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Unmanned aerial vehicle-based transmission line inspections produce a large number of
photos; significant manpower and time are required to inspect the abnormalities and faults
in such photos. As such, there has been increasing interest in the use of computer vision
algorithms to automate the detection of defects in these photos. One of the most
challenging problems in this field is the identification of defects in small pin bolts. In
this paper, we propose a pin state identification framework cascaded by two object
detectors. First, the bolts are located in the transmission line photos by an initial object
detector. These bolts are expanded in the original picture and cropped. These processed
bolts are then passed to a second object detector that identifies three states of the pins:
normal, pin missing, and pin falling off. The proposed framework can attain 54.3 mAP and
63.4 mAR in our test dataset.
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INTRODUCTION

Traditional transmission line inspection methods rely on binoculars and other equipment to visually
inspect the pylons’ key components in person. The inspection methods are inefficient in finding
defects in small components and vision dead zones. In recent years, the development and application
of unmanned aerial vehicle (UAV)-based inspection has primarily replaced the traditional inspection
methods, significantly improving the efficiency of transmission line inspections, as shown in
Figure 1.

The UAV-based inspection method requires people to inspect many photos manually, which
could be labor-intensive if not assisted by object detection algorithm. As a result, power grid
companies globally have invested in the research and development of the automation of transmission
line inspection methods. One of the most critical tasks of the transmission line inspection is to detect
faults and defects in power equipment, such as Stockbridge dampers, insulators, bird nest, and pin
bolts (Jin et al., 2012; Fu et al., 2017; Hao et al., 2019; Ju and Yoo, 2019; Ling, 2019; Wang et al., 2019;
Shi et al., 2020; Zhao et al., 2020).

The automatic detection of relatively large objects like bird nest and self-blast glass insulator fault
has been established enough for practical applications. Studies concerning the above objects usually
use object detectors such as Faster RCNN (Ren et al., 2017), RetinaNet (Lin et al., 2020), Single
Shot MultiBox Detector (SSD) (Liu et al., 2016), and You Only Look Once (YOLO) (Redmon et al.,
2016).

However, the automatic detection of pin defects in the context of UAV-captured photos is still far
from being practical. As stated in Nguyen et al. (2018), small object detection is one of the challenges
of deep learning-based UAV powerline photo inspection. The detection and state identification of
pins are particularly difficult because, as calculated from our UAV captured dataset, pins cover, on
average, 0.01%–0.03% of the area of UAV photos.
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To solve the problem of extremely small target localization and
pin defect detection, scientific and industrial communities have
used various object detectors on the pin state identification task.
Fu et al. (2017) utilized And-Or graph with hierarchical AdaBoost
classifier using the Haar feature to detect pins missing under a
bolt nut size background, which are croppedmanually fromUAV
photos. In this study, the pin bolts need to be cropped manually
from UAV photos before they are input to their proposed
algorithm, making it impractical, and its robustness vis-à-vis
real application scenarios where bolts vary in angles and in
illumination is questionable.

Wang et al. (2019) utilized RetinaNet with ResNet-50 to detect
normal pin, pin missing, and pin falling off. The detector was
trained on close-distance UAV photos with auxiliary data
(insulators with bolt shackles on oil ground) and achieved
good detection results. In our case, due to the much smaller
pin area coverage, even the ResNet-101-based detector cannot
perform the task of directly detecting pin missing and pin falling
off in our dataset (proof in the Results and Discussion section). In
this way, to use RetinaNet with ResNet-50, a larger pin area
coverage is required. In this article, we propose to add another
object detector to enlarge the pin area coverage before the use of
RetinaNet to identify pin states.

Zhao et al. (2020) proposed a cascade object detection
structure combining Vgg-16 and Faster RCNN with ResNet-
101 named AVSCNet for the detection of normal pins and
missing pins and achieved satisfactory results. However, there
are other pin states that need to be recognized in UAV photos,
such as improper pin installation and pin falling off, which were
not studied in their work. In our work, the identification of
normal pin, missing pin, and pin falling off is studied. Before the
identification of pin states, bolts containing pins are first detected
and bounded by a rectangle box. Nevertheless, pins may be
truncated in this step, which may mislead the object detectors,
as shown in Figure 6. To compensate for the negative effect of
incomplete coverage of pins, expansive cropping (EC) on bolt
bounding boxes is proposed and studied.

In the context of railway catenary, to maintain stable power
supply for trains, state identification of fasteners at cantilever
joints is an important problem, which is a similar scenario to pin
state identification. To automatically identify the states of
fasteners, a cascaded detection method of three neural
networks is proposed in Chen et al. (2018). Firstly, SSD is
employed to locate cantilever joints in catenary, then YOLO is
utilized to locate their fasteners, and finally the authors use deep
convolutional neural network (CNN) to classify the state of
fasteners. Still, the cascade of three networks is redundant as
YOLO has the classification ability.

