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Battery health prediction is very important for the safety of lithium batteries. Due to the
factors such as capacity regeneration and random fluctuation in the use of lithium ion
battery, the accuracy and generalization ability are poor when using a single scale feature
to predict the health state of lithium ion battery. To solve these problems, we propose a
comprehensive prediction method based on variational mode decomposition, integrated
particle filter, and long short-term memory network with self-attention mechanism. Firstly,
the capacity data of lithium ion battery is decomposed by variational mode decomposition
to obtain the residual component which can reflect the global degradation trend of lithium
ion battery and intrinsic mode functions component that can reflect the local random
fluctuation. Then, the particle filter algorithm is employed to predict the residual
component, and the long short-term memory network with self-attention mechanism is
proposed to predict the intrinsic mode functions component. Finally, the prediction results
of each subcomponent are reconstructed to obtain the final prediction value of lithium ion
battery health state. The experimental results show that the prediction method proposed in
this article has good prediction accuracy and stability.

Keywords: lithium ion battery, state of health, variational modal decomposition, long short-term memory, self-
attention mechanism, particle filter

INTRODUCTION

Lithium ion battery is widely used in automobile, aerospace, electric energy storage, military
equipment, and other fields due to its advantages of stable voltage, high energy, and low price.
With the increase of charge and discharge cycles, the activity of lithium-ion decreases, the battery
capacity and power decline, and the remaining useful life (RUL) gradually shortens, which has an
impact on the operation reliability of the whole equipment. Therefore, an accurate prediction of
lithium ion battery health status is of great significance to ensure the reliability of equipment
operation and reduce maintenance cost.

The data-driven method is a popular method for predicting the health state of lithium ion battery.
It does not need to establish an accurate physical and chemical model of battery failure. The rule of
lithium ion battery performance degradation is directly mined from the data of lithium ion battery
voltage, current, temperature, and capacity, and the nonlinear quantitative model of degradation rule
or battery health state is automatically established, which has strong applicability. Common data-
driven methods include support vector machine (SVM) (Li et al., 2020), particle filter (PF) (Lyu et al.,
2021b), deep learning network (Kaur et al., 2021; Sun et al., 2021), extreme learning machine (Xu
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et al., 2021), K-nearest neighbor regression (Zhou et al., 2020),
etc. A battery capacity estimation method is proposed based on
dynamic time warping algorithm in the study by Liu et al. (2019),
which can quickly estimate the capacity of each battery in the
battery pack by using the previous charging curve and current
charging data of one battery in the battery pack. A random forest
regression prediction method is proposed to evaluate the health
status of different batteries under different cycle conditions in the
study by Li et al. (2018), which can extract the features from the
charging voltage and capacity measurement. A capacity
estimation method of lithium-ion battery based on one-
dimensional convolutional neural network (CNN) is proposed
in the study by Qian et al. (2021), which takes the random
segment of charging curve as the input to estimate the capacity. A
deep learning method for lithium-ion battery capacity prediction
based on long short-term memory (LSTM) recurrent neural
network is studied in the study by Chen et al. (2020), which is
used to capture the potential long-term correlation of capacity
degradation. A multi-timescale extended Kalman filter (EKF)
algorithm is proposed in the study by Yang et al. (2020) to
estimate the state of charge and capacity of each battery in the
battery pack. A linear aging model based on the capacity data in
the sliding window is used to predict the RUL of the battery by
combining Monte Carlo simulation to generate the prediction
uncertainty (Xiong et al., 2019).

