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To address the challenges of volatile and intermittent nature in photovoltaic power (PV)
generation forecasting, a new convolutional long short-term memory network (CLSTM)
prediction model optimized by adaptive mutation particle swarm optimization (AMPSO) is
proposed. In this model, the local sensing ability of the convolutional kernels in the CNN is
used to extract high-dimensional features from the variable influential factors of PV power
generation, and a mapping between time series data and PV is established by the memory
ability of the gate control unit in LSTM. The AMPSO algorithm is introduced to optimize the
network structure and weights of CLSTM simultaneously. The performance of the model is
verified by two different two data sets. The results show that compared with that of the
CLSTM, Auto-LSTM, LSTM and recurrent neural network models, the root mean square
error (RMSE) of the AMPSO-CLSTMmodel decreases by 1.92–6.53% and 6.23–31.10%,
the mean absolute error (MAE) decreases by 6.92–16.87% and 11.71–48.84%, and the
mean absolute percentage error (MAPE) decreases by 13.24–31.75% and
12.22–49.00%, respectively. Compared with those of the CLSTM model, the number
of channels in the convolutional layer of the AMPSO-CLSTM is reduced by 51.76–71.09%
and 61.72–86.72%, respectively, and the number of hidden neurons in LSTM is reduced
by 32–60% and 53–84%, respectively.

Keywords: deep learning neural networks, convolutional neural network, long short-term memory network,
photovoltaic power, prediction, adaptive mutation particle swarm optimization

INTRODUCTION

Solar PV power generation uses the PV effect to convert solar radiation into electricity. PV power
utilization limits fossil fuel usage and reduces carbon dioxide, sulfur oxide and nitrogen oxide
emissions. Global PV power generation has great potential, and vigorously developing solar PV
power generation is an important way to protect the global environment and respond to climate
change. After the signing of The Paris Agreement (Unfccc, 2015), global PV power generation has
grown rapidly. The cumulative installed capacity increased from 217,463 MW in 2015 to
707,495 MW in 2020, and the annual power generation increased from 242 TWh in 2015 to
693 TWh in 2019 (IRENA, 2021), becoming an important primary energy resource able to replace
fossil fuel energy. The intensity of the PV effect depends strongly on solar irradiance. Solar irradiance
is related to complex meteorological factors; thus, the output power of PV power generation systems
is easily affected by meteorological factors and has strong volatility and randomness (Abdel-Nasser
and Mahmoud, 2019). This characteristic increases the risk to power supply dispatching and power
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system operation, resulting in increased cost. Therefore, accurate
PV power forecasting can not only enable the development of a
peak regulation plan for PV power in advance, result in
reasonable power supply scheduling, and improve the
operational safety of a power system but also improve the
capacity of PV power generation in an electric grid, reduce
economic losses caused by power rationing and increase the
return on investment of PV power stations. In addition,
accurate PV power prediction can provide decision support
for the operation of PV power stations, such as the
arrangement of equipment overhaul and maintenance under
long-term durations without light or under low light.
Therefore, the use of a new prediction model to forecast the
output power of PV power generation systems is very important.

Over the past few decades, many scholars have conducted
research on wind power and PV power generation prediction.
Early studies were based mainly on statistical models, such as the
autoregressive integrated moving average (Jing et al., 2011),
multiple linear regression (Trigo-González et al., 2019), and
fuzzy theory (Shaker et al., 2020). The statistical model is
more sensitive to the time range and quality of the input data
and can produce more accurate short-term PV power prediction
results (Li et al., 2020). However, statistical models are generally
used only for a small amount of data and a small number of
influential factors, and their prediction performance on large
sample data is not ideal.

With the continuous improvement in computer
performance, prediction model ANNs based on machine
learning are being used more widely in PV power
generation prediction. A neural network prediction model
mimics the structure of the dendrites and axons of
biological neurons, as well as neural activation and
inhibition. These models can realize human perception,
learning, memory, recognition and other behaviors
(Mcculloch and Pitts, 1943) and have a good effect on
complex mapping modeling and system identification
(Narendra and Parthasarathy, 1989). In addition, the BP
algorithm (Rumelhart et al., 1986) is introduced to enhance
the learning and fitting ability of neural network models.
Therefore, ANNs have been widely used in PV power
generation prediction. For example, Al-Dahidi et al. (2019)
proposed an efficient ANN to analyze the relationship between
the total solar radiation and climate variables and predicted the
solar radiation of the Shafa Badran Amman, Jordan. Chu et al.
(2015) developed an artificial neural network to predict the
real-time output of PV power stations. Similar ANN
prediction models can be found in studies of Zhang et al.
(2020) and Khandakar et al. (2019). Compared with ANN,
Buwei et al. (2018) proposed a SVM model based on data
fusion, and the model obtains a more accurate data set in
prediction. In addition, Zhou et al. (2020) used ELM to predict
PV power generation.

These traditional shallow machine learning models have
difficulty learning the deep nonlinear relationship between the
variable meteorological conditions and PV power generation.
Therefore, a neural network model based on deep learning is
proposed and applied to the PV power generation prediction

problem. Deep learning models are a new research direction in
the field of machine learning. By deepening the network level,
the high-dimensional features are gradually extracted from the
low-level features. A series of methods (such as dropout and
regularization) are used to counter the overfitting caused by
the deep level. Deep learning models include CNNs, DBN,
stacked autoencoders, RNNs, GAN and other classical models,
as well as their variants and numerous combinations.
Compared with the shallow ANN, the deep learning model
has a stronger fitting ability and is better at discovering
complex structures in high-dimensional data (Lecun et al.,
2015). At the same time, deep learning can be used to
automatically identify the input features and discover the
relations between features, which reduce the necessity of
feature engineering for data. For example, Ghimire et al.
(2019b) used DBN and DNN to predict long-term global
solar radiation. Compared with other 15 feature selection
methods, the absolute percentage bias and high Kling-Gupta
efficiency values of the deep learning model were significantly
reduced. Zhang et al. (2022) proposed a geological prediction
model based GAN (GAN-GP). The generator of the model
includes feature extraction and integration modules, which
are, respectively, used to extract important features from
operation data and generate geological condition prediction.
The experimental results show that the model is effective in
geological prediction.