From the above literature and our preliminary studies, we
propose a pin state identification framework involving a cascade
of two object detection networks. This will be referred to as
cascade framework hereinafter. The cascade framework should be
installed at a backend computer as shown in Figure 1 and
processes photos that conform to the tentative instruction
manual for UAV Inspection Photo Capture of Overhead
Transmission Lines (the tentative UAV photo instruction)
given by State Grid Corporation of China (SGCC), in which
the components of fasteners (bolt, pin, and nut) are required to be
clearly visible.

To briefly justify why a single detector was not utilized and
a cascade framework is needed instead, we have tested two
state-of-the-art detectors for pin state identification, the
performances of which are far from being ideal, as shown
in Supplementary Table S5. An intuitive insight into why a
single detector cannot work is that pins are too small in UAV
inspection photos for CNNs to effectively extract their
features. In other words, their features vanished during the
convolution and downsampling process of CNNs on UAV
inspection photos (Pang et al., 2019), but in the case of close-
distance photos where pins cover a significant part of photos,
as in the case of Figure 9 in the Pin State Identification
Dataset section, CNNs are able to correctly extract the
features of pins.

The main contributions of this article are as follows:

FIGURE 1 | Schema of UAV-based inspection in our project. Here, UAV-captured photos are transferred to a backend computer for automatic defect detection.
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- A cascade framework is proposed for pin state
identification in the context of UAV-captured transmission
line photos.

- A compensation for incomplete pin coverage named
expansive cropping is proposed and its effects on the
overall detection performances is studied.

- The performances of multiple state-of-the-art object
detectors are studied in the context of UAV inspection
photos.

The paper is organized as follows: the Method section
elaborates the proposed framework. The Datasets and
Experiments section presents the datasets, experimental
configurations, and evaluation metrics. The Results and
Discussion section justifies why single detectors are not used,
provides the results of experiments, and presents the discussion
on the cascade framework. The Conclusion section concludes this
article, and gives limitations and future perspectives of pin state
identification.

METHODS

The overall inference scheme of the proposed cascade
framework is shown in Figure 2. The cascade framework
takes UAV photos as the input, and gives located pins with
their states as the output. Firstly, the bolts are located in the
transmission line photos by the first-stage object detector.
Then, these located bolts are expanded in the original pictures
and cropped. Finally, a second-stage object detector is utilized
to identify three states (normal, pin missing, and pin falling
off) of pins in the aforementioned bolt crops.

The first-stage detector is exemplified by the Scale
Normalization for Image Pyramids with Efficient Resampling
(SNIPER) strategy enhanced Faster RCNN in a pale-yellow
background in Figure 2. A detailed description of SNIPER
will be provided in the next subsection. For simplicity, in this
article, SNIPER will refer to the network architecture: SNIPER
enhanced Faster RCNN. The mission of first-stage detectors is to
locate bolts in UAV-captured transmission line photos in the
form of bounding boxes. At the input of the first-stage detector, it
is important to note that only SNIPER resizes UAV photos to
three scales to form image pyramids; the other detector utilized in
this study, EfficientDet-D7, resizes photos to only one scale. After
the photo input, we illustrate ResNet-101 backbone, which
features the input image, and the region proposal network
(RPN) detection head of Faster RCNN, which gives the
regions of interest. The output of the first-stage detector is
depicted in the expansive cropping part at the end of the pale-
yellow background (a bounding box of e � 0).

Next, the coordinates of localized bolts are expanded in terms
of a given expansive ratio, as the various concentric bounding
boxes shown at the expansive ratio part in Figure 2. These bolts
are cropped according to expanded coordinates and saved for
inference on second-stage detectors. These cropped bolt images
vary in size and are all resized by bicubic interpolation to a
predefined size. The predefined size is determined by the
configuration of each second-stage detector. The second-stage
detector is exemplified by EfficientDet-D0 (D0) in a pale-lime
background. The second-stage detector takes these expanded bolt
crops as the input, locates pins, and identifies their states. The
backbone of a second-stage detector D0 is illustrated after the
input image. Below the backbone, the BiFPN (Bidirectional
Feature Pyramid) structure is illustrated in a pale-blue

FIGURE 2 | Inference scheme of the proposed cascade pin state identification framework.
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background. BiFPN fuses semantic information of high,
intermediate, and low feature levels. The BiFPN layers are
repeated three times in the case of D0. Finally, the locations
and states of pins are given, as shown in the output part of
Figure 2.

The first-stage detectors are trained on the bolt localization
dataset (Bolt Localization Dataset section), and the second-stage
detectors are trained on the pin state identification dataset (Pin
State Identification Dataset section).

