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Line loss prediction of ultrahigh voltage transmission lines is the key for ensuring the safe,
reliable, and economical operation of the power system. However, the strong volatility of
line loss brings challenges to the prediction of transmission line loss. For more accurate
prediction, this article uses ensemble empirical mode decomposition (EEMD) to
decompose the line loss and proposes the EEMD–LSTM–SVR prediction model. First
of all, this article performs feature engineering on power flow, electric energy, and
meteorological data and extracts the exponentially weighted moving average (EWMA)
feature from the line loss. After the integration of the time dimension, this article mines the
curve characteristics from the time series and constructs a multidimensional input dataset.
Then, through ensemble empirical mode decomposition, the line loss is decomposed into
high-frequency, low-frequency, and random IMFs. These IMFs and the standardized
multidimensional dataset together constitute the final input dataset. In this article, each IMF
fusion dataset is sent to LSTM and support vector regression models for training. In the
training process, the incremental cross-validation method is used for model evaluation,
and the grid search method is used for hyperparameter optimization. After evaluation, the
LSTM algorithm predicts high-frequency IMF1 and 2 and random IMF4 and 5; the SVR
algorithm predicts low-frequency IMF6 and 7 and random IMF3. Finally, the output value of
each model is superimposed to obtain the final line loss prediction value. Also, the
comparative predictions were performed using EEMD–LSTM, EEMD–SVR, LSTM, and
SVR. Compared with the independent prediction models EEMD–LSTM and EEMD–SVR,
the combined EEMD–LSTM–SVR algorithm has a decrease inmean absolute performance
error% by 2.2 and 25.37, respectively, which fully demonstrates that the combined model
has better prediction effect than the individual models. Compared with that of SVR, the
MAPE% of EEMD–SVR decreases by 11.16. Compared with that of LSTM, the MAPE% of
EEMD–LSTM is reduced by 32.72. The results show that EEMD decomposition of line loss
series can effectively improve the prediction accuracy and reduce the strong volatility of line
loss. Compared with that of the other four algorithms, EEMD–LSTM–SVR has the highest
R-square of 0.9878. Therefore, the algorithm proposed in this article has the best
effectiveness, accuracy, and robustness.

Keywords: line loss, EEMD, LSTM, SVR, time series decomposition

Edited by:
Jun Liu,

Xi’an Jiaotong University, China

Reviewed by:
Neeraj Dhanraj Bokde,

Aarhus University, Denmark
Ming Lang Tseng,

Asia University, Taiwan

*Correspondence:
Yiyuan Zhou

zhouyiyuan@ctgu.edu.cn

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 09 November 2021
Accepted: 07 February 2022
Published: 07 March 2022

Citation:
Ding C, Zhou Y, Ding Q and Wang Z

(2022) Loss Prediction of Ultrahigh
Voltage Transmission Lines Based on

EEMD–LSTM–SVR Algorithm.
Front. Energy Res. 10:811745.

doi: 10.3389/fenrg.2022.811745

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8117451

ORIGINAL RESEARCH
published: 07 March 2022

doi: 10.3389/fenrg.2022.811745

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.811745&domain=pdf&date_stamp=2022-03-07
https://www.frontiersin.org/articles/10.3389/fenrg.2022.811745/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.811745/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.811745/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhouyiyuan@ctgu.edu.cn
https://doi.org/10.3389/fenrg.2022.811745
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.811745


1 INTRODUCTION

Line loss is an essential indicator of economic operation in the
power system, which affects the planning and design, production,
and management of power enterprises (Wang et al., 2020). The
difference between the actual power supply and power sales
obtained by statistics is the actual line loss of the grid, called
statistical line loss. Statistical line losses are generated by running
lines, natural disasters, artificial power theft, and inaccurate
statistical measurement. No matter what the cause of line loss
is, it will have an immeasurable impact on the economic profit of
power supply enterprises. Therefore, it is necessary to formulate
targeted energy-saving and loss reduction measures, study
accurate line loss prediction methods, and build a
comprehensive calculation system to improve the economic
operation of power grids and enhance the line loss
management capability of power supply enterprises.

China’s primary energy sources are mainly distributed in the
west, while the economic development centers are primarily in
the center and east. This inverse distribution pattern determines
the transmission pattern of China from west to east. Therefore,
China’s UHV transmission technology has developed rapidly,
and a lot of UHV transmission lines have been built and put into
operation (Huang et al., 2009). UHV transmission plays a vital
role in power transmission, and how to build UHV power grids
economically and efficiently is an important issue that needs to be
carefully studied. Transmission losses are an essential factor
affecting UHV transmission projects’ economics. Transmission
losses include substation losses and transmission line losses;
substation losses include station equipment losses and station
consumption, which change proportionally with the change of
transmission load. Also, transmission line loss mainly includes
resistance and corona loss. Corona loss is closely related to line
voltage, conductor structure, and climatic conditions (Liang et al.,
2020).

There are few studies on the statistical line loss of UHV
transmission lines. The traditional methods use overly
simplified calculation models and processing methods to
simplify the calculation process, which cannot meet the
requirements of today’s power supply enterprises for line loss
management. Among the many causes of line loss anomalies in
the UHV transmission system, power theft is always one of the
most dominant causes of line loss anomalies. In addition to
electricity theft, common causes of line loss anomalies in the
actual grid include meter breakdown, unmetered use, unattended
use, and collection errors. Electricity theft refers to the user
through technical means to achieve for the meter
measurement becomes less or not measured and then achieve
the purpose of illegal use of electricity. Existing traditional power-
theft detection methods mainly have the following problems: 1)
manual screening of user power-theft is difficult; 2) detection
process is too complex; 3) low screening efficiency; and 4) the
required labor costs are huge (Jindal et al., 2016).

In general, offline calculation and online measurement require
a lot of time, material, and financial resources, while the forecast
can predict the amount of line loss, and then take appropriate
measures. It can be said as the relative reduction of the operator’s

maintenance pressure and financial pressure. Electricity supply
companies lack a fast and effective method for identifying line
losses caused by electricity theft. Therefore, researching a fast and
accurate line loss prediction technology is essential to improve the
security and stability of the power grid.

In recent years, with the vigorous development of large-scale
data, artificial intelligence, and other advanced technologies, the
traditional power grid has transformed into a smart grid, and
smart meters and power user electricity collection systems have
gradually become popular in power supply enterprises. After
long-term data accumulation, China’s power enterprises have
accumulated a large amount of historical electricity consumption
information, and there are three main types of data: the first is
power production data, including line loss and power data; the
second is power consumption data stored in the marketing
process of power enterprises, including power sales and
customer information; and the third is power enterprise
management data, including equipment maintenance and
other data. These data are an important basis for line loss
analysis and line loss management, but at present, power
supply enterprises do not have a high utilization in the face of
massive data and cannot realize effective, fast, and efficient
analysis, thus failing in line loss abnormality analysis. In
recent years, power supply enterprises are trying to use new
Internet technologies such as rapidly developing automation
technology, information and communication technology, data
mining, and deep learning to integrate existing isolated and
scattered power information and establish a UHV network
line loss monitoring and analysis system with reliable and
smooth operation, high information sharing, and effective data
integration, so as to effectively reduce losses and save energy and
realize economic operation of the power grid.