As a typical deep learning neural network model, the LSTM
network is very popular in the field of prediction due to its
long-term memory and ability to process time series. For
example, Zhang et al. (2018) built a prediction model for
LSTM PV power generation. An experiment showed that its
performance was better than that of MLP and the deep
convolutional network. Qing and Niu (2018) used a LSTM
network to predict hourly and day ahead solar irradiance and
insisted that the results are than BP and linear least square
regression. Similar studies conclusions on LSTM better
performance can be found in Han et al.’s (2019) and Luo
et al.’s (2021) studies. Compared with the shallow ANN,
LSTM offers a certain improvement in prediction
performance, but on high-dimensional data, the processing
ability is not strong. To improve its performance, studies often
enhance the time correlation of the prediction model by
increasing the input dimensions (Nargesian et al., 2017).
However, with the increase in the input dimensions and
number of layers of the LSTM network, the complexity of
the LSTM structure and the excessive matrix computation
have seriously affected the training speed of the prediction
model (Chai et al., 2019).

One solution is combine CNNs, RNNs, ESNs and other
models into hybrid deep learning models, which can make full
use of the advantages of the various algorithms to improve the
prediction performance. In the field of PV prediction, for
example, Iversen et al. (2017) and López et al. (2018) proposed
a prediction model combining LSTM and an ESN and applied
it to predict the wind power of the Klim Fjordholme power
plant in Denmark. (Wang et al., 2019b). proposed a hybrid
LSTM-convolutional network for photovoltaic power
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prediction and showed that hybrid prediction model has
better prediction effect than the single prediction model.
Ghimire et al. (2019a) combined the pattern recognition
ability of CNN and the time series processing ability of
LSTM to predict global solar radiation and showed that the
prediction results of the proposed hybrid model are better
than those of the benchmark model. Besides, Auto-LSTM
model, an autoencoder is added to the LSTMmodel as the data
feature extractor (Alkandari and Ahmad, 2020) and the
performance of the proposed Auto-LSTM model was
verified on the Shagaya Renewable Energy Park data set in
Kuwait (Marion et al., 2014). Similar hybrid deep learning
models in PV power generation were developed by Yona et al.
(2013), Bouzerdoum et al. (2013), and Zang et al. (2020).

Among these mixed models, the CLSTM model combines the
ability of the CNN to extract high-dimensional features and the
ability of LSTM to process time series data; thus, it is more
suitable for PV power generation prediction. Compared with the
CNN and LSTM, CLSTM has higher prediction accuracy,
stability and robustness (Wang et al., 2019a). However, in the
CLSTM model, the selection of network structure parameters is
usually carried out through a trial-and-error method. This
experience-based method is time consuming, laborious and
subjective, and the obtained hyperparameters are not optimal,
leading to limited model performance (Bergstra and Bengio,
2012). Therefore, determining the network structure effectively
is an important problem to be solved in this kind of research.

An important way to carry out neural network structure
determination is to introduce intelligent algorithms, such as
PSO, GA and the ant colony algorithm. For example,
Vaitheeswaran and Ventrapragada (2019) used the GA to
optimize the time window size of LSTM and tested the
optimized LSTM-based prediction model on the data of the
2012 Global Energy Forecast Competition. Shahid et al. (2021)
optimized window size and number of neurons in LSTM layers by
GA and improved wind power predictions from 6 to 30% as
opposed to existing techniques. Considering the nonlinear and
stochastic behavior of grid users, Hafeez et al. (2020) proposed a
load forecasting model based on factored conditional restricted
Boltzmann machine. Mamun et al. (2019) used the GA to
optimize the time window, number of neurons and batch size
of the LSTM model to construct a hybrid power load prediction
algorithm. Neshat et al. (2021) proposed a new evolutionary
model based on deep learning for wind speed prediction. The
improved generalized normal distribution optimization
algorithm is used to optimize the hyper-parameters of
bidirectional LSTM. These studies have made much progress
in improving the network prediction effect and network
performance. However, for PV forecast research, the following
research gaps still need to be studied:

First, in the modeling of PV power generation, data are
classified by day and other methods (Nam et al., 2020), and
different models are built for different types of data (such as
different seasons). This approach may break the entire data set
into many smaller data sets (different seasons, different regions,
etc.). In the case of insufficient data, the decomposed sub-data set
may be very small: thus, the model easily overfits during training.

Therefore, to ensure that all categories of data have a good
prediction effect, a sufficient data volume is needed to support
the usage of these methods.

Second, instead of optimizing the structure and weight of the
deep learning network at the same time, the existing network
optimization using PSO or the GA usually optimizes only the
network structure (Huang et al., 2020) or the weights of the
network (Bashir and El-Hawary, 2009). When optimizing the
structure, the traditional BP algorithm, which easily falls into the
local optimum, is still used to train the weight (Chan and Fallside,
1987). When optimizing the weight, the network structure is still
determined by the trial-and-error method. On the one hand,
much time is required to try each parameter combination. This
method’s retrieval process in the search space involves jumping
and is discontinuous, and high-performance solutions could
appear in the skipped search spaces (Kim and Cho, 2019). On
the other hand, manual determination depends on the operator’s
own experience and thus is a very subjective method. Therefore,
how to optimize the network structure and weight parameters
simultaneously requires further research.

Therefore, to compensate for the disadvantages of finding the
optimal structure and weights of the CLSTM prediction model,
this paper proposes a CLSTM prediction model optimized by
adaptive mutation particle swarm optimization (Tang and Zhao,
2009), named AMPSO-CLSTM. The model uses the real-time
monitoring meteorological data of PV power stations as input
and uses the AMPSO algorithm to optimize the CLSTM network
structure and weights simultaneously to obtain the best structure-
weight combination. On the one hand, the binary encoding part
and real encoding part of particles in AMPSO, corresponding to
the structure and weights of the network are optimized. It can
determine the optimal network structure effectively without
manually adjusting parameters or using grid search to find the
optimal network structure. On the other hand, the combination
of AMPSO global optimization and the BP local fast algorithm
can improve network learnability and help the model jump out of
local optimality. The operation data of two power stations are
used to verify the model’s prediction performance. The results
show that compared with other models, the RMSE, MAE and
MAPE of AMPSO-CLSTM model on the two data sets have
decreased in varying degrees.