First-Stage Detector: Bolt Localization
Network
The task of the first-stage detector is to locate as many bolts as
possible in the transmission line inspection photos taken by
UAV. These photos are of high resolution and the bolts
occupy solely about 0.06% of the area in the photos, calculated
from our bolt localization dataset in the Bolt Localization Dataset
section. This task requires the use of an object detection network
with a strong ability to find small targets. For this reason, we select
SNIPER enhanced Faster RCNN and EfficientDet-D7, both with
a strong performance on small object detection in the COCO
object detection challenge (Lin, 2015), as the research objects of
the first-stage detector.

Scale Normalization for Image Pyramids with Efficient
Resampling SNIPER
Singh et al. (2018) proposed a strategy onmulti-scale training and
detection, entitled Scale Normalization for Image Pyramids with
Efficient Resampling. Scale Normalization for Image Pyramids
(SNIP) is utilized on image inference and efficient resampling is
used in the training process of CNN.

The efficient resampling process, as shown in Figure 2,
generates a series of image resamples {C1, C2, . . . , Ci, . . .Cn},

named chips, according to different scale settings
{s1, s2, . . . , si, . . . sn}, si � [max resolution, min resolution]. In
this study, three scales are chosen, [2000,1400], [1280, 800],
and [512, -1] (where -1 stands for no constraint), referred to
respectively as coarsest scale, intermediate scale, and finest scale,
as illustrated on the right side of Figure 3. The image resamples of
these three scales are exemplified as the four bounding boxes on
the left side of Figure 3.

To obtain chips Ci, firstly, the shortest side of input image is
resized tomin resolution of scale si. However, if the longest side of
the resized image surpasses max resolution of si, the former
resized image will be abandoned and the input image will be
resized according to max resolution. Secondly, a sliding window,
in this work [512, 512] pixels, will slide over the resized image at a
certain pace, for example, 50 pixels. Where these windows have
traveled are registered as image resamples to be filtered
Cunfiltered
i . Thirdly, for each scale, there is a corresponding

valid label size range Ri � [rimin, r
i
max], i ∈ [1, n]. Image

resamples to be filtered Cunfiltered
i are ranked by the number of

valid labels covered in the resample. Resamples along with valid
labels are recursively taken out from the ranking and list of labels
Gi corresponding to range Ri until the exhaustion of labels Gi.
Then, they are registered respectively as chips cji ∈ Ci, and Gj

i ,
When training, each chip cji ∈ Ci is assigned with labels Gj

i

that meet the corresponding size range Ri. Image resamples Ci

and corresponding labels Gi are sent to Faster RCNN for
training. In the dataset of this article, SNIPER can generate
about three image resamples per image.

As Figure 2 demonstrates, when Faster RCNN performs
image inference, the input photo is scaled to the following
three resolutions: [2000, 1400], [1280, 800], and [512, 480] to
form the image pyramid. Similar to the mechanism of valid range
in label assignment above, for the largest resolution, small objects
in the detection result are kept and large objects are discarded; in

FIGURE 3 | Efficient resampling. In (A), four chips of three scales are illustrated by squares, the green bounding boxes are labels, and the magenta bounding box
annotates a defect pin. In (B), for each chip, green grounding boxes are labels in valid range and are saved for training; red ones are labels out of valid range, and are
discarded when training.
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contrast, for the finest resolution, large objects are kept and small
objects are invalidated. Finally, detection result of all different
scales is aggregated for non-maximum suppression to get the final
result.

In this work, SNIPER strategy is employed on Faster RCNN.
The backbone of Faster RCNN is ResNet-101 (He et al.,
20162016) with the following modifications: Stage 5 does not
perform downsampling on the output of Stage 4, and the outputs
of Stage 4 and 5 are concatenated for the subsequent process, as
illustrated in Figure 2. Downsampling may damage semantic
information of small objects (Pang et al., 2019), whereas the bolts
are small objects in UAV photos. Concatenation here fuses
semantic information of higher and lower levels; usually,
lower-level features preserve small object information better.

EfficientDet
A family of object detectors, named EfficientDet-D0, D1, . . ., D7,
are proposed in Tan et al. (2020). These detectors use EfficientNet
(Tan and Le, 2019) as the backbone. As illustrated in Figure 2,
features of different semantic levels are sent to the Bidirectional
Feature Pyramid Network (BiFPN) for feature fusion. The output
of BiFPN layers is utilized to perform object classification and
bounding box regression.

Experiments in Figure 4 prove that EfficientDet-D7 (D7),
with the largest input image resolution of [1536, 1536] pixels in
the detector family, has the best average precision of 0.58, and an
average recall of 0.74 in our bolt localization dataset, which will be
introduced in the Bolt Localization Dataset section.

The structure of D0 is given in Figure 2. All EfficientDet
detectors share the same structure; the differences among these
detectors are depth and width of convolutional blocks, BiFPN
layer repetition times, and the size of input image.