Because the PF algorithm is not constrained by the linear and
Gaussian assumptions of the model and has good tracking effect,
it is widely used in the research of battery health state prediction.
According to the capacity attenuation curve obtained from the
battery charge and discharge experimental data, the RUL of the
battery is predicted by PF in the studies by Pan et al. (2021) and
Gao et al. (2020). Considering the chemical mechanism of
battery, a PF prediction framework based on the
electrochemical model is proposed for the RUL prediction of
lithium ion battery (Liu et al., 2020). Aiming at the particle
degradation problem of the PF algorithm, many studies have also
proposed many improved algorithms. An improved untracked
PF method is proposed to predict the RUL of batteries (Li et al.,
2015). Duan et al. (2020) analyzed the problems existing in
standard PF and proposd a new extended Kalman PF, which
uses the EKF as sampling density function to optimize the PF
algorithm. An improved PF algorithm, untracked PF, is
introduced into the prediction of battery RUL in the study by
Miao et al. (2013). The PF algorithm is used as the main method;
double exponential model is used as the equation of state; and
artificial neural network is used for resampling to reduce the
particle degradation problem in the study by Qin et al. (2020).
Jiao et al. (2020) propose a PF framework based on conditional
variational automatic encoder and resampling strategy to predict
the RUL of battery. In the study by Sun et al. (2018), with the help
of β distribution function, combined with capacitance, resistance,
and constant current charging time, a comprehensive health
indicator is developed to predict the RUL. A third-order
polynomial model is used to fit the battery health degradation
process; the PF algorithm is used to predict the RUL of the
battery. It should be noted that to ensure that the PF algorithm
has a good prediction effect, it is very key to establish an

appropriate state equation, which has a great impact on the
prediction results.

With its powerful self-adaptive feature learning ability, the
deep learning model has been applied in many fields and has also
been introduced into battery state of health (SOH) prediction by
many scholars. Considering uncertainty measurement, feature
dimensionality reduction, and various related tasks, an end-to-
end deep learning framework is proposed to quickly predict the
RUL of lithium-ion batteries in the study by Hong et al. (2020).
Ma et al. (2019) proposed a hybrid neural network combined with
pseudo nearest neighbor method, combined with the advantages
of CNN and LSTM neural network, and designed a hybrid neural
network for model training and prediction. An integrated deep
learning method is proposed for RUL prediction of lithium-ion
battery integrating automatic encoder and deep neural network
(Ren et al., 2018). In the study byWang et al. (2018), aiming at the
practical and accurate prediction of RUL of satellite lithium-ion
battery, an indirect prediction method is proposed based on
dynamic LSTM neural network. Chinomona et al. (2020)
proposed a feature selection technique to select the best
statistical feature subset and use partial charge and discharge
data to determine the RUL of battery via recursive neural network
(RNN) and LSTM. In the study by Su et al. (2021), a generalized
regression neural network is proposed to estimate the residual
capacity of batteries based on several health indicators obtained
from the historical operating data of batteries, and a nonlinear
autoregression method is applied to predict the RUL of batteries
based on the estimated capacity.

Although the deep learning model can adaptively learn high-
level degradation features from battery capacity data, it has strong
applicability. However, facing the complex degradation trend of
lithium ion battery, it still exposes the shortcomings of poor
generalization ability and poor robustness due to adopting a
single scale. Therefore, many scholars propose some
comprehensive methods to predict the SOH of batteries. In
the study by Pan et al. (2019), a hybrid method is proposed,
including PF, exponential smoothing, and capacity degradation
model. An interactive multimodel framework based on PF and
SVM is proposed to realize the multistep advance estimation of
battery capacity and RUL in the study by Li et al. (2021). Lyu et al.
(2021a) combined metabolic gray model and multi-output
Gaussian process regression to establish a dynamic data-driven
battery degradation model. PF is used to track battery capacity
degradation for SOH estimation and extrapolate degradation
trajectory for RUL prediction. Che et al. (2021) proposed an
RUL predictionmethod based on optimized health indicators and
transfer learning online model modification. On this basis, a
method combining transfer learning and gated recurrent neural
network is designed to predict the RUL directly according to the
optimized health indicators, to promote online application. A
generative adversarial network based on ternary network is
proposed to solve the problem of leak detection when sensor
data is incomplete (Hu et al., 2021a; Hu et al., 2021b).