For specific measures to reduce losses, a demand analysis can
be conducted for power suppliers. Then, a suitable development
platform is selected to determine and diagnose the causes of
abnormal line loss areas, while logic analysis and development
design are carried out to launch the line loss abnormal intelligent
diagnosis system. The system mainly includes software function
modules such as storage and management, line loss abnormality
area query, line loss abnormality diagnosis and analysis, missing
data filling, and closed-loop management. It realizes effective
analysis and scientific diagnosis of line loss abnormalities, fine
management of line loss, and improves the efficiency of line loss
management. As the main input data of the intelligent diagnosis
system for line loss abnormalities, only improving the prediction
accuracy can ensure the reliability, effectiveness, and accuracy of
the intelligent diagnosis system (Yan et al., 2016).

Suppose artificial intelligence algorithms are used to predict
line loss, in that case, the powerful self-learning, generalization,
and nonlinear processing capabilities of neural networks can be
used to fit the relationship between the line loss and the
characteristic parameters. The accuracy of the prediction
method and the richness of the output results are in line with
the rapid development of the power industry. For the grassroots
managers of power grids, line loss has a direct guiding role in
daily line maintenance and management (Song, 2019). Accurate
line loss forecasting helps managers to understand line loss
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trends, promptly respond to line loss anomalies, and quickly
investigate and adjust line operation patterns. There are a few
cases in which the statistical line loss does not match the actual
value due to various influences such as abnormal equipment
collection, load transfer, and switching of power supply for dual
power users. The comparison between the predicted and actual
values of line loss can assist in verifying the accuracy and
reliability of UHV-network’s data measurement and network
topology connection. In addition, other traditional detection
methods include hardware status-based detection methods,
which use special equipment to improve detection accuracy,
but are costly to implement and require unannounced manual
inspection and random testing of on-site power equipment,
which is ineffective and time-consuming. The conventional
manual screening-based line loss management method does
not effectively reflect the interrelationship between power data,
which limits the real-time and accuracy of line loss analysis and
line loss abnormality diagnosis, and seriously limits the efficiency
of line loss management, especially with the popularization and
application of smart meters, the traditional manual conduct of
regional periodic spot checks and other inefficient power theft
inspection methods are gradually being eliminated.

Each individual AI algorithm has advantages and
disadvantages, for example, the SVR algorithm is fast to train,
and the LSTM has a strong predictive power for sequences with
strong jitter. To improve the prediction accuracy and reduce the
training time, a combined model can be used for line loss
prediction. To this end, the EEMD–LSTM–SVR algorithm is
proposed in this article, using EEMD for modal decomposition
and the combined LSTM–SVR model for prediction and using
incremental cross-validation and grid search tuning methods to
verify model validity and robustness. The objectives of this study
are as follows:

• Existing studies on line losses mainly focus on medium and
low voltage transmission networks, and there are few studies
on ultra-high voltage transmission line losses. In this article,
after carefully investigating the causes of line loss in EHV
transmission lines, we establish a multidimensional model
input system to extend the line loss prediction to the high
voltage domain.

• To address the difficulty of existing models to handle strong
jitter signals, this article first uses EEMD to perform
decomposition of line loss sequences.

• To improve the model prediction accuracy and model
training speed, this article uses SVR to predict the IMF
with stronger regularity to improve the training speed and
LSTM to predict the IMF with strong jitteriness to improve
the accuracy.

The research object of this article is the line loss prediction of
ultrahigh voltage transmission lines. First, use EEMD to
decompose the line loss data. Then, combine the decomposed
IMFS with active power, reactive power, line current and voltage,
and regional meteorological data. The final dataset is fed into an
LSTM or SVR model for model training, and incremental cross-
validation and grid search are used to enhance model

performance and complete model evaluation, followed by line
loss forecasting for the next 3 months. Experiments have proved
that the EEMD–LSTM–SVR model proposed in this article has a
better prediction effect than other models.

This article proposes a UHV line loss forecasting method
based on EEMD and LSTM–SVR. The novelty of this study is as
follows: 1) use LSTM to predict complex high-frequency IMFs,
and use SVR to predict regular low-frequency IMFs to make the
results more accurate; 2) the combination of EEMD and
LSTM–SVR makes the model more sensitive to changes in the
tag value and ultimately manifests itself as an improvement in
prediction accuracy; 3) the vision of line loss prediction is
extended to the UHV field, not limited to the distribution
network; 4) incremental cross-validation is used to validate the
model training process, interspersed with grid searches to tune
the model parameters. Based on multiple iterations of the
prediction process, incremental cross-validation ensures the
realism and robustness of the prediction model.

The rest of this study is structured as follows: Section 2
provides a literature review. Section 3 provides feature
engineering. Section 4 describes the modeling process of
EEMD–LSTM–SVR. Section 5 provides a case study. Section
6 presents concluding remarks.

In conclusion, with the rapid development of UHV
transmission technology in China, how to build UHV power
grid economically and effectively has become a top priority, and
transmission losses have an important impact on the economics
of UHV power grid. At the same time, the current research on line
loss mainly revolves around medium and low voltage distribution
networks, and there is little research on UHV line loss. Therefore,
this article focuses on the prediction of line losses in the UHV
transmission process and proposes a combined prediction model
EEMD–LSTM–SVR, which combines the modal decomposition
method with the combined model to effectively cope with the
challenges brought by the strong jitter of line loss sequences. First,
the decomposition helps the model to filter out the complex noise
in the line loss sequence and fully exploit the line loss pattern.
Second, compared with independent prediction models, choosing
the appropriate prediction model for each IMF will greatly
improve the prediction accuracy. Third, the selection of SVR
for prediction of IMFs with stronger regularity helps to improve
the model training speed. To demonstrate the effectiveness of the
combined prediction models, extensive literature will be cited in
the following to illustrate.

2 LITERATURE REVIEW

To improve the accuracy of line loss prediction, existing studies
mainly focus on mining the complex mapping relationships
between various influencing factors and line loss through
prediction models (Peng et al., 2021). The whole prediction
process can be divided into data preprocessing, model
construction, and evaluation. The most crucial part of data
preprocessing is the feature selection in dataset construction,
which will directly affect the training effect of the model (Sahlin
et al., 2017). UHV transmission line losses are heavily influenced
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by meteorology, and line losses on rainy and snowy days increase
exponentially compared to those on nice days. Existing models
are poor learners of meteorological factors, but if the long-term
relationships of hourly time series data from power markets, local
weather, and calendars are considered, the model prediction
accuracy will substantially improve (Tulensalo et al., 2020). In
Zhong et al. (2020), 32,000 stations in a city are taken as the
research object, which pays not only attention to its line
parameters and power but also attention to the number of
users and residents in the station and the total number of
electric energy meters in the station, which can further explore
the main factors affecting the line loss rate in the station. The
research in this article is about high voltage transmission line
losses, which are more sharply influenced by weather, so
meteorological factors, power system tide data, and electrical
energy data are considered.