The paper is organized as follows: Introduction describes
previous related studies about PV prediction. Section 2
introduces the AMPSO-CLSTM model used for power
prediction in this study. Experiments on Photovoltaic Power
Prediction shows the performance of the proposed model
using the data of two regions. Conclusion draws conclusions.

METHODOLOGY

A Brief Introduction to CLSTM
LSTM is a kind of improved RNN. It overcomes the
disadvantages of long-term dependence on the RNN and
gradient vanishing by adding structures such as “gate units”
and “cell states” (Greff et al., 2017). Various gates of LSTM
not only provide the ability to retain long-term dependency but
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also can carry out the nonlinear mapping of complex data to
establish long-term memory in the time dimension; thus, LSTM
has a strong advantage in the preservation and learning of
temporal sequence information. However, its ability to extract
high-dimensional features is poor. Therefore, CNN feature
extraction has been introduced in some studies to compensate
for the deficiency of LSTM (Wang et al., 2019a).

A CNN is a kind of neural network with a special linkage
mode. In the convolutional layer, a linear operation named a
convolution is adopted to replace the fully connected mode in the
traditional neural network. In addition to the convolutional layer,
a CNN also contains structures such as an activation layer, a
pooling layer and a fully connected layer. Through nonlinear
convolution on complex data, the network extracts high-
dimensional feature graphs. CNN can extract local features of
data from high-level input and transfer them to low layer to make
the network obtain more complex features. It is assumed that
layer l is the convolution layer. Its operation mode is shown in
Eq. 1:

zlg � σ⎛⎝blg +∑R
r�1
wl

rg ⊗ zl−1r
⎞⎠ (1)

Where wl
rg and b

l
g are the weight and bias of the r

th convolution
operation of the g th convolution kernel of layer l, respectively.
When l � 1, z0g is the input vector of PV power prediction such as
temperature and radiation.

A CNN is introduced into LSTM to extract the features of
input data, forming a hybrid model, CLSTM. This network
uses the convolutional layer to simulate the response actions

of individual neurons to stimuli. The CNN applies the
convolutional operation to the original time series data to
extract the spatial features of multiple time series data sets
and transfers the denoised features to the LSTM layer below.
As the next layer of the CNN, the LSTM layer is used to
capture the time series pattern of data. Taking a 1D-CNN and
multi-input-single-output LSTM as examples, the
constructed CLSTM structure is as shown in Figure 1.

Compared with the traditional LSTM network, the CLSTM
hybrid model uses a CNN to preprocess the data; thus, it has a
stronger feature extraction capability. That is, the model can find
the relationship among the multifactor input data and build a
mapping between the input and output. The hybrid model
overcomes the disadvantages of the CNN in dealing with time
series and the difficulty faced by LSTM in feature extraction. At
the same time, compared with feature extraction using a fully
connected layer, the use of the CNN can decrease the number of
parameters to be trained by the network, reduce the model
complexity and prevent overfitting to a certain extent, thus
enabling the construction of a deeper network structure
(Xiong et al., 2020).

Adaptive Mutation Particle Swarm
Optimization
AMPSO is an improved version of traditional PSO algorithm.
The algorithm aims to improve the global search capability of
PSO and avoid falling into local optima (Alfi, 2011). AMPSO
turns the static inertia weights and learning factors of the
traditional PSO into adaptive dynamic parameters. In

FIGURE 1 | Structure of the CLSTM prediction model.
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AMPSO, the update equations of particle velocity and position
are shown in Eqs 2 and 3 (Tang and Zhao, 2009):

vm(t + 1) � ωmvm(t) + c1r1(pbestm − xm) + c2r2(gbest − xm)
(2)

xm(t + 1) � xm + vm(t + 1) (3)
Eq. 3 indicates that the velocity vm(t + 1) of the particle m at

the next moment is determined by the current velocity vm(t). Eq.
4 indicates that the position xm(t + 1) of the particlem at the next
moment is determined by the current position xm(t) and the
velocity at the next moment vm(t + 1).

In Eq. 3, r1 and r2 are random numbers, belongs to [0, 1]. ωm

is adjusted according to fit(Pm), and the average fitness (fitave)
and the maximum fitness (fitmax) of all particles, as shown in.

ωm � η × (fit(Pm) − fitmax)
fitave − fitmax

(4)

Where η is a random number between [0, 1]. The results show
that when the particles are dispersed (the value of fitave − fitmax

is large), ωm is adjusted to a smaller value to ensure that the
particles can quickly approach the optimal position of the particle
swarm. On the contrary, the inertia weight increases to help the
particles jump out of the local optimum.

The learning factors c1 and c2 control the effects of their own
optimal position (pbestm) and population optimal position
(gbest) on particle motion, respectively. In traditional PSO,
c1 � c2 � 2. However, in different stages of particle
optimization, the proportion of learning from self-optimum
and population optimum should not be constant. When it is
far from the global optimization, the particle should first
approach the population optimization to accelerate the
convergence of the model while the particle is very close to
the global optimum, the particle optimization speed decreases
(Alfi, 2011). In this scenario, particles need more reference to
their own optimal, to jump out of the local optimal situation and
to find a better solution. Adaptive learning factor is introduced
into AMPSO as Eqs 5 and 6:

c1 � c1s + gen

max gen
× (c1e − c1s) (5)

c2 � c2s + gen

max gen
× (c2e − c2s) (6)

Where c1s, c2s and c1e, c2e are, respectively, the initial and final
values of learning factors c1 and c2. With the increase of
interation, the value of c1 increases linearly in the range of
initial value and final value, while c2 decreases linearly. In the
early stage of convergence, the particle swarm is much affected by
c2, and can get closer to the optimal population faster. However,
in the later stage of convergence, the particle is easy to fall into the
local optimum, and c1 has a greater impact on the particle
velocity, and the particle tends to move to its own optimal
position, so it is easier to jump out of the local optimum.

