortex via the
equivalent vortex ring has been numerically simulated by Ricca
(1994) and analytically substantiated by Boersma and Wood
(1999). An alternative method (Fukumoto and Okulov, 2005) for
the correction of the filament solution to the real vortex motion can
also be established using the Dyson technique, developed as a
description of Saturn’s rings (Dyson, 1893). It is also necessary to
consider the possibility of different distributions of vorticity in the
core of the helical vortex for these three approximations. Constant
distribution (Rankine-type) of vorticity in the core (Figure 1C) was

FIGURE 1 | Sketch of the regularization of filament approximations in the development of the motion of a helical vortex by (A) the cutoff method and (B) the method
of averaging the velocity in the vicinity of the singular filament; (C)Rankine and Gaussian vorticity of the finite vortex core. (D) Examples in the helical variable (r, χ = z + rθ/l)
at St with different vortex pitches h/2ε = π; 2π; ∞ for the cross-sections of the vortex tubes of the touching vortex ring (dotted lines) in the first two methods and
deformations of helical vortex tube in Dyson technique with Rankine (solid lines) and Gaussian distributions (dashed red lines). (E) Angular velocity of the helical
vortex versus the size of its vortex core σ = ε/R, obtained using Eqs 1, 4, 7 with Rankine vortex distributions (curves 1) and Gaussian vortex distributions (curves 2).
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only used in our last comparison (Okulov and Fukumoto, 2021).
Here, we will also add the Gaussian distributions to fully compare
these threemethods and two basic types of vorticity distributionswith
each other. However, the Rankine-type and Gaussian vorticity
distributions in the core of helical vortices have not yet been
compared. Note also that solutions given by the cutoff, MS, and
Dyson methods were not compared in the comparison using the
Gaussian vortex core.

Unfortunately for our comparisons, it is currently impossible
to use experimental results—it is significantly more difficult to
obtain reliable experimental data because the contact measuring
techniques affect the motion of the vortex filament and because
numerous averaging is required to determine the vortex structure
(Okulov et al., 2019). However, the possibility of using alternative
calculation methods for this comparison is quite real. Some of
these comparisons have already been completed. For example, the
approximation given by the cutoff method was compared with
direct Navier–Stokes calculations over a wide range of helical
pitches and vortex core sizes, albeit only with a Gaussian
distribution of vorticity (Selçuk et al., 2017).

The purpose of this work is to compare the three methods and
the two vortex distributions. In addition, we study the possibility
of using these methods in cases where the dimensions of the
vortex core are comparable to the distances between the elements
of the vortex filaments or between the turns of the helical vortex.
In the remainder of this mini-review, we present the final form of
all three solutions and identify the differences when considering
the Rankine and Gaussian distributions of vorticity in the cores of
helical vortices. A comparison between all the considered
solutions is presented, which will give a new impetus to the
development of near wake modeling behind wind turbines and
for other swirling flows with dominant helical vortices.

2 Regularization of Filament Solutions for
Motion of Helical Vortices
A helical vortex in an infinite space (Figures 1A–C) has the
restriction that the size 2ε of the vortex core does not exceed the
helix pitch h = 2πl. The vorticity described by the filament
circulation Γ corresponds to a helical vortex with only an axial
component of the vorticity, which can be described by a uniform
(Rankine) or Gaussian distribution in the core along the local
radius. The following relations are introduced to compare
different regularization methods for calculating the angular
velocity Ω of the self-induced motion of helical vortices
(Okulov and Sørensen, 2020) using singular solutions for
infinitely thin filaments (Figures 1A,B).

2.1 Cutoff Method for the Biot–Savart
Integral with VR-Correction
The cutoff method originally described by Crow (1970) has been
used in many studies. In this article, the formulation of
Alekseenko et al. (2007) is used. The expression for calculating
the self-induced angular velocity in cylindrical coordinates (r, θ,
z) has the form:

ΩC � −Γγ
2

2πρ

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∫Nγ

δCγ
ρ

(θ sin θ − 1 + cos θ)
[θ2 + 2γ2(1 − cos θ)]3/2 dθ

+ γ2 ∫Nγ

δCγ
ρ

(1 − cos θ)
[θ2 + 2γ2(1 − cos θ)]3/2 dθ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (1)

where the cutting length δS = εδ(•) is proportional to the vortex radius
ε; ρ � R(1 + γ2)/γ2 is the helical curvature radius using the inverse
value of the dimensionless helical pitch τ ≡ 1/γ � h/2πR ≡ l/R, and
Nγ denotes the upper limit of integration [the notation ofEq. 1 is used
for all three methods studied in this paper]. In accordance with the
cutoff method, the unknown values of δS and N are determined by
comparing the simulation of Eq. 1 to the known solution for the
touching vortex ring with a constant vorticity core (Alekseenko et al.,
2007) that gives δ(•) = δR:

ln 2δR � 0.25, δR � 0.642, δC � 0.642ε, (2)
or a Gaussian vorticity core (Selçuk et al., 2017) that gives
δ(•) = δG:

ln 2δG � 0.558, δG � 0.8735, δC � 0.8735ε. (3)
The upper limit of the integrals in Eq. 1 forN = 55 was fitted by

the same ring, and together with Eq. 2 or Eq. 3 provides the
required accuracy of calculations up to the fourth significant digit.

2.2 Regularization of Kapteyn Series With
VR-Correction
The second regularization method is based on the solution for a
continuous helical filament in the form of a Kapteyn series. This
series was derived by Kavada (1936) and Hardin (1982). As it is
impossible to interrupt the vortex filament, the regularization is
carried out not by cutting out a filament segment (Figure 1B), as in
the cutoff method (Figure 1A), but by calculating the velocities in a
certain vicinity of this filament (Ricca 1994). In Okulov (2004), the
sums of the Kapteyn series are presented in the form of two
singular terms, a pole and a logarithm, and together with the one
main term of the regular remainder these ensure an error of less
than 2% (Okulov and Sørensen 2020). In this study, the formula for
the angular velocity, which includes the dimensionless helical pitch
τ and the dimensionless core radius σ = ε/R, is:

ΩO � − Γ

4πR2

τ(1 + τ2)3/2 [ln 1
σ
− ln 2δ(•) − 3

2
ln

τ

1 + τ2
+ 2 + τ2

−
�����
1 + τ2

√ (1 + 3τ2)
τ

] + τ2(1 + τ2)4 [(τ4 − 3τ2 + 3
8
)ς(3)

− 27
8
+ 2τ4 + 1

τ2
] + 4

�����
1 + τ2

√
τ2

I1(1
τ
)K′1(1

τ
).

(4)
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Here, I1 is the first order modified Bessel function of the first
kind and K1 is the derivative of the first order modified Bessel
function of the second kind K1, and ζ (3) = 1.20206 is
Riemann’s zeta function. Equation 4 includes the correction
term ln2δ(•), which depends on the distribution of vorticity in
the finite vortex core (Figure 1C). In this case, the correction is
defined by comparing it with the solution for the touching
vortex ring and has the same value as in the cutoff method for a
helical vortex with a uniform vorticity distribution with δ(•)
= δR:

ln 2δR � 0.25, δR � 0.642, (5)
or for the Gaussian vorticity with δ(•) = δG:

ln 2δG � 0.558, δG � 0.8735. (6)
This is the first time that the values δR and δG of the vortex

core corrections for bothmethods and both vorticity distributions
are identical: Eqs 2, 5 or Eqs 3, 6. The correction 6) was originally
indicates here. This can be explained by the choice of the same
vortex rings with a fixed circular cross-section for these
corrections.

2.3 Dyson Technique for the Helical Vortex
Tube
The third method was initially proposed by Dyson (1893) for
calculating the rings of Saturn. This approach was applied to the
dynamics of helical vortices (Fukumoto and Okulov 2005),
whereby the transition from a helical vortex tube to singular
vortex filaments involved integrating the volume integral over the
cross-section of the core using shift operators. As a result, the
effect of a finite core in a volumetric integral is reduced to the
development of linear integrals and is represented as the sum of
multipole filaments (Fukumoto and Okulov 2005; Okulov and
Fukumoto 2020):

ΩFO � Ωp +Ωd + o(1), (7)
where the main term Ωp of the sum consists of pole singularities
continually distributed along the helical filament with a
circulation Γ of the strength of the initial vortex (Figure 1B).
This term has the form:

Ωp � − Γ
4πR2

τ(1 + τ2)3/2 [ln 1
σ
− 3
2
ln

τ

1 + τ2
+ 2 + τ2

−
�����
1 + τ2

√ (1 + 3τ2)
τ

] + τ2(1 + τ2)4 [(τ4 − 3τ2 + 3
8
)ς(3)

− 27
8
+ 2τ4 + 1

τ2
] + 4

�����
1 + τ2

√
τ2

I1(1
τ
)K′1(1

τ
),

which is identical to Eq. 4, but without the term ln2δ(•). For the
correction of different vorticity distributions in the finite vortex
core in Eq. 7, the second dipole term
Ωd � Γε2

2πR2ρ[vχ(R − ε) + vχ(R + ε)], in which the velocity
induced by a helical filament with a dipole strength of d(•) is
used in the form (Okulov and Fukumoto 2020):

vχ(r) � 2d(•)
Rrl3

(l2 + R2)3 /4(l2 + r2)3 /4Re
[ e∓ ξ+iχ

(e∓ ξ − eiχ)2 ± l

24
( 3r2 − 2l2

(l2 + r2)3

/

2
+ 9R2 + 2l2

(l2 + R2)3

/

2
) eiχ

e∓ ξ − eiχ
],

where
eξ � r

R e
�����
1+(r/l)2

√
(1 +

��������
1 + (R/l)2

√
)/e

�����
1+(R/l)2

√
(1 +

��������
1 + (r/l)2

√
), χ

= θ - z/l is a helical variable, and the signs “+” and “−”
correspond to r < R and r > R, respectively.

The term Ωd in Eq. 7 depends on the vorticity distribution in
the core of the initial helical vortex that defines the dimensionless
strength d(•) of both dipoles. The value d(•) = dR was obtained for
the uniform (Rankine) distribution of vorticity in the core
(Fukumoto and Okulov 2005):

dR � −3/16π � −0.06. (8)
The value d(•) = dG for the Gaussian vorticity was defined in

Okulov and Fukumoto (2020) by fitting it to the numerical
solution (Selçuk et al., 2017)

dG � −0.14. (9)
The next step uses only the two terms (pole and dipole) in Eq.

7 instead of the exact multipole expressions. Testing for the
Rankine distribution of vorticity in the vortex core was carried
out in Okulov and Fukumoto (2020) by comparison with the data
of Boersma and Wood (1999), in which the integrals were
calculated for the Biot–Savart law with an accuracy up to the
eighth significant digit for several values of the pitch of the helical
vortex. Figure 1 of Okulov and Fukumoto (2020) indicates a good
correlation, demonstrating that the Dyson method is suitable for
studying helical vortices.

3 Comparison of the Three Methods With
Different Vorticity Distributions
The angular velocities of the self-induced rotation of a helical
vortex with Γ = 1 given by the different methods are presented in
Table 1 for the Rankine-type and the Gaussian vorticity
distribution. The dimensionless helical pitch h/(2ε) changes
from a very large value of 100 to an extremely small value

TABLE 1 | Values of the angular velocity of the helical vortex of Rankine and
Gaussian cores.