In the model construction, using accurate predictive models
allows for better reliable and accurate planning and scheduling of
the UHV transmission system to ensure the benefits of grid
companies. However, line losses’ highly chaotic, intermittent,
and stochastic behavior implies a high degree of difficulty in

predicting line losses. Therefore, the use of ensemble empirical
mode decomposition (EEMD) for line loss prediction, which
decomposes original highly irregular values into regular IMFs,
helps to reduce the difficulty of line loss prediction and plays a
vital role in guiding the operational planning of the UHV
transmission system. The EEMD is an empirical
decomposition method that decomposes a time series into
numerous subseries according to different frequencies. EEMD
is used as a preprocessing technique for hybrid forecasting
models. Different prediction models are used to predict the
subsequences generated by the decomposition. In this article,
line loss generation is somewhat random, and it is challenging to
find periodic patterns. EEMD decomposes line losses into IMFs
with regularity, and the model will learn the line loss patterns
more accurately and perform better in line loss predictions
(Bokde et al., 2019). Common decomposition methods include
wavelet, empirical modal decomposition, seasonal adjust
methods, variational modal decomposition, and intrinsic time-
scale decomposition methods (Bokde et al., 2021).

As for the algorithm selection in model construction, in recent
years, based on the large amount of data generated by the

FIGURE 1 | Flowchart of data preprocessing.
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operation of the power system and the development of artificial
intelligence algorithms, traditional line loss calculation methods
have gradually developed to intelligent processing algorithms
represented by artificial neural networks (Zhang et al., 2018).
The least squares support vector machine (LSSVM) can be used
for both classification and prediction (Bokde et al., 2019; Chen
et al., 2021; Xia et al., 2021). The support vector regression (SVR)
improves the LSSVM, which significantly increases the speed of
operation (Liu et al., 2019). In addition, if the model parameters
are further optimized, higher prediction accuracy can be achieved
(Tan et al., 2015). Some studies perform principal component
analysis (PCA) and cluster analysis on the influence factors, or
decomposition on the target, to help the model be better trained
(Zhou et al., 2018). After these optimizations, the model can
perform well even when the target values contain complex noise
or substantial jitter (Wu and Peng, 2016).

In addition to LSSVM and SVR algorithms, other machine
learning models are also applied for prediction. Chang combined
the radial basis function (RBF) neural network and enhanced
particle swarm optimization (EPSO) for forecasting (Chang,
2013). In order to reduce huge losses brought by line loss, Tao
et al. developed a simultaneous prediction system based on PCA
and improved the CHAID decision tree (Tao et al., 2019). Yao
et al. established gradient boosting decision tree (GBDT) model
for predicting the line loss rate, which can identify the complex
and nonlinear relationship between line loss and other factors
(Yao et al., 2019). GBDT adopts the boosting idea based on the
random forest, which can build a weak learner at each iteration
step to make up for the shortcomings of the original model.
Random forest and SVM are regarded as the two best traditional
machine learning algorithms.

In the field of deep learning, Liu et al. proposed a novel method
based on the quantum genetic algorithm (QGA) and BP neural
network to accurately predict line loss (Liu et al., 2011). Artificial
neural networks (ANNs) can also be used for forecasting (Alamin
et al., 2020; Ti et al., 2021). Li et al. described a forecasting method
based on recurrent neural network (RNN), which can discover
nonlinear features and invariant structures exhibited in date and

labels (Li et al., 2019). Xin et al. presented a BP network for line
loss prediction, which has a stronger nonlinear mapping ability
(Xin et al., 2002). In Tulensalo et al. (2020), A long–short memory
(LSTM) recurrent neural networkmodel for line loss prediction is
proposed, which learns the laws of electric energy, seasonality,
and weather effects. RNN and LSTM have unique advantages in
processing time-series. To deal with the complex noise in the
target value, noise reduction or modal decomposition is often
carried out before sending it into the model. Zhou et al.
established a daily line loss rate prediction model of a power
distribution network based on the combination of denoising
auto-encoder (DAE) and long short-term memory network
(LSTM) (Zhou et al., 2021). The experimental results show
that the model has high accuracy in predicting the daily line
loss rate, moderate calculation speed, and practical value in
engineering applications. Deng et al. (2019) considered that
the actual line loss is affected by many factors such as
measurement, management, and communication. He also
proposes a deep neural network (DNN) to analyze the internal
relationship between different influencing quantities. This article
adds ensemble empirical mode decomposition (EEMD) on this
basis of Zhou et al. (2021). Through combined SVR with LSTM,
the experiments have proved that the model prediction will have
higher accuracy (Miraftabzadeh et al., 2021).

The aforementioned works of literature used neural network or
machine learning algorithms to forecast the transmission line loss;
most of them are for distribution network line loss calculation.
However, there are few kinds of research on the prediction of UHV
line loss. UHV line loss and distribution network line loss have
both difference and connection. Therefore, these neural network
models are significant for calculating UHV line loss.

Each of the aforementioned single models for line loss
prediction has advantages and disadvantages, whereas to
improve the prediction performance, hybrid models combine
different methodologies with taking advantage of each method.
Decomposition-based hybrid models that take advantage of time-
series decomposition methods have been reported frequently. It is
widely accepted that line loss time-series are highly volatile and

TABLE 1 | Table of raw data.

Dataset type Start–end time CF Concrete content

Watt-hour meter data 2017.9–2019.4 Day Forward active power and reverse active power, etc
Power flow data 2017.10–2019.1 15 min Voltage, current, and active power of the primary side
Meteorological data 2017.1–2020.12 1 h Temperature, humidity, precipitation, average wind speed, and direction, etc
Meter’s magnification -- Each plant watt-hour meter rate

TABLE 2 | Dissimilation treatment table of meteorological factors.

Meteorological factor Catastrophic weather Processing method

Temperature Incredibly hot weather Maximum of the day
Extremely cold weather Minimum of the day

Wind speed Daily mean wind speed The average
Precipitation Daily heavy precipitation (heavy rain) Maximum of the day
Air pressure Daily mean depression Minimum of the day
Relative humidity High humidity Maximum of the day
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nonstationary. It is challenging to model the original time-series
by a single method. Decomposition-based methods take
advantage of decomposition methods, in which the original
time series can be decomposed into different subseries, which
can be modeled more effectively than the original time series. In
this article, a combined model prediction method based on
EEMD decomposition is proposed for line loss time-series.
The high-frequency IMFs will get better prediction results
using the deep learning method (LSTM) due to the high-
frequency jitter nature, while the low-frequency IMFs uses the
machine learning algorithm (SVR) to improve the model
prediction speed, and for the random component, the
prediction results of the two models are compared to choose a
better one (Zheng et al., 2019; Liu et al., 2021).

In terms of model evaluation, the performance of forecasting
methods is related to many factors, and existing studies focus
more on the nature of the time series itself and the choice of
forecasting models. Each forecasting process should be studied
and matched with a full range of aspects such as seasonality and
trend of the data and stochastic parameters of the model.
Sometime, a model will fit better for datasets with seasonality
and perform poorly for data with trend and stochasticity. In
addition, the error evaluation function of the model can also have
an impact on the prediction results. In this article, we use
incremental cross-validation to validate the model training
process, interspersed with grid searching to tune the model
parameters. The cross-validation process iterates over the
model several times to ensure the realism and robustness of
the models (Bokde et al., 2020; Sun et al., 2021).

In view of the research gap mentioned previously, this study
adopts the combined EEMD–LSTM–SVR prediction model with
shorter training time and stronger mapping capability to predict
the UHV line loss and uses incremental cross-validation and grid
search tuning methods to verify the model validity and
robustness. Compared with EEMD–LSTM, EEMD–SVR,
LSTM, and SVR algorithms, the proposed method performs
best on MAPE%, SMAPE%, MAE, MSE, RMSE, and R2.