As a matter of fact, there are some factors such as capacity
regeneration and random interference in the use of lithium ion
battery, which lead to the problem of insufficient prediction
accuracy and generalization ability of single model or
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comprehensive method using single scale feature. The data-
driven methods mentioned above take the battery capacity
data as a single variable, so the predicted results of battery life
are not sensitive to capacity regeneration, random interference,
and other factors, leading to a large error between the prediction
results and the actual values. Decomposing the battery capacity
data into multiple variables of different scales can preserve some
details of the data, then select the appropriate prediction method
according to the characteristics of variables of different scales, and
finally reconstruct the prediction results of different scales, which
will be an effective way to improve the prediction accuracy.
Variable mode decomposition (VMD) is an adaptive and
completely non recursive method of modal variation and
signal processing. This technology overcomes the problems of
endpoint effect and modal component aliasing in empirical mode
decomposition (EMD) method, and has a more solid
mathematical theoretical basis. It can reduce the non-
stationarity of time series with high complexity and strong
nonlinearity. The relatively stable subsequences with different
frequency scales obtained by decomposition are suitable for non-
stationary sequences. LSTM is very suitable for dealing with
prediction problems highly related to time series. Self-attention
mechanism can help the model give different weights to the input
features, extract more critical and important information, and
make the model make more accurate judgments without bringing
greater overhead to the calculation and storage of the model.
Therefore, in this article we propose a hybrid prediction method
for the SOH of lithium batteries based on variational mode
decomposition and LSTM with self-attention mechanism (SA-
LSTM) model, which makes up for the shortcomings of the
degradation characteristics of battery performance that cannot
be fully covered by a single scale input, low prediction accuracy,
and poor generalization performance of a single model.

METHODOLOGY

Prediction Process and Steps of Battery
State of Health
Lithium ion battery capacity is easy to collect and can reflect
the performance degradation trend of the battery. It is often
used as an indicator to evaluate the SOH of the battery. In IEEE
standard 1188-1996, battery failure is defined as when the
capacity of the battery degrades to 80% of the rated capacity.
Therefore, the RUL of the battery is defined as the cycles of
charge and discharge when the battery capacity decays to 80%
of the rated capacity.

A method for predicting the SOH of lithium ion battery is
proposed in this article by comprehensively using VMD, PF, and
SA-LSTM. Firstly, VMD is used to decompose the intrinsic mode
function (IMF) components with different scales and residual
component from the lithium ion battery capacity time series.
Then, each IMF component from the training data set is input
into the SA-LSTM for training, and the residual component is
input into the PF for training. Finally, the test data component is
input into the trained model for the next cycle of value prediction,
and the prediction results of each component are summed to

obtain the predicted value of battery capacity. The overall
prediction process is shown in Figure 1.

The specific steps of the battery SOH prediction method
proposed in this article are as follows:

1) Obtain lithium ion battery capacity degradation data. Divide
the lithium ion battery capacity degradation data at time
1,/, t as the training set, and the data after time t + 1 as
the test set.

2) Variational modal decomposition. The capacity degradation
data of lithium ion battery is decomposed by VMD to obtain
multiple IMF components and residual components. The
residual component can reflect the overall degradation
trend of lithium ion battery capacity, and the IMF
components can reflect the battery capacity regeneration
and random fluctuation.

3) Use PF to predict the residual component. The residual
component can reflect the overall degradation trend of
battery capacity and has monotonicity and stability. The PF
method has good advantages for the prediction of this time
series data.

4) Construct SA-LSTM network to predict the IMF components.
The IMF components reflect the lithium ion battery capacity
regeneration and random fluctuation, which show a certain
periodicity. Therefore, the LSTM network is selected as the
prediction method. In order to improve the invalid
information in the filtering deep features of the LSTM
network and enhance the weight of the effective features,
the self-attention mechanism is introduced to improve the
prediction accuracy of the LSTM network. Each IMF
component is input into the SA-LSTM network with the
same structure for independent training and prediction.