Moreover, AMPSO introduces the uniform mutation
operation of GA (Wang et al., 2013) to improve the richness
of particle m position through random disturbance as .

x′mi � a1 + δ(a2 − a1) (7)
Where, δ is a random number between [0 and 1], x’mi is a random
number that obeys uniform distribution in the particle search
space [a1, a2], and represents the mutated value of the i
component of particle m. xmi is replaced by x’

mi to update the
position of particle swarm. By randomly selecting particles for
mutation operation, the forward direction of particles can be
changed and particles can enter other regions for search. In the
subsequent search process, the algorithmmay find new pbest and
gbest.

AMPSO-CLSTM Prediction Model
Framework
To obtain the structures in the CLSTM deep prediction model,
such as the number of convolutional layers, the size of the
convolutional kernel, the number of network hidden units and
the weights of the neuronal connections, this paper introduces the
AMPSO algorithm to optimize the structure and weights
simultaneously. Compared with the independent design
scheme of structure optimization and network training in
previous studies, this paper adopts mixed coding in AMPSO,
which includes both binary encoding and real encoding, to
synergistically optimize the network structure and weight.
Binary encoding corresponds to the structure of CLSTM. If
the encoding value is 1, the corresponding neuron is enabled.
A code value of 0 indicates that the neuron is not enabled. The
real code corresponds to the CLSTMweights, and each bit of code
corresponds to the value of a weight in the network. The AMPSO
algorithm optimizes the binary coding part that determines the
network structure by updating the coding values of different
locations from 0 to 1 (or from 1 to 0) to produce different
combinations of neurons to obtain the optimal network structure
in evolution. Under a certain network structure, the real coded
particle is combined with the BP algorithm to obtain the optimal
network weights. The network framework is shown in Figure 2.

Prediction Processes of the AMPSO-CLSTM Model
The AMPSO-CLSTM model proposed in this paper is a hybrid
model combining CLSTM with a 1D-CNN and the multi-input-
single-output mode. The CNN is used to extract the high-
dimensional features of meteorological data and connect with
the LSTM layer to establish a mapping between the
meteorological data and PV output power. AMPSO is used to
optimize the structural parameters, such as the numbers of
channels and hidden layer units, and the weights of CLSTM.
The process is shown in Figure 3.

The details of the optimization processes in the proposed
AMPSO-CLSTM model are as follows.

Step 1. Initialize the inertia factor, learning factors, mutation
chance, max velocity of the particles (vmax), and max iteration of
the optimization in the binary part (max gen) and real part
(max k). Randomly generate M mixed coded particles
Pm � [P(1)

m , P(2)
m ], m � 1, 2, ...,M, including the binary part

P(1)
m , which contains the network structure, and decimal part

P(2)
m , which contains the network weights and biases.
Step 2. gen = 1.
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Step 3. Decode P(1)
m and P(2)

m , and then calculate the fitness
fit(Pm) with Eq. 8:

fit(Pm) �

																							⎛⎝∑n
j�1
[y(j) − �y(j)]2⎞⎠/n − 1

√√
(8)

where y(j) is the label of sample j and �y(j) is the output of the
network decoded from Pm when using sample j as the input.

Step 4. Update the inertia factor and learning factors of P(1)
m

with Eqs 4–6. Update the velocity of the particle with Eq. 2.
Update the positions of all particle binary parts P(1)

m with Eqs 9
and 10 and the positions of all particle decimal parts P(2)

m with
Eq. 11.

s(vi) � 1
1 + exp(−vi) (9)

xi � { xi if rand()< s(vi)
1 − xiotherwise

(10)
xi(t + 1) � xi(t) + vi(t + 1) (11)

Here, vi is the velocity of the i component of the particle, and s
is the probability of changing the position of a particle.

Step 5. Randomly mutate the binary part P(1)
m ; that is, a certain

probability exists for the binary part P(1)
m to change from 0 to 1 or

from 1 to 0.
Step 6. Let m � 1.
Step 7. Randomly generate N-1 real coded particles

P(2)
m , n � 1, 2, ..., N − 1, that have the same length as P(2)

m . Let
P(2)
m,N � P(2)

m .

Step 8. DecodeP(2)
m,n with the structure of P

(1)
m , and calculate the

fitness fit(P(2)
m,n) with Eq. 8.

Step 9. k � 1.
Step 10. Update the inertia factor and learning factors of P(2)

m,n
with Eqs 4–6. Update the velocity and position of P(2)

m,n with Eqs 2
and 3.

Step 11. According to Eq. 7, the mutation operation is
performed on the new particle P(2)

m,n, taking a1 � −1, a2 � 1,
that is, some positions of the new particle P(2)

m,n have a certain
probability to be replaced by random numbers uniformly
distributed on [−1, 1].

Step 12. Optimize the weights and biases [P(2)
m,n] of CLSTM by

BP. Decode P(2)
m,n with the structure of P(1)

m , and calculate the
fitness fit(P(2)

m,n) with Eq. 1.
Step 13. k � k + 1. If k≤max k, go to Step 14; otherwise, go to

Step 10.
Step 14. Let Pmp � argmin

n∈N
(fit(P(2)

m,n)), and obtain P(2)
mp .

Step 15. m � m + 1. If m≤M, go to Step 16; otherwise, go to
Step 7.

Step 16. gen � gen + 1. If gen≤max gen, go to Step 3;
otherwise, obtain the optimal CLSTM structure and weight
combination Pp � [P(1)

mp , P
(2)
mp].

EXPERIMENTS ON PHOTOVOLTAIC
POWER PREDICTION

Parameter Settings
To evaluate the performance, the proposed AMPSO-LSTM was
verified using the data of the 1B site of the DKASC PV system in

FIGURE 2 | Framework of the AMPSO-CLSTM prediction model.
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Alice Springs, Australia (DKASC, 2020), and the data of the
Wuzhong Taiyangshan PV power station in Ningxia, China
(Taiyangshan, 2016).