3 FEATURE ENGINEERING

The characteristics of electric energy loss in UHV transmission are
obviously different from those in the distribution network. In

addition to the resistance loss, there is also corona loss in UHV
transmission. Resistance loss is caused by resistance heating when the
currents flow through the conductor. Corona loss is caused by the
corona phenomenon, which is significantly affected by weather
conditions and air humidity. This article selects a 1,000-kV
transmission line as the research object. After comprehensive
consideration from the actual situation to the difficulty of data
acquisition, choose the running-state of the line parameters,
including active power, reactive power, voltage, and current.
Meteorological factors such as humidity, wind speed, temperature,
atmospheric pressure, and other factors are selected. The
preprocessing for the aforementioned factors is as follows (Baran
et al., 2013; Rudolf et al., 2019; Simões et al., 2020; Savian et al., 2021):

3.1 Preprocessing of Time Series Data
Operating data of transmission lines consist of various factors. Data
structures are diverse from time scales to formats, and it appears
challenging to mine the information and utilize the data
adequately. The data such as power flow, electric energy, and
weather are called time series data because of their relationship
with the recording time. Due to the different settings of measuring
instruments, there are differences in time scale and recording
frequency among time series data. Therefore, it is necessary to
clean and aggregate data to construct a normalized timing dataset.
In this article, measured data of the power grid transmission lines
are normalized; thus, a structured historical transmission line
database is constructed. The technical route is shown in
Figure 1. The data used in this article are summarized in Table 1.

The data measured using a watt-hour meter, monthly power
flow data, and meteorological data are in different measuring
frequencies. Data measured using a watt-hour meter are recorded
daily, power flow data are recorded every 15 min, and
meteorological data are recorded every hour. It is necessary to
clean power flow data and meteorological data to the maximum
time scale to realize accurate aggregation in the time dimension.

According to long-term practical experience and the data collected
by the electricity department for many years, it can be seen that
lightning, rainstorm, hottest temperatures, and other extreme weather
will have a significant impact on power generation, transmission, and
electricity consumption (Zainuddin et al., 2020; Audinet et al., 2014).

Under extreme weather, the line loss of transmission lines is
prone to abnormal increases, such as increases of resistance loss
caused by the hottest temperatures and corona discharge caused

FIGURE 2 | EWMA feature of transmission line.
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by intense convection weather. Therefore, the preprocessing of
daily meteorological data is shown in Table 2. After considering
severe weather phenomena, the dissimilated data processing
method is adopted to deal with different influences of
meteorological factors on transmission lines (Li et al., 2011;
Khan and Islam, 2019; Huang et al., 2021).

As for power flow data, choose the average as an observed
value under the diurnal time granularity. After the
aforementioned processing, the frequency of data is unified on
a day-scale, and the transmission line’s operating dataset is
aggregated according to the recording time.

3.2 EWMA Feature Construction of Line
Loss
Exponentially weighted moving average (EWMA) is often used to
describe trends of time series. It considers the high weight of
recent data and at the same time gradually reduces the weight of
recent data to compensate overall trend. This method can forecast
the future trend of line loss and enrich datasets further (Agami,
2011).

The process of constructing the EWMA feature is as follows:
for the daily line loss sequence of one line, n is the number of
samples of line loss sequence, and the EWMA feature of daily line
loss is calculated by Eq. 1.

⎧⎪⎨⎪⎩ ei � l0, i � 0, 1
ei � (1 − α)ei−1 + αli−1, i � 2, 3 . . . n

ei � (1 − α)en + αln, i> n
, (1)

where α is the smoothing parameter. The value range of α is
(0, 1], and the differential evolution method is used to minimize
the objective function to obtain the optimal α value. The
calculated objective is shown in Eq. 2:

α � argmin⎛⎝∑N
i�1

							
(li − ei)2

√ ⎞⎠. (2)

As shown in Eq. 1, EWMA feature after day n + 1 will remain
unchanged, seriously affecting the accuracy of medium- and
long-term line loss calculations. Considering the relation
between line loss and time distribution of power supply, line
loss data sequences are broken into six parts: Monday, Tuesday,
Wednesday, Thursday, Friday, and the weekend. Calculating
EWMA characteristics of each class and aggregating six
EWMA characteristics in the date order. Figure 2 shows the
variation of actual statistical line loss and the EWMA feature of
1,000-kv transmission line.

The red line in Figure 2 is EWMA, which can reflect the
trend of line loss changing shortly and provide reference
information for line loss prediction in the next period. The

FIGURE 3 | Humidity curve characteristic chart.

FIGURE 4 | Schematic diagram of the basic unit structure of LSTM.
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blue line in Figure 2 is the simple moving average
characteristic (SMA). SMA is the average value of line loss
of N days before a certain date node, which is a simple
extraction of line loss changing trend. The EWMA feature
can extract the trend of line loss in the time range while
eliminating the influence of complex noise and enriching
the dataset.

3.3 Curve Feature Construction of Time
Series Data
Curve features include average, minimum, maximum, and
average difference values used to describe the average trend
and extreme value of time series data and changes of time
series data on different days. For time-series data of impact
quantity V, Vi

w means impact quantity within time-window
w, where date i changes from 1 to 7. Equations 3 and 4 show
calculation of Vmean and Vmean diff. The time-window w is set
as 7 days according to experience. Drawing humidity curves
of 1,000-kV transmission line as shown in Figure 3.

Vmean � ∑w
i�1
viw/w, (3)

Vmean−diff � ∑w
i�2
(viw − vi−1w )/(w − 1), (4)

The construction of curve features of time series data can
maximize data features and help in model learning. Utilizing the
average value, extremum, and average difference value, the
olfactory sense of the line loss calculation model will be more
sensitive. Data of only one dimension are expanded to four
dimensions. With the increase of data volume, the model can
also get better predicting results.

4 METHODOLOGY

4.1 EEMD
Line loss sequence is an original nonstationary signal, and
empirical mode decomposition (EMD) is a decomposition
method used to deal with nonlinear and nonstationary signals.

FIGURE 5 | Prediction flowchart of EEMD–LSTM–SVR.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8117458

Ding et al. Line Loss Prediction Using EEMD-LSTM-SVR

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The decomposition results of EMD are shown in Eq. 5 (Zhou
et al., 2019).

X(t) � ∑n
i�1
Ci(t) + rn(t), (5)

where ci(t) is a IMF component, and rn(t) is residual.
The EMD processing flow is as follows:

1) The extreme points of the original signalX(t) are demarcated;
all the extreme points are collected to form the upper and
lower envelope (l1l2). m1 is obtained through processing for
envelope (l1l2).

m1 � (l1 + l2)/2. (6)
Calculate the residual of the original signal m1 and h1:

h1 � X(t) −m1. (7)
Iterate until hk reaches the constraint requirements, denoted

as C1 (IMF1).

2) Calculate the difference between the original signal and IMF1
as a calculation input r1 of the new round:

r1 � X(t) − C1. (8)

3) Repeat the aforementioned steps, and finally get n IMFs and
residual components rn(t).

In the process of power operation, there will be intermittent
signals in the statistical line loss. The modal aliasing phenomenon
occurs in the decomposition process of EMD, resulting in poor
expression of IMF components. But, EEMD adds the white noise
in the original statistical line loss, which can perfectly deal with
the previous problem.