FIGURE 1 | Overall process of battery capacity prediction.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8104903

Ge et al. Lithium Ion Battery Health Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


5) Reconstruct predicted capacity of battery. The predicted value
of battery capacity can be obtained by summing the prediction
results of each IMF component and residual component
according to Eq. 1.

Ĉt+1 � ∑K
k�1

Ik(t + 1) + R(t + 1), (1)

where Ĉt+1 is the predicted value of battery capacity, Ik(t + 1) is
the predicted value of the kth IMF component, K is the number of
decomposed subsequences, and R(t + 1) is the predicted value of
residual component predicted by PF.

Signal Multiscale Decomposition Based on
Variational Mode Decomposition
VMD is developed from EMD. EMD has the disadvantages of
mode aliasing, and it is difficult to determine endpoint effects and
stop conditions. Compared with the recursive decomposition
mode of EMD, VMD transforms the signal decomposition
into a variational decomposition mode. In essence, it uses
multiple adaptive Wiener filter banks to realize the adaptive
segmentation of each component of the signal in the
frequency domain. VMD can effectively overcome the mode
aliasing phenomenon in EMD decomposition, has stronger
noise robustness and weaker endpoint effect than EMD, and
improves the decomposition component stationarity of nonlinear
time series. The battery capacity degradation data of lithium ion
battery not only contains the overall degradation trend
information but also has the random fluctuation caused by
factors such as battery capacity regeneration. Therefore, VMD
can be used for multiscale decomposition to extract the features of
battery capacity degradation at different scales. The essence of
VMD is to construct and solve variational problems. For a signal
f(t), the corresponding constrained variational model is shown
Eq. 2.

min{uk},{wk}
⎧⎨⎩∑K

k�1
‖zt[(δ(t) + j

π
)puk(t)]pe−jwkt





22⎫⎬⎭, (2)

s.t.∑K
k�1

uk(t) � f(t), (3)

where {uk} is the k decomposed IMF components,
i.e., {uk} � {u1,/, uk}, {wk} is the central frequency of each
IMF, i.e., {wk} � {w1,/, wk}, * represents convolution
operation, zt means partial derivative, and δ(t) is Dirac function.

The constrained variational problem is changed into an
unconstrained variational problem as Eq. 4, by introducing
Lagrange operator λ and quadratic penalty factor α into Eq. 2.

Γ({uk}, {wk}, λ) � α∑K
k�1

‖zt[(δ(t) + j

π
) p uk(t)] p e−jwkt





22 + ||f(t)

−∑K
k�1

uk(t)22 − < λ(t), f(t) −∑K
k�1

uk(t)> .

(4)

The alternating direction method of multipliers is adopted to
update wn+1

k , un+1k , and λ in Eq. 4. The calculation is iterated
repeatedly until the convergence condition Eq. 5 is satisfied.

∑
k





un+1
k − un

k





22



un
k





22 < ε and n<N, (5)

where ε is the termination iteration threshold, and N is the
maximum number of iterations. The capacity degradation data of
lithium ion battery is decomposed into the multiscale expression
of capacity data, including IMF components and residual
component by VMD.

Particle Filter Algorithm
PF is widely used in the field of visual tracking, signal processing,
robotics, image processing, financial economy, target positioning,
navigation, and tracking. In this article, the PFmodel is applied to
predict the SOH of lithium ion battery. Assume that the state
equation of the system is as Eq. 6.

Xk � f(Xk−1,Wk), (6)
where Xk is the state of the system at time k, f(·) represents the
mapping function, Wk represents the system process noise, if
suppose Wk follows the Gaussian distribution with a mean value
of 0 and variance of Q, i.e., Wk Ñ(0, Q).

Let the state observation equation of the system be as Eq. 7.

Zk � h(Xk, Vk), (7)
where Zk is the measurement result of system state characteristics
at time k, h(·) represents the mapping function, and Vk is the
measurement noise.

The specific steps of the PF algorithm are as follows:

1) Initialization. When k � 0, the particle set {xi
0,ω

i
0}˜p0(x0) is

randomly generated according to the initial
distribution, ωi

0 � 1
N, i � 1, 2,/,N。.