Expansive Cropping
Once the bolt localization network gives the coordinates of a
detected bolt, in the form of (x1, y1, x2, y2), given an expansive
ratio e, new coordinates can be calculated by the following
formula:

x1′ � max(x1 − e|x2 − x1|, 0)
y1′ � max(y1 − e

∣∣∣∣y2 − y1
∣∣∣∣, 0)

y2′ � min(x2 + e|x2 − x1|, w)
y2′ � min(y2 + e

∣∣∣∣y2 − y1
∣∣∣∣, h)

(1)

where w and hw, h are respectively the width and height of the
input photo, and e is the expansive ratio. An example of expansive
cropping is shown in Figure 5.

Detected bolts are expanded and cropped according to new
coordinates and saved for pin state identification.

The motivation of adding EC in the proposed framework is to
compensate for the negative effects brought by incomplete
coverage of the pins in detected bolts. The authors believe that
the semantic information given by full coverage of pins is
necessary for credible pin state identification for both human
and CNNs. In the context of pin state identification, human
inspectors need full coverage of pins in bolt crops to deduce
whether the pin states are normal or abnormal, and object
detectors have the same need. EC can complete the coverage
of pins and provides the second-stage detectors with complete
semantic information of pins, whereas incomplete coverage
weakens the credibility of inference results. In most cases, the
coordinates of a bolt given by the bolt localization network can
completely cover its pin. Nevertheless, there are cases where
original coordinates do not entirely cover the pin, as shown in

FIGURE4 | Performances of EfficientDet and SNIPER at IoU = 0.5 on the
validation set of our bolt localization dataset, see the Bolt Localization Dataset
section.

FIGURE 5 | Expansive cropping on a bolt, ratio increasing from 0 to 0.8
by 0.2.
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Figures 6A,B. Incomplete coverage will cause the detector to
misjudge: EfficientDet-D1 (D1) misidentified the pin falling off
state in Figure 6A, whereas D1 identified correctly its normal
state with EC in Figure 6C, similar to Figure 6B (undetected) and
Figure 6D (correctly detected).

Second-Stage Detector: Pin State
Identification Network
The task of the second-stage detector is to locate the pins in
cropped bolt images and identify the three pin states: normal,
missing, and falling off.

Normal, missing, and falling-off pins cover respectively 20%,
11.7%, and 18.2% of area in a cropped photo, on average
(Supplementary Table S1), calculated from our pin state
identification dataset (Pin State Identification Dataset section).

Experiments prove that the object detector with relatively fewer
parameters can accomplish this task. This study uses the
following detection models as the research object: D0, D1, D2,
D3, and RetinaNet.

EfficientDet (For Pin State Identification)
We have trained and tested D0–D7 as second-stage detectors.
Figure 7 shows the mean Average Precision of EfficientDet-
D0–D7 and RetinaNet (ResNet-50) with respect to their
numbers of parameters, and it can be observed that the
detection results of larger models—D4, D5, D6, and
D7—were not better than those of smaller detectors like D2
in the context of cascade framework. It is uneconomical to
deploy larger and more resource-consuming models while
getting worse or equivalent results compared to smaller
models like D2 or D3. Thus, only D0, D1, D2, and D3 are
later studied in detail.

RetinaNet
In this study, another object detector, RetinaNet (Lin et al., 2020),
is also utilized for pin state identification. The structure of
RetinaNet is similar to EfficientDet: convolutional feature
extraction backbone is followed directly by bounding box and
class regression. In this study, the backbone of RetinaNet is
ResNet-50 with Feature Pyramid Network (FPN).

Object detectors can be divided into two-stage or one-stage
according to whether there is RPN or not. RPN can filter out
simple negative samples (backgrounds), reducing their
negative effect during detector training. To compensate for
the absence of RPN, Lin et al. (2020) proposed a concept of
Focal Loss, which dynamically assigns more weight to
gradients of difficult samples during training, so as to
strengthen the learning direction and make the training
process more efficient.

DATASETS AND EXPERIMENTS

In this section, we introduce Bolt Localization Dataset and Pin
State Identification Dataset, and how detectors are trained using
them. All datasets are annotated with LabelImg (darrenl, 2020).
The proposed framework with different settings is evaluated on

FIGURE 6 | Detection results without EC (A,B) and with EC (C,D),
bounding boxes provided by EfficientDet-D1; 0 for normal pin, 2 for pin
falling off.

FIGURE 7 |Detection result of EfficientDet and RetinaNet at IoU = 0.5 on
the test set, see the Test Set section. First-stage detector: D7, expansive ratio
= 0.

FIGURE 8 | Example of bolt localization dataset.
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our test set. Training details, evaluation metrics, and hardware
configurations are hereby presented.

The UAV inspection photos in this work are collected
following the tentative UAV photo instruction.