h/2ε Rankine core Gaussian core

ΩC ΩO ΩFO ΩC ΩO ΩFO

100 −0.003 −0.003 −0.003 −0.0028 −0.0028 −0.0028
50 −0.01 −0.0099 −0.01 −0.009 −0.009 −0.009
30 −0.0231 −0.0232 −0.0233 −0.0205 −0.0207 −0.0206
20 −0.0446 −0.0446 −0.0448 −0.0391 −0.0392 −0.0391
10 −0.1357 −0.1353 −0.1359 −0.1184 −0.118 −0.1178
8 −0.217 −0.2168 −0.2178 −0.191 −0.1907 −0.1907
5 −0.4228 −0.4229 −0.4255 −0.379 −0.379 −0.381
4 −0.7659 −0.7663 −0.7721 −0.6997 −0.7002 −0.7078
3 −1.3202 −1.3209 −1.3333 −1.2269 −1.2278 −1.2482
1 −7.578 −7.5732 −7.6844 −7.3339 −7.3294 −7.5676
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that coincides with the size of the vortex core, 2ε. Despite the
primary assumptions on which all three models are usually based
(ε << L), a small pitch was applied in the calculations to establish
when the results obtained by different methods begin to deviate
from one another or from other baseline calculations. For
example, the Selçuk et al. (2017) examined a helical vortex
with a Gaussian core and found good correlations between
direct Navier–Stokes simulations (DNS) and the cutoff method
results using Eqs 1, 3 for dimensionless helical pitch values as
small as h/(2ε) ≈ 2π. Below this value, the results of the cutoff
method differed significantly from the DNS calculations, and the
authors reasonably associated this with the impossibility of
deforming the circular section of the frozen vortex core in the
cutoff method, in contrast to the DNS calculations. Nevertheless,
according to the data of Selçuk et al. (2017), we can consider the
cutoff method as a standard for pitch values greater than 2π. Note
that Eqs 1, 4, and 7 yield the same results up to the fourth
significant digit for both Rankine and Gaussian vorticity
distributions in the core (Table 1) for values greater than 2π.

The minimal differences for pitch values greater than 2π are
due to errors in the numerical integration of the Biot–Savart law
for the finite section of N = 55 in Eq. 1; in neglecting the
remainder terms in the approximation of the Kapteyn series in
Eq. 4, and in the multipole development of the Dyson method in
Eq. 7. Moreover, the results using both Eqs 1 and 4 are identical
to within an acceptable error for all values of the pitch in Table 1.
This is because the same frozen circular cross-section of the
touching vortex ring is used in both methods, which gives the
same approximations in Eqs 2, 5 or Eqs 3, 6. Both Eqs 1, 4 ignore
the vortex core deformation when the turns of the helical vortex
become closer to each other, whereas in the Dyson method, Eq. 7
gives better solutions because the dipole term describing the
vortex core can be deformed in the case of small pitch values.
Indeed, in Eq. 7, the core is described by adding a dipole
singularity, which makes it possible to deform the vortex core
through the deformation of the dipole as the turns of the helical
vortex become compressed (Figure 1D).

In first two methods, the cross-sections of the touching vortex
ring in the plane (r, χ) at z = 0 are elongated ellipses that coincide
with the circle only for an infinite helical pitch (dotted lines in
Figure 1D). In the third method, the forms of the cross-sections
of the stream tubes are solutions of the equation Ψm + Ψd = const,
where Ψm and Ψd are the stream functions determined by
equations (59) and (76) from Fukumoto and Okulov (2005).
The constant in the equation is the same for any values of the
helical pitch found at an infinite one when the stream tube has a
circular cross-section with radius ε. The core deformations in the
model of Eq. 7 at the large pitch are insignificant and the
significant one occurs when 5 < h/(2ε) < 8 (Figure 1 and
Table 1). The effect correlates with data of the DNS
calculations (Selçuk et al., 2017) for small pitches of the helical
vortex.

The data in Figure 1E illustrate the large differences between
the angular velocities for the Rankine and Gaussian distributions
in the vortex core. These significant differences may cause the

actual core size to decrease in the case of the Rankine vorticity
distribution. The results obtained using the Dyson method with
the Gaussian vorticity distribution are more accurate in
determining the equilibrium states of rotating pairs of helical
vortices, which have been intensively studied in terms of rotary
vortex wakes (Delbende et al., 2015; Okulov 2016; Okulov 2020)
or inmore complex investigations of vortex dynamics (Taamallah
et al., 2019; Dierkes et al., 2020).

4 CONCLUSION

In this study, three different methods of solving the problem
of the motion of helical vortices with a finite core were
reviewed and compared. The results indicate that the three
methods give the same solution when the vortex pitch is at
least six times the diameter of the vortex core. This result is in
good agreement with DNS numerical simulations (Selçuk
et al., 2017), which established that the cutoff method
deviates from the correct solution for dimensionless helical
pitches of less than 2π. At smaller pitches, the Dyson method
has a definite advantage, and its use makes it possible to
further refine the solution.

The data obtained in this study will supplement the existing
knowledge on the description of elementary helical vortex
structures. The comparisons made in this article are of interest
for modeling the rotor wake behind wind turbines, describing
central helical vortices in vortex devices, or when studying natural
phenomena such as tornadoes.
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