2) Importance sampling. When k > 0, from importance function
xik ˜ q(xk|xi

k−1, z1: k), randomly extract N particles, i �
1, 2,/, N.

3) Update weight. At time k, the weight of the sampled particles
ωi
k is calculated as follows:

ωi
k � ωi

k−1
p(zk|x̂i

k)p(x̂i
k|x̂i

k−1)
p(x̂i

k|xi
k−1, z1: k) . (8)

4) Normalized weight.

~ωi

k � ωi
k/∑N

i�1
ωi
k. (9)

5) Resampling. New particles are obtained by resampling
according to the importance weight, and the average
weight is 1/N. Particle degradation is an inevitable
phenomenon in the PF algorithm. Resampling can reduce
particle degradation.
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6) State estimation. The estimated state is obtained by weighted
summation of the extracted particles.

x̂k � ∑N
i�1

~ωi

kx̂
i
k. (10)

In this article, the double exponential empirical model (Jiao
et al., 2020) is selected as the battery capacity degradation model,
as shown in Eq. 11.

C � apexp(b p n) + c p exp(d p n). (11)
where n is the number of cycles, C, a, b, c, d contain Gaussian
white noise, the mean value is 0, and the variance is unknown.
The state of the prediction model can be denoted as Eq. 12.

X(n) � [a(n), b(n), c(n), d(n)]T. (12)
where the initial values of a, b, c and d can be obtained by using
the least square method according to the training data.

The state update equation of the four parameters can be
expressed as Eq. 13.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(n + 1) � a(n) + wa(n), wa ˜N(0, σa)
b(n + 1) � b(n) + wb(n), wb ˜N(0, σb)
c(n + 1) � c(n) + wc(n), wc ˜N(0, σc)
d(n + 1) � d(n) + wd(n), wd ˜N(0, σd)

. (13)

Therefore, the observation equation of battery capacity can be
expressed as Eq. 14.

C(n) � a(n)pexp(b(n)pn) + c(n)pexp(d(n)pn) + v(n), (14)
where v(n) represents the measurement noise, and it is a
Gaussian white noise when mean value is 0 and variance σv,
i.e., v(n) ˜N(0, σv).

Long Short-Term Memory Model
LSTM is a variant of RNN, which can reduce the problem of
gradient disappearance or gradient explosion of RNN. Its
structure is shown in Figure 2.

At time t, the network output value yt can be expressed as
Eq. 15.

yt � σ(Wxcxt +Whcct−1 + bc), (15)

whereWxc is the weight matrix from input layer to hidden layer,
ct−1 is the output value of the hidden layer at time t − 1,Whc is the
weight matrix from the memory cell to the previous hidden layer,
bc is the offset of the hidden layer, and σ is the sigmoid nonlinear
activation function.

The update status of the network during training is as
follows:

1) Temporary memory status information ĉt: before updating
memory unit ct, a temporary memory unit ĉt is generated,
which can be calculated from the input xt of current time and
the hidden state value ht−1 of the previous time, and the
calculation formula is as in Eq. 16:

ĉt � tanh(Wxcxt +Whcht−1 + bc). (16)

2) Calculate input gate value it: for input data, it stores critical
information to this unit with a limited extent, and the
calculation formula is as in Eq. 17:

it � σ(Wxixt +Whiht−1 + bi). (17)

3) Calculate the forgetting gate value ft: the calculation formula is
as in Eq. 18:

ft � σ(Wxfxt +Whfht−1 + bf). (18)

4) Calculate the current memory unit status value ct: the
calculation formula is as in Eq. 19:

ct � ftpct−1 + itpĉt, (19)
where * represents convolution.

5) Calculation output gate ot: the prediction result currently is as
in Eq. 20:

ot � σ(Wxoxt +Whoht−1 + bo). (20)

6) Unit memory output: the calculation formula is as in Eq. 21:

ht � ottanh(ct). (21)
In the above formula,W is the weight coefficient matrix, and b is
the offset vector.