Bolt Localization Dataset
The bolt localization dataset of this study contains 482 UAV-
taken transmission line photos, containing 2,392 labeled bolts. A
total of 385 photos are selected randomly as the training set and
97 photos are taken as the validation set. Figure 8 shows an
example of a photo in this dataset and its labels. The purpose of
the training set and validation set is to allow the first-stage
detector to learn the features of bolts in transmission line
photos. The trained model that performs best on the
validation set is selected for evaluation on the test set.

Pin State Identification Dataset
The pin state identification dataset of this study contains bolt
cropped fromUAV-captured transmission line photos. Examples
of three labeled states—normal pin, pin missing, and pin falling
off—are shown in Figure 9. This dataset includes the bolts of the
bolt localization dataset, and bolts from other sources are added,
which are usually bolts with pin missing or pin falling off. In these
sources, only defective bolts are labeled; labeling normal pins in
these sources would incur high temporal and financial cost.
Therefore, these additional photos were not included in the
bolt localization dataset.

A total of 11,963 cropped bolt photos are randomly selected as
the training set, and 1,330 bolts are chosen as the validation set.

Test Set
The test set contains 155 UAV-captured transmission line
photos. Only pins are labeled in this dataset, and the labeling
method is the same as in the pin state identification dataset. The
proposed framework is evaluated on this dataset.

Training Details
All models in this study are trained with mini-batch stochastic
gradient descent (mini-batch SGD), which can be expressed as
follows (Goyal, 2018):

vt+1 � mvt + η
1
n
∑
x∈B

∇l(x, wt) (2)

wt+1 � wt − vt+1 (3)
where η> 0 is the learning rate, m ∈ [0, 1] is the momentum,
x ∈ B is a sample from mini-batch B of size n, ∇l(x, wt) is the
gradient of loss function, wt is the parameter of CNN being
trained in iteration step t, and vt is the tensor to update
parameters wt.

Scale Normalization for Image Pyramids with Efficient
Resampling
The ResNet-101 model of SNIPER was pretrained on
ImageNet (Deng et al., 2009). The pretrained model was
fine-tuned on the training set of bolt localization dataset
with hardware configurations in the Hardware
Configurations section. The learning rate was set to 0.015,
the batch size was 4, and the training algorithm was mini-batch
SGD with a momentum of 0.9. More details can be found in
Najibi (2021).

The loss function for classification is cross entropy:

Lcls(pi, p
p
i ) � −log[pp

i pi + (1 − pp
i )(1 − pi)] (4)

Ground truth indicator: ppi � { 0 negative label
1 positive label

(5)

where pi is the probability of the ithith detected bounding box
being of a certain class. pp

i indicates whether the ground truth of
the ithith detected label is a correct detection: 1, or not: 0.

The loss function for localization is smooth L1:

Lloc(ti, tpi ) � smoothL1(ti − tpi ) (6)
smoothL1(x) � { 0.5x2 if

∣∣∣∣x∣∣∣∣< 1
|x| − 0.5 otherwise.

(7)

where ti � {x, y , w, h}i is the coordinates of the ith detected
bounding box, whereas tpi � {x, y , w, h}*i is the corresponding
ground truth of ti.

Fine-tuned models were tested on the validation set of the bolt
localization dataset, and the model with the best detection result
on the validation set was saved for the experiment of the cascade
framework on the test set.

RetinaNet
The ResNet-50 backbone of RetinaNet was pretrained on
ImageNet. The pretrained model was fine-tuned on the
training set of the pin state identification dataset with
hardware configurations in the Hardware Configurations
section. The learning rate was 0.0005, batch size was 1, and
the training algorithm was mini-batch SGD with a momentum
of 0.9. More details can be found in Github (2021).

The loss function for RetinaNet is focal loss:

Focal Loss(pt) � −αt(1 − pt)γ log(pt) (8)

pt � {p positive label
1 − p otherwise.

(9)

FIGURE 9 | Examples of pin state identification dataset.
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αt � { α positive label
1 − α otherwise.

(10)

where α ∈ [0, 1] is the balance factor, γ≥ 0 is the focusing
parameter, p ∈ [0, 1] is the probability given by the model for
a detected bounding box being of a certain class. For RetinaNet,
α � 0.25 and γ � 2 are set.

Fine-tuned models were tested on the validation set of the pin
state identification dataset, and the model with the best detection
result on the validation set was saved for the experiment of the
cascade framework on the test set.

EfficientDet
The EfficientDet models were pretrained on ImageNet. The
pretrained models fine-tuned on the training set of the bolt
localization dataset were first-stage detectors, and those fine-
tuned on the training set of the pin state identification dataset
were second-stage detectors. The training process utilized Cloud
TPU v3-8 (Google Cloud, 2021) with 128 GB memory. The
learning rate was initially 0.08, and the learning rate decay
method was cosine [this method decays learning rate along a
cosine curve during the training process and shortens the time
to converge (Bello et al., 2017)]. The training algorithm was
mini-batch SGD with a momentum of 0.9. More details can be
found in Google (2021). The loss function of EfficientDet is focal
loss as shown in (8), with α � 0.25 and γ � 1.5. Fine-tuned
models for the first and second stage were tested respectively on
the validation set of the bolt localization dataset or the pin state
identification dataset, and the models with the best detection
result on the corresponding validation set were saved for the
experiment of the cascade framework on the test set.