The EEMD processing flow is as follows:

1) Add a group of white noise signals to the original data.
2) Perform EMD decomposition on the new sequence.
3) Repeat the EMD decomposition, adding white noise of

different amplitude each time to obtain N groups of IMF
components and residual sequences.

4) Perform intermediate processing on the N groups of IMF
components, and integrate them to obtain the EEMD
decomposition result.

4.2 LSTM
The long short-term memory network (LSTM) solves the gradient
disappearance of the recurrent neural network (RNN) during remote
transmission. LSTM currently has an excellent performance in
natural language processing and time series prediction. The basic
unit structure diagram is shown in Figure 4 (Wen et al., 2019).

In Figure 4, Xt and ht are the input and output of the basic unit
at time t, it and ft are the output of the input gate and forget gate at
time t, respectively, Ot is the output of the outputting-gate at time
t, and gt is the unit state at time t. The specific calculation
equations are as follows:

1) Input status.

gt � tanh(Wigxt + big +Whcht−1 + bhg), (9)

2) Gating status.

it � sigmoid(Wijxt + bii +Whiht−1 + bhi), (10)
ft � sigmoid(Wifxt + bif +Whfht−1 + bhf), (11)
Ot � sigmoid(Wioxt + bio +Whoht−1 + bho), (12)

3) Memory status.

Ct � ft×Ct−1 + it×gt, (13)

4) Output status.

ht � ot×tanh(Ct), (14)
where tanh is the hyperbolic tangent function, W is the weight
vector, and b is the paranoia.

It can be seen from Eqs 10–12 that LSTM fully considers the
correlation between various data while making predictions and
gives sufficient space for important information. Therefore, it can
usually obtain more desirable results when performing time-
series data prediction.

4.3 SVR
The least squares support vector machine (LSSVM) combines
the kernel function with ridge regression and uses the least
squares error function to fit the data, but the amount of
calculation is the third power of samples, which is not
conducive to simplifying the model and improving
calculating speed. On this basis, a support vector machine
regression (SVR) is proposed, which greatly reduces the
computational complexity through support vectors, and
has the same ability as LSSVM to fit samples with high
latitude.

The SVR regression method is widely used in time series
forecasting. It has strong generalization ability in dealing with
lightweight, nonlinear, and time-series samples. SVR nonlinearly
maps the input sample data to the high-dimensional feature space
for linear regression, so as to perform nonlinear fitting in the data
space. Different from the conventional regression method, SVR
introduces an insensitive loss factor ε. When the absolute
difference between the predicted and actual values is less than
ε, the calculation stops, and the predicted result is retained. The
optimization process of the SVR-based time series forecasting
model is as follows:

Given a sample set S � {xi, yi}ni�1, where x is the input vector,
xi ∈ Rn, and y is the output vector (label), y ∈ R. The nonlinear
mapping in the SVR method is defined as:

f(x) � ωϕ(x) + b, (15)
where x is the input data, ϕ(x) is the nonlinear mapping function,
ω is the weight, and b is the bias. Combining principles of
minimizing structural risk, the solution is transformed into an
optimization problem, namely:
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1
2
‖ ω‖2 + C∑n

i

L(f(xi), yi), (16)

where L is the loss function. C is the penalty factor used to adjust
the relationship between model complexity and fitting accuracy.
The larger the C value, the more attention will be paid to outliers.
By introducing a slack variable ξi and correcting outliers, the
aforementioned problem is transformed into:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
1
2
‖w‖2 + C∑n

i�1
(ξ i + ξpi )

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yi − wφ(xi) − bi ≤ ε + ξi

−yi + wφ(xi) + b≤ ε + ξpi , i � 1, 2, ..., n

ξ i ≥ 0, ξ
p

i ≥ 0

, (17)

where ε is the insensitive loss factor, which represents the
maximum allowable error, ε > 0. At this point, the regression
problem is transformed into an objective function optimization

problem. Continue to introduce the Lagrange multiplication
operator, we can get:

maxR(αpi , αi) � −1
2
∑n
i,j

(αp
i − αi)(αp

j − αj)ϕ(xi)ϕ(xj)
−∑n

i

αi(yi + ε) +∑n
i

αpi (yi − ε); (18)

s.t.

⎧⎪⎪⎨⎪⎪⎩∑n
i�1
(αi − αp

i ) � 0

0≤ αi, αpi ≤C
, (19)

where αi and αpi is the Lagrangian multiplier. According to
Mercer’s theorem, the nonlinear mapping SVR expression is:

f(x) � ωϕ(x) + b � ∑n
i

(αi − αpi )K(xi, x), (20)

where K(xi, x) � ϕ(xi)ϕ(xj) is the kernel function. In this
article, three kernel functions are used to compare and predict

FIGURE 6 | Historical data of statistical line loss.

FIGURE 7 | EEMD decomposition renderings.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 81174510

Ding et al. Line Loss Prediction Using EEMD-LSTM-SVR

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


the low-frequency components of EEMD, and the kernel function
with the slightest error is selected for each low-frequency
component. The linear kernel, polynomial kernel, and RBF
kernel are, respectively, Eqs 21–23:

K(xi, xj) � xT
i xj, (21)

K(xi, xj) � (γxT
i xj + r)d, γ> 0, (22)

KRBF(xi, x) � exp( − γ ‖ xi − x‖2), (23)
where γ is the nuclear parameter, γ � 1/(2σ2). The penalty factor
C and the nuclear parameters γ directly determine the accuracy of
the SVR method.

4.4 EEMD–LSTM–SVR
This article combines EEMD with LSTM and SVR
algorithms, and the model prediction flowchart is shown

in Figure 5. First, the statistical line loss is decomposed by
EEMD, and each IMF component is combined with the
operating dataset of the UHV transmission line. After
being normalized, the combined dataset is put into LSTM
and SVR algorithms for training and prediction. Specific
steps are as follows:

1) Use EEMD to decompose line loss. According to the
decomposition process of EEMD mentioned earlier, the
decomposed components are defined into three categories:
high-frequency, low-frequency, and random IMFs.

2) Fuse the statistical line loss IMFs with the training dataset, and
normalize the training dataset and label.

3) Train each normalized fusion dataset separately. Each IMF
fusion-dataset is fed into EEMD–LSTM or EEMD–SVR for
training.

4) Model evaluation is performed using incremental cross-
validation, while model parameters are optimized by grid
search.

5) Comparing the predicted values of the twomethods and using
the best configuration model to predict the line loss and
output the predicted value of each IMF.

6) Superimpose all the predicted components to restore the
predicted line loss.

FIGURE 8 | Flowchart of incremental cross-validation and grid search.

FIGURE 9 | Schematic diagram of incremental cross-validation of time-
series data.

FIGURE 10 | Box plots of feature 4 for incremental cross-validation and
grid search using LSTM. (A) Optimization of n_cell from 10 to 100 in units of
10; and (B) optimization of n_cell from 50 to 70 in units of 1.
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5 SIMULATION EXPERIMENT AND DATA
ANALYSIS

The target value of the dataset in this article is the statistical line
loss of the UHV transmission line from 27 September 2017 to 29
April 2019, which is updated daily with 509 data points. The first
400 days are used as training data to predict the statistical line

losses for the next 3 months (from 25 December 2018 to 15 April
2019). The historical data of statistical line loss are shown in
Figure 6, which has a strong nonlinear characteristic. The line
loss sequence jitter is very sharp, with two peaks, the first in July
and August 2018 and the second in December 2018. The
residential load peaks in summer and winter and the power
that needs to be transmitted by the high voltage transmission
lines increase accordingly, so the losses also peak.