Missing and abnormal values are noted for the data recorded
at the power stations. If these missing and abnormal values are
not well treated, the model fitting results will be biased, thus
misleading users in their decision making. Therefore, the missing

and abnormal values need to be cleaned before data are input into
the model. In this study, the abnormal values were regarded as
missing values and were interpolated by cubic spline
interpolation. Cubic spline interpolation is a smooth curve
passing through a series of shape value points. The
interpolation method has good convergence and stability. The
definition of cubic spline function is: let there be interpolated

FIGURE 3 | Flowchart of AMPSO-CLSTM.
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nodes d1 � α1 < α2 </< αn � d2 on [d1, d2] corresponding to
the function values of y1, y2/yn. If Φ(α) satisfies
Φ(αj) � yj(j � 1, 2,/, n), Φ(α) is not a polynomial higher
than cubic on [αj, αj+1](j � 1, 2,/, n − 1), and when Φ(α)
has second-order continuous derivative on [d1, d2], Φ(α) is
called cubic spline function (Xu and Zhong, 2006). To
uniquely determine a cubic spline interpolation function, two
boundary conditions are needed. In this paper, the Not-A-Knot
Spline is used to determine the missing and abnormal values in
the experiment. For example, in the experimental data of case 1,
the data of 21:10 on 5 January 2014 is the missing value. The cubic
spline interpolation method is used to preprocess the data. The
output power of PV power generation on 5 January 2014 before
and after processing is shown in Figure 4. After data cleaning,
standardization was applied to process different influential
factors into similar data dimensions.

Weight initialization is a very important step in the deep
learning algorithm. Reasonable initial weights can help the
algorithm converge faster and avoid gradient vanishing and
gradient explosion. To ensure the fairness of the comparison
between different algorithms, the same initialization method was
adopted for the weights of different algorithms. In this paper,
Xavier initialization (Glorot and Bengio, 2010) was adopted to
generate the initial weights; the distribution of its initialization is
shown in Eq. 12:

w ~ U[ −
	
6

√												
fanin + fanout

√ ,

	
6

√												
fanin + fanout

√ ] (12)

where fanin and fanout represent the number of input nodes and
the number of output nodes of this layer, respectively. The
transmission of data with appropriate diversity in each layer
can be done to effectively carry out neural network learning. If the
variance of each input layer cannot be kept within a stable range,
the gradient may disappear and explode in the training process.

Xavier initialization can generate evenly distributed initial
weights so that all layers are evenly activated, which effectively
solves the above problems and is conducive to neural network
learning.

Model Performance Comparison
In this section, the results of the proposed model are analyzed and
compared with those of other models. This model’s
computational complexity is (S × P × F + F × U + U2) × M. A
personal computer with a CPU i7-9750 h is used for calculation.
Under these conditions, the average training time of AMPSO-
CLSTM is 435.1 μs per step and 4 s per epoch.” This study is
based on Python 3.5 and TensorFlow 1.4.0 (a machine learning
platform with high flexibility and excellent computing
performance).

DKASC PV System
The experiment uses real data from the 1B DKASC PV System in
Alice Springs, Australia. The site 1B consists of four trackers. The
technical specifications of this power system are shown in
Table 1.

The sensors of the power system record radiation data (such as
the total radiation and direct radiation at water level),
meteorological data (such as wind speed, temperature, relative
humidity and wind direction), and system operation data (such as
the average current phase and active power). Considering that few
factors affect the PV power generation of power stations and that
wind direction data should not be directly input into the model, a
data augmentation method is adopted to expand the data. The
sine value and cosine value of the wind direction angle are used as
part of the network input instead of the wind direction angle data.
Before the start of the experiment, the data sets should be
partitioned: the data from 1 January 2014, to 31 December
2015, are selected for this experiment, and the data resolution
is 5 min. The data from 2014 are used for training the network,
and the data from 2015 are used as the test set.

Table 2 shows the details of the hyperparameters of the model
used in the experiment, among which the hyperparameters of
LSTM and CLSTM are from (Wang et al., 2019a) and the
hyperparameters of the RNN and Auto-LSTM are obtained by
trial and error. The hyperparameter maximum setting of
AMPSO-CLSTM is consistent with the hyperparameter setting
of CLSTM to ensure that its solution space contains the values of
the CLSTM hyperparameters. In addition, the maximum
iterations max gen and max k are set according to the

FIGURE 4 | The data before and after cleaning.

TABLE 1 | Technical specifications of the DKASC power system.

Technical specification Value

Array Rating 23.4 kW
Panel Rating 195 W
Number of Panels 4 × 30
Panel Type Trina TSM-195DC01A
Array Area 4 × 38.37 m2

Type of Tracker DEGERenergie 5000NT, dual axis
Inverter Size/Type 4 × 6 kW, SMA SMC 6000A
Installation Completed Thu, 8 January 2009
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calculation complexity of the algorithm and the evolutionary
iterations when the results tend to be stable in the preliminary
trial calculation.

To compare the model proposed in this paper with the
algorithms used in previous studies, some indicators need to
be used to measure the performance of different algorithms. The
selected performance indicators are: MAE, RMSE, and MAPE.
The calculation methods of the three performance indicators are
as follows:

MAE � ⎛⎝∑n
j�1

∣∣∣∣y(j) − �y(j)∣∣∣∣⎞⎠/n (13)

RMSE �

																							⎛⎝∑n
i�1
[y(j) − �y(j)]2⎞⎠/n − 1

√√
(14)

MAPE � ⎛⎝∑n
j�1

∣∣∣∣[y(j) − �y(j)]/(j)∣∣∣∣⎞⎠/n (15)

where y(j) is the sample label of data j, �y(j) is the output value
obtained by inputting data j into the network, and n is the
number of data.

To measure and compare the robustness of the models, we
perform 50 independent calculations on each model. The
boxplots of the RMSE, MAE and MAPE indexes of all models
for the 50 independent operations are shown in Figure 5.

From Figure 5, among the three error indicators, the proposed
AMPSO-CLSTM model has the smallest mean value and a small
fluctuation range. The accuracy of the LSTM model is similar to
that of CLSTM in terms of the MAE and MAPE indexes, and
LSTM has a lower RMSE than that of CLSTM. This result is

similar to that obtained by Wang et al. (2019a). The author
believes that when the data length is only 1 year, the time feature
in the data is relatively strong and the spatial feature is weak; thus,
CLSTM cannot extract the spatial feature of the data easily.
Compared with the RNN, the LSTM and CLSTM models have
more accurate prediction results and lower volatility, which
shows that the special LSTM gate unit has a certain robustness
against gradient vanishing and gradient explosion. The prediction
accuracy and volatility of the Auto-LSTM model are not
satisfactory, which may be caused by the small input
dimensions of the data set. When the input dimensions are
small, they do not need to be reduced, and the use of an
autoencoder for data processing may lead to information loss.