Evaluation
Common Metrics of Object Detection
The proposed pin state identification framework has three
variable components: the first-stage detector, the expansive
ratio, and the second-stage detector. To evaluate the
performances of different configurations of the framework, we
compare their detection results on the test set with the ground
truths of the test set. Several metrics commonly used in object
detection are utilized in the following evaluation:

Precision � true positives
true positives + false positives

(11)

Recall � true positives
true positives + false negatives

(12)

AP � ∑
n

(Rn − Rn−1)Pn (13)

AR � max(R(IoU)) (14)
mAP � Σ(AP)/Ncls

(15)
mAR � Σ(AR)/Ncls

(16)

Fβ � (1 + β2)Precision × Recall

β2 Precision + Recall
(17)

A true or false positive is determined by whether the
intersection over union (IoU) between a detected bounding
box and a ground truth bounding box surpasses 50%
(Everingham et al., 2015).

AP (Average Precision) represents the area under the curve of
the Precision–Recall curve. Rn is the nthnth recall threshold, and
Pn is the corresponding precision rate.

AR (Average Recall) is the maximum recall at a given IoU
threshold.

Mean Average Precision (mAP) and mean Average Recall
(mAR) are respectively the mean value of the AP and AR
summation across all classes.

Fβ score is the harmonic mean value of the precision and
recall. A positive real value βmeans recall is β times as important
as precision. F1 and F2 scores are used in this study.

Frames per second (FPS) is calculated for each detector to
measure how many images a detector can process per second.

Framework Configurations
Selected variables for experiments are listed in Supplementary
Table S4. These variables are combined, resulting in a total of
2 × 5 × 11 � 110 configurations to be tested.

Hardware Configurations
The experiments on test set were conducted on a computer with
the following hardware: CPU: one Intel® Core™ i9-9920X at 3.50
GHz, GPU: one NVIDIA® RTX2080Ti with 11 GB memory,
64 GB of RAM.

RESULTS AND DISCUSSION

It is beneficial to note that, before the proposition of cascade
framework, the authors have experimented on the capabilities of
state-of-the-art object detectors D7 and SNIPER without cascade
to directly detect pin missing and pin falling off. The results in
Supplementary Table S5 prove that these detectors are currently
not utilizable in directly detecting pin missing and pin falling off
in the context of UAV inspection photos. Small objects as pins are
very difficult to detect even with human eyes because of their tiny
scales. It is also difficult for CNNs to detect pins given the scale of
pins in UAV photos, and the downsampling process of CNNs
may vanish the features of small objects like pins in a UAV photo
(Pang et al., 2019).

Figure 10 shows the test results of the 110 aforementioned
configurations of the proposed framework. Horizontal axes of
each subfigure of Figure 10 are expansive ratio [0, 0.1, 0.2, . . ., 0.9,
1]. Vertical axes of Figures 10A,C,E are AP values at IoU 50%,
whereas vertical axes of Figures 10B,D,F are AR values at IoU
50%. In Figure 10, there are 10 combinations of detectors, 3
classes to be identified, and 2 metrics for each class; thus, there are
10 × 3 × 2 � 60 curves.

Effects of Expansive Cropping
Table 1 shows the distribution of the maximum value of each
curve with the change of expansive ratio e.
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For normal pins, when the expansive ratio is 0, there are 18
curves out of 20 in Figure 10 to attain the maximum value. For
pin missing, when the expansive ratio is 0, there are 11 curves out
of 20 in Figure 10 to attain the maximum value. For pin falling
off, when the expansive ratio is 0.1, 0.2, or 0.3, there are 18 curves
out of 20 in Figure 10 that attain the maximum value. Cascaded
pin identification with EC can ameliorate the detection of pin
falling off defects.

In addition, Figure 10 also shows that, generally, with the
increase of expansive ratio over 0.3, as pins cover less area in the
cropped images, the detection effect for all categories almost
inevitably declines.

Although the benefits of EC are less significant for pin missing
and normal pin, in the application, it is beneficial to ameliorate
the performance for solely one defect category, pin falling off,
since power utilities want to locate as many faults as possible to
maintain stable power supply.