In this article, EEMD is used to decompose the statistical line
loss, as shown in Figure 7. The figure contains the original statistical
line loss and the decomposed eight IMFs. After decomposition,
IMF1~IMF2 fluctuate frequently and are called high-frequency
components. IMF3~IMF5 show strong randomness. IMF6~IMF7
have certain periodicity and linear characteristics and belong to low-
frequency components. IMF8 is the residual.

5.1 EEMD–LSTM–SVR With
Cross-Validation and Grid Search Tuning
After EEMD, each IMF needs to be learned and predicted
separately. Cross-validation is often applied in the process of
building prediction models and validating model parameters.
Specifically, existing datasets are reused and sliced using
different ways, and then various combinations of training and
validation sets are fed into the model, where the training set is
used for model training and the validation set is excellent for
validating the model. With different partitioning methods, the
data that are used as training at one time may become samples in
the test set in the next iteration, thus achieving cross-validation.
As for time-series data, incremental window cross-validation or
fixed window cross-validation can be used to ensure temporal
integrity as well as to prevent future data leakage. Grid search
tuning is an automatic tuning method, where the optimal
parameters are derived by specifying a prediction model with
a given parameter tuning range. This method is more
advantageous when applied to small datasets, and the sklearn
library provides a function GridSearchCV specifically for
debugging parameters (Bokde et al., 2020; Liu et al., 2021).

Applying cross-validation to a small sample set maximizes the
sample information. Also, by repeatedly applying the trained
model to new data, the overfitting can be reduced to a certain

FIGURE 11 | Box plot of feature 4 for incremental cross-validation and
grid search using LSTM. (A) Optimization of n_batch in units of 10 from 10 to
100; and (B) optimization of n_batch in units of 1 from 50 to 70.

FIGURE 12 | Comparison of prediction results before and after incremental cross-validation of the LSTM model.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 81174512

Ding et al. Line Loss Prediction Using EEMD-LSTM-SVR

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


extent, thus increasing the model’s robustness. After grid tuning,
the model’s training speed and prediction accuracy have been
greatly improved.

After the decomposition of the statistical line loss, the
processing for the different IMFs is as follows, and the
flowchart is shown in Figure 8.

• First, choose a suitable predicting model. This article has
two alternative predicting models: LSTM and SVR.

• Then, incremental division is performed for each IMF. The
last 3 months of data were taken out. This part will not
participate in the training process because in predicting
practical applications, this part is unknown. It is exactly the

FIGURE 13 | Comparison of prediction results before and after incremental cross-validation of the SVR model.

FIGURE 14 | Prediction results of each IMF component using EEMD–LSTM–SVR.
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value we need to predict. The incremental division is used
for the first 400 days of data, and the number of increments
is set to 6. Figure 9 shows the schematic.

• The grid search is performed for six different combinations
of datasets, where the LSTM is adjusted for the number of
hidden layer cells and the number of batches fed into the
model each time. Specifically, the number of cells is first
adjusted to determine the approximate range in intervals of
10 from 10 to 100, and then the best parameters are searched
for in the reduced range in units of 1. The judging criterion
is the box plot of the validation loss. After determining the
number of cells, it is substituted into the model, and the
same steps are used to search for the optimal n_batch. The

other parameters of the LSTM are set as follows: the
optimizer is Adam, the activation method of the fully
connected layer is linear, the loss evaluation indicator is
MSE, and the epochs-num in each iteration is 500.

• SVR mainly adjusts the kernel function and penalty factor
C. The kernel function includes rbf, linear, and poly. The
penalty factor C is tuned in the range from 0.01 to 100 in an
isometric series with a total of 10 elements.

• After selecting a suitable prediction model for each IMF and
performing cross-validation and grid tuning, the best
parameters are used for prediction. The prediction results
are superimposed to obtain the final statistical line loss
prediction.

FIGURE 15 | Prediction results of EEMD–LSTM–SVR with or without cross-validation.

FIGURE 16 | Prediction results of each model. The order is EEMD–LSTM–SVR, EEMD–LSTM, EEMD–SVR, LSTM, and SVR. The final one is a comprehensive
comparison.
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Among the eight IMFs, IMF1, IMF2, IMF4, and IMF5 are
predicted by LSTM, and IMF3, IMF6, and IMF7 are predicted by
SVR. IMF8 is the residual quantity, which can be derived using
linear fitting and does not require specialized prediction. For the
aforementioned incremental cross-validation and grid research,
IMF4 is selected for a detailed explanation.

Component 4 is a random IMF, and the first step is to predict
it using LSTM. The first 400 days of data are taken as the training
set and the last 3 months of data as the test set. The test set is not
involved in training throughout to avoid future data leakage
during the prediction process. The training set is then divided
incrementally, with the first iteration using the first 66 days of
data and then using the next 66 days for validation; the second
iteration adds the previous validation set to the training set, using
the first 132 days of data for training and the immediately
following 66 days of data for validation and incrementally
cross-validating like this. After advancing six times, all the
data in the training set are well trained and learned.

The combination of cross-validation and grid search is then trained
by taking cell values from 10 to 100 in units of 10, and the validation
process is performed six times, each time a new cell value is entered.
Figure 10A shows the box plot of six times cross-validation for each
cell value, and the overall loss level in the region from 50 to 70 is the
smallest. Then, the cell search is carried out again in 50 to 70 in units of
1. As shown in box Figure 10B, when the cell is 52, the box figure is
the shortest, and the outlier points are evenly distributed. The n_cell in
the model is set to 52, and the aforementioned steps are repeated to
continue the optimization search for n_batch, as shown in Figure 11.
First, the range from 10 to 100 is narrowed to 10 to 30, and then the
search is conducted one by one, and the best performance is achieved
when the n_batch is 14.

The parameters after the optimization are brought into the
model, and the test set is input into the model for prediction.
Figure 12 shows the comparison between the prediction results
without optimization and after the optimization. It can be seen that
the delay of the prediction curve is improved by adjusting n_cell,
and the smoothness of the prediction curve is improved by
adjusting n_batch after using cross-validation tuning. The root-
mean-square error of the prediction curve is 808.533 MWH before
the adjustment and 171.205 MWH after the adjustment, and the
root-mean-square error decreases 78.83% from the original one.

The second part is the prediction of IMF4 using SVR, still using
incremental cross-validation, and the kernel function and penalty
factor C are adjusted. The comparison graph of prediction results
before and after adjustment is shown in Figure 13. The root-mean-
square error of prediction before adjustment is 833.325MWH, and
after adjustment, the root-mean-square error of prediction is
832.195 MWH, and the root-mean-square error has decreased

by 0.1% from the original one. Compared with the LSTM model,
the prediction results are poor and time-shifted. Therefore, the
LSTM was finally selected for the prediction of IMF4.