To make the prediction result fully close to the real value, the
direction propagation algorithm is used to adjust the weight
matrix W and offset vector b in LSTM. In the process, we
adopt the minimization loss function as in Eq. 22.

Loss � 1
2
∑N
k�1

(y − ŷ)2 (22)

where y is the true value, and ŷ is the predicted value.
At last, the training data of battery capacity IMF components

decomposed by VMD are input into LSTM network for training,
and then the test data are input into the trained LSTM to get the
prediction result of the next time.

FIGURE 2 | The structure of LSTM.
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Self-Attention Mechanism
Self-attention mechanism can filter some irrelevant information
in feature data, which adopts the query–key–value model.
Suppose X � [x1,/, xN] is the input sequence, and H �
[h1,/, hN] is the output sequence. In the calculation process
of self-attention model, each input xi is mapped to three different
spaces linearly to calculate the query vector Qi, key vectorKi, and
value vector Vi. They can be formulated as in Eqs 23–25:

Q � WqX (23)
K � WkX, (24)
V � WvX, (25)

where Wq, Wk, and Wv are linear mapping parameter matrix of
three spaces, respectively. The output vector H can be calculated
by Eq. 26.

H � Attention(Q,K,V) � softmax(QKT��
dk

√ ), (26)

where dk is the dimension of K. In this work, self-attention
mechanism is employed to predict the battery SOH, which is
mixed with multilayer LSTM. The specific process is as shown in
Figure 3.

EXPERIMENTAL VERIFICATION

Introduction of Experimental Data
The lithium ion battery data used in this article are from the
Idaho National Laboratory of NASA PCoE research center. In
this experiment, there are four groups: 18650s batteries with a
rated capacity of 2 Ah, which are numbered B5, B6, B7, and B18,
respectively, and the ambient temperature is set to 24°C. The
charging and discharging process of the battery is specified as
follows. The maximum cut-off voltage of charging is set to 4.2 V.
The battery is charged at a constant current of 1.5 A at the
beginning. When the voltage reaches the maximum cut-off

FIGURE 5 | VMD results of B5 battery capacity data.

FIGURE 4 | Capacity degradation curve of four batteries.

FIGURE 3 | Battery SOH prediction process using SA-LSTM.
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voltage, it will be charged at a constant voltage. When the
charging current drops to 20 mA, the charging ends. When
the battery is discharged, it is discharged at a constant current
of 2 A to a capacity of 2.7 V. A battery cycle includes completing a
charge and a discharge. We extract the battery capacity change
data from the experimental data. The capacity data of the four
batteries are all one-dimensional time series. The data length of
B5, B6, and B7 is 167, and the data length of B18 is 132.

Variational Mode Decomposition of Battery
Capacity Data
As described above, Figure 4 shows the capacity degradation of
the four lithium batteries after multiple cycles. It can be seen that
the battery capacity not only has an obvious downward trend but
also has random fluctuations caused by factors such as battery
capacity regeneration.

VMD is performed on the obtained lithium ion battery
capacity data. Figure 5 shows the original capacity curve and
components decomposed by VMD of B5 battery. In the VMD,
the sequence number K is set to 6, and the relevant parameter
alpha is set to 20. It can be seen that the residual component
can show the global degradation trend of lithium ion battery
performance, and the IMF components (IMF1–IMF5) can
effectively reflect the local regeneration and the random
fluctuation characteristics in the degradation of battery
capacity.