Comparison of Bolt Localization Networks
Comparisons are made on 660 data points to evaluate the
performances of different bolt localization networks. There are
5 second stage detectors, 11 expansive ratios, 2 metrics (AP and

AR), 3 classes, and 2 bolt localization networks, for a total of 5 ×
11 × 2 × 3 × 2 = 660 data points to be used for 330 comparisons.
The one with the higher value gets one point, and no points when
equal. The result of this comparison is listed in Table 2.
According to Table 3, configurations with expansive ratio
e≤ 0.3 are more practical than e≥ 0.4, the comparison results
are aggregated with respect to this criterion.

As shown in Table 2, in terms of AP, EfficientDet-D7 as
the bolt localization network is significantly better than
SNIPER. SNIPER has located many small bolts in the
distanced background, which EfficientDet-D7 did not
detect, proving the benefit of SNIPER in finding as many
bolts as possible. In addition, as shown in Table 3, SNIPER
improves the recall rate of detection with EC to a small extent
and thus reduces cases where pin abnormalities remain
undetected.

Comparison of Pin State Identification
Networks
From Figure 10, it can be observed that the cascade frameworks
using RetinaNet as the pin state identification network have the
highest mAR in all three types of pin states. However, RetinaNet
is less robust to changes in expansive ratio, as in Figures 10A,C,E,

FIGURE 10 | Test results of different configurations of the cascade framework.

TABLE 1 | Distribution of the maximum value of curves in Figure 10.

Expansive ratio 0 0.1 0.2 0.3 Σ e � 0.1, 0.2, 0.3a

Normal Pin 18 2 0 0 2
Pin Missing 11 7 2 0 9
Pin Falling Offb 1 8 7 3 18

aQuantities of maximum values when e values equal to 0.1, 0.2, or 0.3 are summed
together.
bPin Falling Off has a maximum at e � 0.5, SNIPER D0 in Figure 10E.

TABLE 2 | Comparison between SNIPER and EfficientDet-D7

Bolt labels: 478 FPS Detected bolts ∑0.3
0 e ∑1

0.4e

AP AR AP AR

SNIPER 4.7 1175 1 28 30 63
EfficientDet-D7 2.2 684 59 26 75 37

Bold values mean the better value in a column
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than other second-stage networks, with the exception of
EfficientDet-D7 as the bolt localization network in
Figure 10C. The following tables will allow us to
quantitatively analyze these three detectors.

Due to the changes in expansive ratio and detectors, the mean
values (mmAP, mmAR) of several mAP or mAR are employed to
compare contributions of a single factor.

mmAP � Mean(∑(mAP(e,Net))) (18)
mAP variation � mmAP(e,Net1) −mmAP(e,Net2) (19)

Table 3 shows detailed performances of the cascade
framework with different configurations. Table 4 calculates
several metrics to facilitate the comparison among different
pin state identification networks.

When SNIPER serves as the bolt localization network, compared
to D7, the performance of the cascade framework almost declines as
Table 4 shows, while the mAR of D2 and D3 with EC can benefit
from the larger quantity of detected bolts by SNIPER. In terms of
mAP, D2 is the best-performing detector.

Metric Analysis
It can be known from the above discussion that the most suitable
cascade framework configuration for each type of pin state is
different. Pin failure is an extremely important failure for power
utility companies, which may eventually lead to serious
consequences such as powerline drop. Therefore, transmission
line operators hope to find all faulty pins. From this perspective,
when evaluating the performance of the cascade framework, a
higher weight for recall rate should be given.

In Table 4, best configurations by pin state according to
various metrics are listed. F2 score, β � 2 in (17), is employed
to weight AR as twice as important as AP. As Table 5
demonstrates, it is hard to identify a single configuration that
can satisfy the identification task of all three pin states.

TABLE 3 | Performances of pin state identification networks.

Expansive ratio 0 0.1 0.2 0.3

Combination mAP mAR mAP mAR mAP mAR mAP mAR

D7 D0 45.9a 54.9 48.2 55.3 44.3 52.2 39.5 50.6
D7 D1 53.2 64.6 51.0 60.9 45.8 54.5 42.1 52.0
D7 D2 54.3 63.4 53.1 62.9 51.2 60.9 42.2 55.4
D7 D3 51.9 61.0 53.0 62.1 48.1 58.9 39.4 51.1
D7 RetinaNet 44.4 73.8 42.7 74.4 34.3 75.5 27.2 70.2
SNIPER D0 40.9 52.9 41.5 58.1 36.6 53.1 33.6 52.5
SNIPER D1 39.9 56.9 43.1 62.4 35.9 56.8 30.6 50.2
SNIPER D2 46.8 59.8 45.8 63.6 40.5 61.5 33.8 57.3
SNIPER D3 42.1 58.1 44.9 64.5 39.2 63.2 34.9 57.4
SNIPER RetinaNet 35.0 70.0 31.9 73.6 26.9 72.7 23.1 72.2

aBold denotes the best in a column, within the same bolt localization network. Italic indicates the best mAP or mAR in a row.

TABLE 4 | Metrics for pin state identification networks.