The proposed model is compared with the RNN, LSTM,
CLSTM and Auto-LSTM models, and the results with the
minimum RMSE over 50 independent runs of each model
are selected. Three error evaluation indexes, i.e., RMSE, MAE
and MAPE, are used to measure the model performance to
further verify the improvement effect of the proposed model
on the prediction accuracy. Table 3 shows the RMSE,MAE and
MAPE indexes of the different models for summer (December
to February), autumn (March to May), winter (June to
August), spring (September to November) and the whole
year. The AMPSO-CLSTM model proposed in this paper
clearly performs well in predicting PV power in different
seasons. On the MAE and MAPE indexes, the proposed
model has the best performance. On the RMSE index, the
performance of this model is slightly lower than that of the
CLSTM model in spring (0.85%), but the forecasting effect for
the other seasons and the annual averages are the best. The
proposed model is clearly good compared with the RNN,

TABLE 2 | Hyperparameter settings in the proposed model.

Models Hyperparameters

LSTM hidden_units:100
Auto-LSTM hidden_units:80, encoder_layers:3, bottle_neck:5
RNN hidden_units:100
CLSTM filters:512, kernel_size:2, stride:1, hidden_units:80
AMPSO-CLSTM max_filters:512, kernel_size:2, stride:1, max_hidden_units:100 M = 10, N = 10, max_gen = 10, max_k = 10,

mutation_chance = 0.08

FIGURE 5 | Boxplots of error indexes for 50 independent runs on the DKASC data set. (A-C) are the RMSE, MAE and MAPE of all models, respectively.
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LSTM, CLSTM and Auto-LSTM models in predicting PV
output power 1 hour in advance.

To further analyze the fitting effect for different seasons, 4 days
are randomly selected from each season to draw the forecast
results of the proposed model and the comparison model, as
shown in Figure 6. All the models have good prediction results
under gentle meteorological conditions from 5:00 to 19:00, but
the proposed model has a steady and more accurate prediction
curve, and its prediction results are closer to the actual value.
When the meteorological conditions change dramatically and
rapidly (such as in summer and winter), the PV output power
prediction accuracy of all the models decreases slightly, but the
prediction results of the proposedmodel remain stable despite the
variation in PV output power. During data collection at the power
stations, noise or incorrect data may be generated due to errors or
faults in the sensors themselves. Although we filled in the missing
values and abnormal values in the data before training, no
method exists for preprocessing this noise data with high-
frequency fluctuations within a reasonable range. If the model
perfectly fits the highly volatile data with high-frequency noise,
then it has overfitted the data, which will affect the accuracy of the
PV output power prediction by the model in the future. The

proposed model can be stabilized around the trend of the curve in
the case of high-frequency fluctuation of the output data, which
indicates that the model has the ability to deal with noise.

To verify the prediction accuracy of the model under different
weather conditions, a sunny day and a rainy day were randomly
selected from the test set, and the prediction results, prediction
errors, and regression analyses were plotted, as shown in
Figure 7. Figures 7A,D plot the observed PV power output
from 5:00 to 19:00 on the selected sunny and rainy days,
respectively, as well as the predicted values for each model,
and Figures 7B,E plot the percentage errors of the predicted
values and the observed values for this time period. Figures 7C,F
plot the regression analyses for the sunny and rainy days with the
observed PV power output as the horizontal coordinate and the
predicted value of each model as the vertical coordinate and
calculate the R2 values of each model. Figures 7A,D show that all
models can fit the PV output power curve well under sunny
conditions, but the AMPSO-CLSTM model proposed in this
paper has less volatility and a higher prediction accuracy. On
cloudy and rainy days, the error of the selected model is slightly
larger than that on sunny days because the light conditions and
humidity on the rainy days changed rapidly, which was difficult

TABLE 3 | PV power forecasting error for each season.

Season Error AMPSO CLSTM Auto-LSTM LSTM RNN
-CLSTM

Summer RMSE (kW) 1.99 2.04 2.02 2.01 2.09
(−2.60%) (−1.56%) (−1.08%) (−4.83%)

MAE (kW) 1.04 1.18 1.18 1.11 1.21
(−11.30%) (−11.72%) (−5.60%) (−13.55%)

MAPE (%) 9.37 12.14 12.14 10.57 12.37
(−22.81%) (−22.81%) (−11.31%) (−24.22%)

Autumn RMSE (kW) 1.60 1.66 1.69 1.65 1.70
(−3.61%) (−5.27%) (−3.08%) (−5.84%)

MAE (kW) 0.81 0.96 1.02 0.88 0.98
(−15.80%) (−20.46%) (−7.87%) (−17.55%)

MAPE (%) 7.76 10.92 11.86 8.96 10.94
(−28.92%) (−34.52%) (−13.37%) (−29.03%)

Winter RMSE (kW) 1.96 2.08 2.27 2.04 2.11
(−5.48%) (−13.65%) (−3.56%) (−7.13%)

MAE (kW) 1.06 1.23 1.33 1.18 1.27
(−13.82%) (−20.25%) (−10.17%) (−16.50%)

MAPE (%) 9.65 13.27 15.24 11.70 13.83
(−27.27%) (−36.68%) (−17.57%) (−30.23%)

Spring RMSE (kW) 1.87 1.86 1.94 1.87 1.96
(0.85%) (−3.50%) (0%) (−4.54%)

MAE (kW) 0.94 1.02 1.11 0.98 1.07
(−7.64%) (−14.84%) (−3.54%) (−11.51%)

MAPE (%) 7.90 10.34 11.56 8.73 10.49
(-23.59%) (-31.67%) (-9.56%) (-24.70%)

Average RMSE (kW) 1.86 1.92 1.99 1.90 1.98
(−2.87%) (−6.53%) (−1.92%) (−5.62%)