Battery Capacity Degradation Prediction
After VMD, the residual component is trained and predicted by
the PF method, and IMF components are input into the SA-
LSTM for training and predicting. Taking B5 battery as an
example, there are 168 sets of data. In this article, the first
67% sets are used as the training set and the rest as the test
set, that is, 112 sets of training data and 56 sets of test data. In our
experiment, the capacity data of the previous three consecutive
cycles is used to predict the capacity of the next cycle. Firstly, the
residual component is input into the PF algorithm, the first 10 sets

of data are used to calculate the initial values of a, b, c, and d via
the least square method. The particles number is set to 300, and
the variances are set as follows: σa � 1e − 8, σb � 1e − 6,
σc � 1e − 5, and σd � 1e − 7. The prediction results are shown
in Figure 6. The PF algorithm maintains high accuracy in all
prediction groups. This also indicates that the PF algorithm has a
good accuracy in the prediction of degradation time series with
obvious function type curves.

FIGURE 8 | Capacity prediction results of B5 battery.

FIGURE 7 | Prediction result of IMF components.

TABLE 1 | Network structure of SA-LSTM.

Layer Parameters Value

Input input nodes 3
LSTM output nodes 100
SeqSelfAttention attention_width 50

attention_activation Sigmoid
LSTM output nodes 50
Fully connection output 1

FIGURE 6 | PF prediction results of battery B5 residual component.
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Following the same training sets and test sets ratio, the five
IMF components decomposed by VMD are input into the SA-
LSTM network for training and predicting. The specific structure
and parameters of the SA-LSTM network are shown in Table 1.
In this work, the training iterations is set to 200, the batch is set to
10, and the initial learning rate is set to 0.005.

Figure 7 shows the prediction results of IMF components,
each component is trained and predicted separately. It can be
seen that the prediction results of the proposed SA-LSTM
prediction network fit well with the real values, which also
shows that the SA-LSTM model has advantages in nonlinear
time series prediction.

At last, the prediction results of the residual component and
IMF components are reconstructed by Eq. 1, and we can obtain

the predicted results of lithium ion battery capacity, which is
shown in Figure 8. The prediction result is highly consistent with
the measured values of battery capacity. It can not only predict
the degradation trend of battery capacity but also adapt to the
random fluctuation of battery capacity regeneration.

Evaluation Index
To evaluate the performance of the proposed prediction method
and other methods, three common indexes are used to measure
the prediction effect, including the mean absolute percentage
error (MAPE), root mean square error (RMSE), and mean
absolute error (MAE) (Pan et al., 2019).

The calculation formulas of the three indexes are as follows:

MAPE � 1
N

∑N
i�1

∣∣∣∣Ĉ(i) − C(i)∣∣∣∣
C(i) × 100%, (27)

RMSE �

���������������
1
N

∑N
i�1

∣∣∣∣Ĉ(i) − C(i)∣∣∣∣2√√
, (28)

MAE � 1
N

∑N
i�1

∣∣∣∣Ĉ(i) − C(i)∣∣∣∣, (29)

where Ĉ(i) is the predicted value of battery capacity, C(i) is the
true measurement value of the battery, andN is the cycle number
of prediction.

Comparison of Prediction Results
To verify the superiority of the prediction method proposed in
this article, it is compared with some commonly used methods,
including the following methods:

1) The original data of battery capacity measurement is directly
used for SOH prediction by PF algorithm (ORIG-PF).

2) The original data of battery capacity measurement value is
directly used for SOH prediction by LSTM network (ORIG-
LSTM).

3) The original data of battery capacity measurement value is
directly used for SOH prediction by SA-LSTM network
(ORIG-SA-LSTM).

4) Firstly, the battery capacity measurement data is decomposed
by VMD, then LSTM is used for the prediction of all
components, and finally, the predicted value of capacity is
reconstructed using Eq. 1 (VMD-LSTM).

TABLE 2 | Comparison of prediction results.

Experiment Method MAPE RMSE MAE

1 ORIG-PF Li et al. (2015) 0.2819 0.0062 0.0038
2 ORIG-LSTM Fan et al. (2019) 2.0418 0.0287 0.0270
3 ORIG-SA-LSTM 1.8725 0.0269 0.0250
4 VMD-LSTM Fan et al. (2019) 1.6703 0.0237 0.0223
5 VMD-SA-LSTM 1.5070 0.0225 0.0211
6 VMD-PF-LSTM 0.1127 0.0021 0.0015
7 The proposed method 0.0968 0.0018 0.0013

The bold values indicate that the prediction results of the proposed method are the best
among the methods listed in table.