Detectors mmAPa mmARa mAP variationb mAR variationb FPS

D0 41.3 53.7 −6.3 0.9 43.5
D1 42.7 57.3 −10.7 −1.4 36.4
D2 46.0 60.6 −8.5 −0.1 34.0
D3 44.2 59.5 −7.8 2.5 22.2
RetinaNet 33.2 72.8 −7.9 −1.3 22.8

ammAP is calculated by mAP values in Table 3, with (18), e ∈ {0,0.1,0.2,0.3}, Net ∈
{SNIPER, D7}, a total of 8 values are averaged. mmAR is calculated the same way.
bmAP variation is calculated by mAP values in Table 3, with (19), e ∈ {0,0.1,0.2,0.3},
Net1 = SNIPER, Net2 = D7, a total of 8 values are averaged. mAR variation is calculated
the same way.

TABLE 5 | Best configurations by class according to various metrics.

Pin state Metric Detectors Expansive ratio AP AR

Normal Pin AP D7 D1 0 66.4 70.8
AR SNIPER RetinaNet 0.1 43.2 76.3
F1 D7 D1 0 66.4 70.8
F2 D7 D1 0 66.4 70.8

Pin Missing AP D7 D2 0 46.4 60.0
AR D7 RetinaNet 0.2 16.9 80.0
F1 D7 D2 0 46.4 60.0
F2 D7 RetinaNet 0 37.8 78.5

Pin Falling Off AP D7 D3 0.1 60.6 66.2
AR SNIPER RetinaNet 0.3 33.7 76.9
F1 D7 D3 0.1 60.6 66.2
F2 D7 D3 0.1 60.6 66.2
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Comparative Analysis
YOLOX and HTC are selected as state-of-the-art detectors as
baselines for comparison with detectors studied in this work.

YOLOX (Ge et al., 2021) is designed to improve the
performance of YOLO-series detectors. The YOLOX-X for
YOLOX-series is chosen for comparison.

HTC (hybrid task cascade) (Chen et al., 2019) uses a fully
convolutional branch to transmit information flow along three
detection heads, helping to distinguish hard foreground from
cluttered background. HTC with ResNet 101 is chosen for
comparison.

In Supplementary Table S6, it is shown that both SNIPER and
D7 perform better than YOLOX and HTC.

Several recommendable configurations of the framework are
given in Supplementary Table S7, with expansive ratio being 0.1.
Besides, with the sacrifice in AP by deploying RetinaNet as the
second-stage detector, AR can usually exceed 70%.

CONCLUSION

This paper proposed a pin state identification framework to
identify the states of pins in bolts in the context of UAV-
captured transmission line photos. Different configurations of
the proposed framework are used to identify the three types of pin
states: normal, missing, and falling pins.

1) Bolt Localization Network: SNIPER’s enhanced Faster RCNN
can not only locate large pin bolts in transmission line photos,
but also locate small pin bolts in the distanced background.
However, in the test of cascade framework, these distanced bolts
are usually not labeled, resulting in the decrease in AP of
SNIPER. EfficientDet-D7 as the bolt localization network
contributes more on precision and recall than SNIPER at a
low expansive ratio.

2) Expansive Cropping: EC is proposed to compensate for the
incomplete coverage of pins in bolts brought by the bolt
localization network. Incomplete coverage of pins undermines
the credibility of inference. The pin state identification is
performed on the expanded bolt crops. For normal pin and
pin missing, the cascaded framework can usually achieve better
detection results when the EC is not performed, whereas for pin
falling off, the cascade detection can achieve a better
identification effect after the EC is performed.

3) Pin State Identification Network: The pin state identification
network detects pins in cropped bolt images and identifies their
states. In this work, EfficientDet-D0, D1, D2, D3, and RetinaNet
are studied. D3 is more robust against changes of quantity input
and D2 has the most precise performance. RetinaNet performs
well in terms of recall, but its precision is not as good as D0–D3.

LIMITATIONS AND FUTURE
EXPECTATIONS

The dilemma between better detecting pin falling off and better
detecting normal pin or pin missing is a limitation of our
proposed framework. It is desirable to combine the advantages
of utilizing EC on pin falling off detection and detection results
without EC on normal pin and pin missing. Otherwise, an
algorithm that provides second-stage detectors with bounding
boxes that exactly match the boundaries of bolts may be more
meaningful.

The cascaded object detection network is far from being able to
independently perform the task of pin defect detection, and there
are many other pin abnormalities and bolt abnormalities, such as
improper pin installation and missing nuts, which are not
included in this study.

The bolts on the soft mechanical connection of pylons need
pins, and bolts elsewhere do not need pins, but this is difficult
to distinguish for the object detection algorithms. It is
necessary to know which are the bolts that require pins
through prior knowledge of transmission lines when
detecting the bolts.
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