MAE (kW) 0.97 1.10 1.16 1.04 1.13
(−12.22%) (−16.87%) (−6.92%) (−14.78%)

MAPE (%) 8.70 11.72 12.75 10.03 11.95
(−25.75%) (-31.75%) (−13.24%) (−27.17%)
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for the model to fit. However, all models are still able to capture
the trend of the PV output power, with the fluctuation range of
the CLSTM and the proposed AMPSO-CLSTM model being
smaller. Hence, the combined network architecture of the CNN
and LSTM can improve the fitting ability of the network to a
certain extent. The percentage errors shown in Figures 7B,E
show that the prediction error of the model in the early morning
and evening is larger. In the morning and afternoon, the
prediction accuracy of the model is higher, with the error
typically remaining below 10%, because the solar irradiance,
which has a significant impact on the PV output power,
changes rapidly in the early morning and evening and the
models have difficulties fitting the curve. Figures 7C,F show
that the models made predictions with high accuracy for PV
output power observations above 12 kW.When the power output
is below 12 kW, fluctuations occur because the time period during

which the observed value of the PV output power is less than
12 kW is mainly concentrated in the early morning and evening,
when the light conditions change greatly. Compared to that in the
morning and afternoon, the irradiance during these two periods is
lower. On sunny days, the R2 value of the proposed model is the
highest among all models at 0.983, indicating that the proposed
model is able to explain 98.3% of the variation in PV power
output on these days. On cloudy and rainy days, the R2 values of
all models decrease compared to those on sunny days, but the
proposed AMPSO-CLSTM model still has the highest R2 value
(0.946), which indicates that the model is still able to provide a
good prediction of the PV output power even on cloudy and rainy
days with rapidly changing meteorological conditions.

The optimal network is obtained by decoding the optimal
particles of fifty independent runs of the AMPSO-CLSTM and
calculating the number of channels of the CNN and the number

FIGURE 6 | Forecasting results for a whole day in each season. (A-D) respectively show the forecast results of all themodels in spring, summer, autumn andwinter.
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of hidden neurons of the LSTM in the corresponding neural
network, as shown in Table 4. The model tends to choose a
smaller number of channels in the convolutional layer and a
smaller number of hidden neurons in the LSTM, despite the large
maximum limits we gave in the hyperparameter settings (filter:
512, unit: 100). The number of channels decreases by
51.76–71.09%, while the number of LSTM hidden neurons
decreases by 32–60% compared to the CLSTM model. Smaller

numbers of channels and hidden neurons means that the network
has higher versatility and that the network is less affected by
overfitting.

In summary, the proposed model can provide good prediction
results for different seasons and under different meteorological
conditions. Accurate PV output power prediction can reduce the
volatility and uncertainty of PV power generation and can ensure
the safety of the power grid. Compared with other models, the

FIGURE 7 | Forecasting result analysis for Alice Spring on a sunny day and a rainy day. (A,D) plot the observed PV power on the selected sunny and rainy days,
respectively, as well as the predicted values for each model. (B,E) plot the percentage errors of the predicted values and the observed values. (C,F) plot the regression
analyses for the sunny and rainy days.

TABLE 4 | Distribution of the structural hyperparameters for 50 independent runs on the DKASC data set.

Neuron Min Max Average Structure simplification rate

LSTM Auto-LSTM CLSTM

Filters 148 247 214 — — 51.76–71.09%
Units 40 68 59 32.00–60.00% 15.00–50.00% 32.00–60.00%
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proposed AMPSO-CLSTM model performs better in short-term
PV power prediction, with higher accuracy and smaller error. The
PV power prediction method based on deep learning can be
applied to power grid operation management to reduce the loss
caused by uncertainty.

Taiyangshan Photovoltaic Power Station
To verify the generalization ability of the proposed model, in this
section, the model is tested on the Taiyangshan PV plant in
Wuzhong, Ningxia, where is located in different geographical and
meteorological conditions as well as different photovoltaic
systems with Alice Springs. The data set contains operation
data from January 1 to 31 December 2016, with a sampling
interval of 15 min. The data consist of six main items: total
radiation (W/m2), module temperature (°C), ambient
temperature (°C), air pressure (hPa), relative humidity (%)
and actual power generated (kW). The technical specifications
of this power system are shown in Table 5.

The main hyperparameters of the model are basically the
same as in the previous paper, but the maximum number of
CNN channels is adjusted to 256 to accommodate the smaller
input dimensions and volume of the data. The method of data
cleaning and weight initialization is the same as in the previous
paper and thus will not be repeated here. Because we have only
1 year of operational data, the test data cannot cover all
seasons; thus, the conventional data set partitioning method
is chosen: 80% of the data are used for training the network,
10% for validation, and the remaining 10% for testing to

measure the network performance. Similarly, 50
independent runs are performed for each of the models to
verify the robustness. The error indexes for the results of the 50
independent runs are shown in Figure 8.

As shown in Figure 8, the proposed AMPSO-CLSTM model
still has higher prediction accuracy and smaller fluctuation
intervals than do the other models, even though the input
dimensions, sampling resolution and data volume of this data
set differ significantly from those of the data set used in the
previous section. Note that the Auto-LSTM has a further decrease
in accuracy on this data set, which is consistent with the point
made in the previous section that the autoencoder has poorer
results with lower input dimensions. Consistent with the previous
operation, the results of 50 independent runs of the different
models with the lowest RMSE are selected for comparison, and
the errors on the test set are shown in Table 6. The proposed
model still performs well on this data set, with the prediction
results on the three error indexes being the smallest of all models.
Hence, the model has some robustness and stability and is able to
adapt to data of different size and input dimension.