After performing the aforementioned operations on each IMF,
the final prediction plot is shown in Figure 14. According to the
different characteristics of IMFS, the high-frequency components
IMF1 and 2 are predicted by LSTM. The overall results of IMF1
and 2 are good, but due to the strong jitteriness of the high-
frequency components, it can be seen in the figure that the
predictions are poor in some tip parts. However, the time-
shiftedness that would exist in time series prediction has been
resolved by incremental cross-validation. Among the stochastic
components, IMF3 is better predicted by SVR, while IMF4 and 5
are better predicted by LSTM. The IMF3 prediction has a slight
time-shift, but the SVR training is fast, so it achieves a very good
prediction in aggregate. The IMF4 and 5 prediction is an exact
match to the actual value. SVR predicts the low-frequency
components IMF6 and 7 due to their regularity, to speed up
the model training. The predictions of IMF6 and 7 have a slight
time-shift, but the overall prediction is excellent. IMF8 is a residual
series with very strong regularity, and a great prediction can be
obtained with a linear fit. Figure 15 is the prediction results of
EEMD–LSTM–SVR with or without cross-validation, from which
we can see that the tip of the red curve is moremoderate and closer
to the real line loss. The blue curve does not use incremental cross-
validation which tends to overfit in the tip part of the curve and has
some time-shift. This demonstrates that the use of incremental
cross-validation and grid search can effectively prevent model
overfitting and improve model prediction accuracy.

5.2 Benchmark Models
For energy managers and power operators, accurate line loss
forecasting is imperative to reduce the uncertainty of statistical
line losses. The strong jitteriness of statistical line losses poses a
challenge to accurate forecasting. In this article, we decompose
the line loss by EEMD. As a preprocessing technique, EEMD
decomposes the statistical line loss into eight subseries of different
frequencies and feeds the decomposition results into various
models for learning prediction. The statistical line loss is
originally strongly uncertain and jittery, while the decomposed
IMF shows regularity and smoothness, which help the model
learning, thus improving the prediction accuracy.

In this section, independent LSTM and SVR are used for
prediction as benchmark models. Then, they are compared with
EEMD–LSTM–SVR, EEMD–LSTM, and EEMD–SVR. The
difference between the models is the use of a combined
predictive model and EEMD decomposition. In order to verify
the ability of EEMD to help the model learn target value features

TABLE 3 | Accuracy evaluation table of each model.

Model MAPE% SMAPE% MAE/MW MSE/MW RMSE/MW R2

EEMDLSTMSVR 6.4736 7.1800 1.0844 1.7729 1.3315 0.9878
EEMDLSTM 8.6747 9.0375 1.3496 2.9684 1.7229 0.9796
EEMDSVR 31.8394 27.9315 4.2579 27.1812 5.2135 0.8140
LSTM 41.3902 47.4721 5.6818 59.7286 7.7284 0.5913
SVR 42.9956 48.8779 6.0938 61.8205 7.8626 0.5770
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and where the combined model outperforms the independent
model, predictive performance was assessed on daily predictions.
Since the target values are significantly greater than zero in both
cases, the mean absolute performance error (MAPE) is an
appropriate selection for measuring the forecasting error.

The MAPE is defined as follows:

MAPE � 100%
n

∑n
i�1

∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣, (24)

whereN denotes the number of forecasted points, yi denotes the
actual value, and ŷi denotes the forecasted value.

In order to evaluate the prediction results of various models
more comprehensively, the following five evaluation indicators
are also taken into consideration.

Symmetric mean absolute percentage error:

SMAPE � 100%
n

∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣(∣∣∣∣ŷi

∣∣∣∣ + ∣∣∣∣yi

∣∣∣∣)/2. (25)

Mean absolute error:

MAE � 1
n
∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣. (26)

Mean square error:

MSE � 1
n
∑n
i�1
(ŷi − yi)2. (27)

Root mean square error:

RMSE �
													
1
N

∑n
i�1
( yi − ŷi)2√

. (28)

R-square:

R2 � 1 − ∑n
i�1(ŷi − yi)2∑n
i�1(�yi − yi)2. (29)

To ensure the reliability of the comparison results, all five
models use incremental cross-validation and grid search. The
differences among the five models are whether to use EEMD and
which prediction algorithm to use. The prediction results of each
model are shown in Figure 16. The subplots one to five show the
prediction of the five models individually, and the last subplot
shows the comparison of the five models. It can be found that the
prediction curves still show strong volatility overall.

As can be seen in Figure 16, using EEMD–LSTMhas been able
to achieve an excellent prediction with an R2 of 0.9796, but using
the combined model EEMD–LSTM–SVR was able to improve
MAPE by 2.2% and MAE by 265.2 kwh. The case illustrates that
the combined model can indeed effectively improve the model
prediction accuracy. Among them, the trends of the prediction
curves of EEMD–LSTM–SVR and EEMD–LSTM are basically
consistent with the actual values, and the EEMD–LSTM–SVR
model has the best prediction effect, the most accurate tip fitting,
and the closest to the real value, indicating that
EEMD–LSTM–SVR has the best prediction result. The

prediction effect of EEMD–LSTM is close to that of
EEMD–LSTM–SVR, but the fit at the tip is slightly worse and
the prediction accuracy is slightly lower. Compared with the
EEMD–LSTMmodel, the prediction accuracy of the EEMD–SVR
model is greatly reduced and not only appears time-shifted but
also biased to predict the mean at the tip, indicating that the
prediction effect of the machine learning model SVR is worse
than the learning ability of the deep learning model LSTM. The
LSTM model is more advantageous in dealing with time series
and high-frequency components. The LSTM and SVR without
EEMD modal decomposition have the worst prediction effect,
with obvious time-shiftedness, and the prediction result tends to
the average trend of the curve.

The model accuracy evaluation is shown in Table 3. The table
shows the values of the corresponding evaluation metrics for the
five models: MAPE%, SMAPE%, MAE, MSE, RMSE, and R2.
EEMD–LSTM–SVR performs best in all metrics. R2 is as high as
0.9878, MAPE% is only 6.4736, and MAE is only 1.0844 MW.
EEMD–LSTM is closer to EEMD–LSTM–SVR metrics, while
EEMD–SVR has a disconnected decline in metrics. The
individual prediction models LSTM and SVR, on the other
hand, have the worst performance in all indicators.

The prediction effect of EEMD–LSTM is significantly better
than that of EEMD–SVR. Reflected in the evaluation indexes, the
R2 of EEMD–LSTM is 0.9796 and that of EEMD–SVR is 0.8140;
the MAPE of EEMD–LSTM is reduced by 23.16 compared with
that of EEMD–SVR; the MAE of EEMD–LSTM is reduced by
68.3% compared with that of EEMD–SVR; MSE of EEMD–LSTM
is reduced by 89.08% compared to that of EEMD–SVR. The
difference between LSTM and SVR models is not large. The R2 of
LSTM is 0.5913, and the R2 of SVR is 0.5770. The reason why the
EEMD–LSTM model will outperform EEMD–SVR in all
evaluation indexes is due to the strong learning ability of
LSTM for high-frequency components, and the decomposition
of regular quantities by EEMD further strengthens the learning
capability. It is proved that LSTM, as a deep learning model,
further strengthens the learning ability for high-frequency
components after EEMD decomposition of target values.