FIGURE 9 | Prediction results of B6, B7, and B18 batteries. (A)
Prediction results of B6 battery. (B) Prediction results of B7 battery. (C)
Prediction results of B18 battery.
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5) Firstly, the battery capacity measurement data is decomposed
by VMD, then SA-LSTM is used for the prediction of all
components, and finally, the predicted value of capacity is
reconstructed using Eq. 1 (VMD-SA-LSTM).

6) Firstly, the battery capacity measurement data is decomposed
by VMD, then PF is used for the prediction of residual
component and LSTM is used for the prediction of IMF
components, and finally, the predicted value of capacity is
reconstructed using Eq. 1 (VMD-PF-LSTM).

7) The proposed method. Firstly, the battery capacity
measurement data is decomposed by VMD, then PF is
used for the prediction of residual component and SA-
LSTM is used for the prediction of IMF components, and
finally, the predicted value of capacity is reconstructed using
Eq. 1 (VMD-PF-LSTM).

The B5 battery capacity degradation data is taken as
experimental data, and the above seven methods are used for
experiments. The final prediction results are shown inTable 2. To
avoid accidental errors, each experiment is repeated 20 times, and
the average value of the prediction results is taken as the final
prediction results.

It should be noted that the LSTM structure in the above
methods is the same as that shown in Table 1, and only the
“SeqSelfAttention” layer is removed. For the seven experiments
listed in Table 2, only one prediction method is used in
experiments 1–3, and more than two comprehensive
prediction methods are used in experiments 4–7. It can be
seen from the evaluation indexes:

1) The method proposed in this article has the highest prediction
accuracy.

2) In the prediction experiments using a single method, the PF
method has the best prediction effect, which also shows that
the PF algorithm has good advantages in lithium ion battery
capacity prediction, so many studies on lithium ion battery
capacity prediction adopt the PF method or its improved
method.

3) Comparing experiment 2 with experiment 3, experiment 4
with experiment 5, and experiment 6 with experiment 7, it
can be seen from the evaluation indexes that the prediction
effect of SA-LSTM is better than that of LSTM. This
illustrates that self-attention mechanism can further
reduce noise and improve the prediction accuracy of
deep network.

4) Comparing experiment 2 with experiment 4 and experiment 3
with experiment 5, it can be seen that VMD can greatly
improve the prediction effect. It shows that VMD
multiscale decomposition can effectively reduce the
influence of capacity degradation data non-stationarity on
prediction.

Finally, to further verify the generalization performance of
the proposed method, comparative experiments were carried
out using the battery capacity data of B6, B7, and B18. The

results are shown in Figure 9. As can be seen from Figure 9, the
prediction method proposed in this article has the best
evaluation indexes for different battery capacity prediction,
which shows that the method not only has good prediction
accuracy but also has good generalization ability, and the
prediction results for different batteries are relatively stable.

CONCLUSION

In this article, we proposed a comprehensive method for
lithium ion battery SOH prediction based on VMD, PF, and
LSTM with self-attention mechanism. VMD can decompose
the lithium ion battery capacity data into components with a
different scale, which can effectively reduce the influence of
data instability caused by capacity regeneration on the
prediction accuracy. According to the characteristics of the
residual component and IMF components decomposed by
VMD, the PF and SA-LSTM algorithms were used to
predict the battery capacity, which solves the problems of
low accuracy and poor generalization ability of single model
prediction. NASA lithium ion battery data experiments
showed that the prediction method proposed in this article
had higher prediction accuracy and stronger stability than the
common prediction method.

In future research, we will focus on the following issues: 1)
research on battery health prediction methods under different
working conditions, 2) automatic optimization of relevant
parameters in data-driven methods, 3) prediction models
based on multiple feature types, and 4) battery capacity
prediction under zero sample conditions.
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