The actual operational data available for this power station cover
only 1 year; thus, the analysis in this section compares the network
performance from a weather perspective only. Referring to local
weather forecast and meteorological data, randomly selected sunny
and rainy days from the test set are plotted in Figure 9. As shown in
Figures 9A,D, all models obtain satisfactory results on this sunny day
for this data set. During cloudy and rainy days in winter, the
meteorological conditions change rapidly. Therefore, the fit of all
models decreases. As shown in the figure, all the models are able to
learn the general trend of the curve, except forAuto-LSTM,which did
not fit the PV output power curve very well. In the winter season of
Ningxia, the days are short, and the PV output power has more
observations close to zero in the morning and at dusk. Figures 9B,E
show that all models have higher forecast errors at dawn and dusk,
while at other times of the day, the model’s forecast errors basically
remain below 10%, which is the same as in the previous section. As
shown in Figures 9C,F, the R2 values of the different models are
higher under clear weather conditions. The R2 index of the proposed
AMPSO-CLSTM is 0.981, which is slightly lower than that of the

TABLE 5 | Technical specifications of the Taiyangshan power system.

Technical specification Value

Array rating 100 kW
Panel rating 230 W
Number of panels 10 × 45
Panel type Yingli YL230P-29b
Array area 10 × 72 m2

Inverter size/type 10 × 10 kW, SG 10KTL
Installation completed Sat, 26 December 2009

FIGURE 8 | Boxplots of error indexes for 50 independent runs on the Taiyangshan data set. (A-C) respectively show the RMSE, MAE and MAPE of all models in
case 2.
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RNN. This result indicates that the various models are able to fit the
curve well under sunny conditions. Compared with sunny days, the
R2 index of the prediction results of the variousmodels on cloudy and
rainy days decreases, but the R2 index of the AMPSO-CLSTMmodel
is 0.723, which is the highest among all the models. The AMPSO-
CLSTM model is still able to explain 72.3% of the variation in PV
output power in cloudy and rainy weather, which is more difficult to
predict. In addition, theR2 index of Auto-LSTM is negative on cloudy
and rainy days. Under this kind of weather condition, the regression

effect of Auto-LSTM is weaker than that of the mean model, which
may be because the model does not have enough information to
explain the changes in PV’ output power when the dimensions of the
input factors are small and because the autoencoder structure of
Auto-LSTM reduces the dimensions of the input data, which
aggravates this information loss.

The optimal particles of AMPSO-CLSTM on the data set
for 50 runs are decoded, and the number of CNN channels and
number of hidden neurons of LSTM in the corresponding

TABLE 6 | PV power forecasting error.

Error AMPSO -CLSTM CLSTM Auto -LSTM LSTM RNN

RMSE (kW) 5.87 6.26 (−6.23%) 8.52 (−31.10%) 6.6 (-−11.06%) 6.56 (−10.52%)
MAE (kW) 2.64 2.99 (−11.71%) 5.16 (−48.84%) 3.2 (−17.50%) 3.23 (−18.27%)
MAPE (%) 11.78 13.42 (−12.22%) 23.1 (−49.00%) 13.5 (−12.74%) 14.84 (−20.62%)

FIGURE 9 | Forecasting result analysis for Taiyangshan on a sunny day and a rainy day. (A,D) are the forecasting results for Taiyangshan on a sunny day and a rainy
day. (B,E) are the forecasting error of all models on a sunny day and a rainy day. (C,F) plot the regression analyses for the sunny and rainy day.
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neural network are calculated. The structural parameters of 50
independent operations on the Taiyangshan data set are
shown in Table 7. In the results of the AMPSO-CLSTM
runs, the number of CNN channels decreases by
61.72–86.72%, while the number of LSTM hidden neurons
decreases by 53–84% compared with the CLSTM model. The
model has a larger decrease in structural parameters on this
data set compared to that on the Alice Springs data set, which
means that the model is able to adapt to input features with
smaller dimensions and smaller samples and automatically
scales down the network structure to match the data. Thus, the
model is generalizable.

CONCLUSION

To solve the problem caused by the fluctuation and instability of
PV power generation, this paper proposes a new CLSTM hybrid
prediction model based on AMPSO. The proposed model
combines the CNN and LSTM network of deep learning to
effectively extract and fit high-dimensional features of PV
power generation time series data and introduces the AMPSO
algorithm to optimize the structure and weights of CLSTM at the
same time to obtain the optimal structure and weight
combination of the CLSTM network.

Next, several kinds of forecasting models (CLSTM, LSTM,
RNN and Auto-LSTM) as long as the proposed AMPSO-CLSTM
model are tested by using the PV power data of the Alice Spring
PV system in Australia and the Taiyangshan PV power station in
Wuzhong, Ningxia, China. The results show that compared with
that of the existing models (CLSTM, LSTM, RNN and Auto-
LSTM), the RMSE of the proposed PV power generation model
on the two data sets decreases by 1.92–6.53% and 6.23–31.10%,
the MAE decreases by 6.92–16.87% and 11.71–48.84%, and the
MAPE decreases by 13.24–31.75% and 12.22–49.00%,
respectively.

Compared with the CLSTM model, the optimized AMPSO-
CLSTM model reduces the number of CNN channels by

51.76–71.09% and 61.72–86.72% and the number of LSTM
hidden neurons by 32–60% and 53–84% on the two data sets,
respectively. In different seasons and under different weather
conditions, the proposed model has good prediction performance;
hence, it can be applied to data with different seasonal meteorological
index changes, factor dimensions, data sizes and sampling resolutions
of PV power generation.
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GLOSSARY

AMPSO adaptive mutation particle swarm optimization

ANN artificial neural networks

b bias

BP back propagation

c learning factor

CNN convolutional neural network

CLSTM convolutional long short-term memory network

DBN deep belief network

DKASC desert knowledge Australia solar centre

ESN echo state network

ELM extreme learning machine

fit(Pm) fitness of particle m

F channels of the CNN

GA genetic algorithm

GAN generative adversarial network

gbest population optimal position

gen current iteration

MAE mean absolute error

MAPE mean absolute percentage error

max gen upper limit of the number of iterations

MLP multilayer Perceptron

pbestm the best position that the particle has reached

PV photovoltaic power

PSO particle swarm optimization

R the number of input convolution mapping

RNN recurrent neural network

RMSE root mean square error

S step of the predicted time

SVM support vector machine

SAE stacked auto-encoder

U unit of the LSTM

v particle velocity

w weight

› convolution operation

zlg the kth convolution mapping of layer l

σ activation function

ωm adaptive inertia weight of particle m
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