In order to show the prediction results more intuitively, five
indicators are used to describe the prediction results of the five
models, and the following conclusions can be drawn from the
comprehensive evaluation results:

1. The prediction effect of the combined model is much better
than that of the independent model. The indicators of the
EEMD–LSTM–SVR model in the comprehensive evaluation
Table 3 are significantly smaller than those of EEMD–LSTM
and EEMD-–SVR. Independent models may have unique
advantages in one aspect, but they also have corresponding
disadvantages. For example, the SVRmodel is relatively simple
and fast to train, but it is often difficult to learn the pattern
when the target curve changes drastically, resulting in poor
prediction results. The LSTM, on the other hand, has
advantages in dealing with frequently changing time series,
but the training time is longer. The combined model combines
the advantages of both algorithms, which can speed up the
model training and ensure the prediction accuracy. Therefore,
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when performing time series prediction, modal decomposition
of the target curve and then adopting the combined model
prediction can effectively improve the prediction
performance.

2. The EEMD–LSTM model predicts better than the
EEMD–SVR model, and the LSTM model predicts better
than the SVR. As can be seen from Table 3, the MAPE%
value of the EEMD–SVRmodel is almost four times that of the
EEMD–LSTM model. Influenced by the simpler structure of
the SVR model, the SVR model has a weaker learning ability
when dealing with some complex change trends. The machine
learning model SVR is not so good at predicting high-
frequency components compared to the deep learning
model LSTM. The EEMD–SVR model performs
significantly better than the SVR but still has a large gap
with the EEMD–LSTM model. LSTM, as a deep learning
algorithm specialized in processing temporal data, is indeed
more advantageous.

3. EEMD can significantly improve model learning and
prediction capabilities. EEMD–LSTM improves MAPE by
32.72% on the basis of LSTM, and EEMD–SVR improves
MAPE by 11.16% on the basis of SVR, indicating that modal
decomposition of line loss helps the model to learn its
nonlinear characteristics and performs better in prediction.

4. The EEMD–LSTM–SVR model has the best predictive
performance. The MAE, MSE, and RMSE of the
EEMD–LSTM–SVR model are 1.0844, 1.7729, and 1.3315
MW, respectively. Only one-fifth of that of the EEMD–SVR
model indicates that the EEMD–LSTM–SVR model has the
best prediction performance with less discrete results and
better single-point prediction. The MAPE% and SMAPE%
of the EEMD–LSTM–SVR model are 6.4736 and 7.18,
respectively. At least 2.2011 and 1.8575 lower than the
other four models, indicating that the EEMD–LSTM–SVR
model has less prediction bias and higher reliability of
prediction results. The R2 of the EEMD–LSTM–SVR model
is close to 1, which demonstrates that the EEMD–LSTM–SVR
model has a better overall fitting degree.

In conclusion, EEMD–LSTM–SVR achieves the accurate
prediction of line loss of UHV transmission lines, which has
important scientific and practical significance. 1) The case shows
that EEMD is suitable for dealing with strong jittering target
values. It solves the problem of difficult nonlinear target
prediction and meets the engineering requirements. 2)
Accurate line loss prediction improves energy utilization
efficiency and can effectively predict power theft as well as
extreme weather loss, which improves the economic efficiency
of power grid companies. 3) Stable and reliable statistical line loss
prediction is an important basis for ensuring the operational
safety of the UHV transmission system, reasonable power
generation planning by power generation departments, and
timely grid dispatch. Accurate line loss prediction is helpful
for grid maintenance personnel to arrange timely
maintenance, reduce the impact of line loss to the power
system, and ensure safe and stable operation of the power
system. 4) The EEMD–LSTM–SVR prediction model can also

be used for the prediction of other clean energy sources, such as
reducing wind power uncertainty and improving the accuracy of
photovoltaic power generation prediction, and this model
provides a new guidance method for the production and
utilization of clean energy.

6 CONCLUDING REMARKS

In this work, we construct trend and curve characteristics of
time series data and other methods to expand the dimension
of input data, which can more finely describe the running
condition of the line with different line loss values. Then, we
proposed a hybrid methodology to combine EEMD with SVR
and, in particular LSTM, for predicting daily UHV line loss.
First, the line loss is decomposed into trend components and
random and high-frequency IMFs. The addition of EEMD
can help the model learn data features better. The
combination of artificial intelligence algorithm LSTM and
machine learning SVR can not only further improve model
calculation accuracy but also further save model
training time.

Compared with several models, the actual electric line loss data
were used to verify the model. The results show that

1. Compared with EEMD–SVR, the MAE of
EEMD–LSTM–SVR decreased by 74.53%, RMSE decreased
by 74.46%, and MAPE% decreased by 25.37. Compared with
EEMD–LSTM, EEMD–LSTM–SVR reduced the MAE by
19.65%, RMSE by 22.72%, and MAPE% by 2.2. It shows
that using machine learning to predict low-frequency
components and applying artificial intelligence algorithms
to predict high-frequency components can greatly improve
prediction accuracy. That is, the combined model performs
better than the individual models.

2. Compared with SVR, the MAE of EEMD–SVR decreased by
30.13%, RMSE decreased by 33.69%, and MAPE%
decreased by 11.16. Compared with LSTM, the MAE of
EEMD-LSTM decreased by 76.25%, RMSE decreased by
77.71%, and MAPE% decreased by 32.72. The difference
between them is whether the line loss is decomposed by
EEMD. The results show that EEMD of line loss series can
effectively separate the complex information contained in
the original series and then predict each component
separately, which helps to improve the prediction
accuracy of the model and the prediction ability of the
line loss trend. In addition, using EEMD can also reduce the
model computation time.

3. EEMD–LSTM–SVR has the highest R-square, of which is as
high as 0.9878. The mean R-square of the model with EEMD
reached 0.9271, while the mean R-square of the model without
EEMD was only 0.5841. It indicates that this method has good
application prospects for line loss forecasting. The robustness
of the model is also reliably guaranteed by using incremental
cross-validation and grid search.

The main contributions of this article are:
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• Previous studies, including various machine learning
models and deep learning models, have been shown to
be useful for line loss prediction. However, changes in
the weights and threshold parameters of neural networks
can affect the results. The simple structure of machine
learning models can hardly cope with high-frequency
components, and various single models are poor at
predicting strong jitteriness curves due to their own
drawbacks. On the other hand, the application of
combinatorial models relies on modal decomposition
methods. To this end, a new intelligent prediction
method, EEMD–LSTM–SVR, is proposed, and parameter
optimization using incremental cross-validation and grid
search is performed to improve the prediction accuracy.

• The research results show that EEMD–LSTM–SVR has
better prediction results. The R2 of EEMD–LSTM–SVR is
closer to 1, which proves the superiority and reliability of the
EEMD–LSTM–SVR model.

• The model can accurately predict the statistical line loss of
the UHV transmission system, which is helpful to predict
the transmission line loss, take corresponding maintenance
or dispatching measures in time, and reduce the impact of
unstable power supply quality on the grid. Meanwhile, the
model proposed in this article can also be used for the
prediction of other clean energy sources, which provides
new guidance for reducing CO2 emissions.

In the future study, the model parameter optimization
algorithm can be replaced to reduce the overfitting and time
shift of the prediction results and further improve the model
training speed or try clustering algorithm to cluster the line
losses of the same scenarios and input the typical scenarios

into the model for learning, to further improve the model
prediction accuracy. The algorithm can also be explored to be
applied to other time series (e.g., wind power data, and PV
data).
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