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Carbon dioxide geological storage in deep underground oil and gas reservoirs or coal
seam is considered a key technology to effectively mitigate carbon emissions. Deep coal
seams are the potential host rock for CO2 storage, with chemical reactions occurring when
coal is exposed to CO2-saturated brine. However, limited studies have been conducted to
reveal the effect of chemical reaction, particularly to unveil how this importantly affects the
coal seam porosity at the micrometer scale. In this study, the CO2 geological storage is
simulated using a high-temperature and high-pressure reactor containing CO2-saturated
brine and coal samples. The samples in the previous study on the effect of CO2 on coal
mostly contained high content of carbonate minerals and sulfide minerals. However, the
tested Collie coal samples, which are characterized by high content of kaolinite and
siderite, are rarely used. This coal was quantitatively analyzed using a scanning electron
microscope before and after reaction. The results show that the microstructure of coal
matrix was largely changed due to acid exposure. Kaolinite and siderite in the coal matrix
were dissolved, the size andmorphology of the cleats increased, and the absolute effective
porosity also increased significantly. Most importantly, the connectivity of cleat network
was improved, leading to an increase in CO2 storage space and coal seam permeability.
Therefore, it is concluded that the microstructure changes of coal can be measured on a
microscopic scale, and it is better to be quantitatively evaluated to improve the accuracy
and reliability of CO2 storage in deep coal seams.
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1 INTRODUCTION

CO2 storage in deep geological formation is a vital technology that effectively resolves climate change
caused by carbon emissions (White et al., 2005; Alemu et al., 2011; Zhou et al., 2017). The main
storage places are underground geological reservoirs including deep undeveloped coal seams, deep
brine aquifers, and oil and gas reservoirs (Bachu et al., 1994). Solubility trapping is one of the safest
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and effective trapping mechanisms (Akhondzadeh et al., 2020;
Al-Khdheeawi et al., 2016; Iglauer et al., 2015; Iglauer and Al-
Yaseri, 2021; Mitchell et al., 2010; Niu et al., 2015; Zhang et al.,
2017) by dissolving CO2 in the formation water. The density of
CO2-saturated brine (also called live brine) is greater than that of
the original formation water; thus, it sinks to the bottom of the
reservoir. However, this CO2-saturated brine in the formation has
a pH value of only 3−4, which is strongly acidic that will
chemically react with coal seam (Deng et al., 2015; Liu et al.,
2018; Menke et al., 2017).

The chemical reaction of coal and CO2 has been extensively
studied in the context of acid stimulation. Such reactions lead to
the opening and interconnection of the cleats (Dawson et al.,
2015; Hedges et al., 2007). Calcite, dolomite, and magnesite
dissolved in the CO2-saturated brine, causing the opening of
originally closed or semi-closed pores, and eventually improved
porosity and permeability (Du et al., 2018; Liu et al., 2010). The
dissolution of minerals filled in pores and cracks changed the
mechanical properties of coal (Anggara et al., 2013; Faiz et al.,
2007). However, quantitative micro-pore scale study is limited,
which needs to be supplemented to improve the accuracy and
safety of CO2 storage in deep coal seams.

It is although significant to investigate the crucial influence of
microstructure changes on the porosity and permeability of coal,
current research mainly focuses on the qualitative description of
geochemical changes (element migration and mineral changes)
(Bertier et al., 2006; Credoz et al., 2011; Farquhar et al., 2015;
Gunter et al., 1993; Hedges et al., 2007). SEM has been widely
used to study the evolution rules of coal cleats and to capture the
cleat geometry in coal (Zhang et al., 2016; Zhang et al., 2017). Yu
et al. (2018a) observed the coal cleat morphology through SEM
and presented the effect on nanoscale mechanical heterogeneity.
Liu et al. (2017) described pore connectivity and types of pores in
high-rank coals.

Here, we thus used the reactor to simulate the reaction of CO2

with the coal seam at high temperature and high pressure.
Scanning electron microscopy (SEM) and energy dispersive
spectroscopy (EDS) are used to identify and image the
changes of specific minerals and the microstructure before and
after the reaction and then to evaluate the influence of CO2-
saturated brine on coal microstructure.

2 MATERIALS AND METHODS

2.1 Geological Setting
The Collie Basin located 150 km southeast of Perth is composed
of three sub-basins (Cardiff, Shotts, and Muja), covering an area
of approximately 230 km2. It is one of the largest basins in
Western Australia. The Permian strata were preserved in a
northwest-trending graben (Hocking et al., 1994; Li et al.,
2014). The Collie coal seam developed in the Permian
throughout the basin (Backhouse, 1991; Yu et al., 2018a),
which consisted of three sets of coal seams that were typical
carbonaceous coal seams, whose rank was subbituminous and
vitrinite reflectance was 0.41–0.61%. The total thickness of Collie
coal seams is around 800 m.

2.2 Experimental Procedure
2.2.1 Experimental Materials
Three samples of the Collie formation in the Collie Basin named
S1, S2, and S3 were collected to conduct a high-pressure and high-
temperature (HPHT) geochemical simulation experiment. The
samples are polished by p1200 silicon carbide (particle size is
9.8 ± 0.5 μm) to ensure that the sample is sufficiently smooth for
SEM experiments. We injected CO2 into deionized water that
dissolved 5 wt% NaCl to get the CO2-saturated brine (live brine).

2.2.2 Geochemical Simulation Experiment
We use the experimental instrument to carry out the HPHT
geochemical simulation experiment, the volume of the
experimental container is 1 L, and the experimental
temperature and pressure are 50°C and 20 MPa, respectively.
The experimental conditions are calculated from the geothermal
gradient of the Collie Basin and the depth of the Collie coal seams.
The geochemical simulation experiment was conducted as
follows:

1. The samples were polished and imaged by SEM at room
temperature and pressure.

2. The sample placed in a reactor and the system was vacuumed
for 24 h to ensure no air remained.

3. CO2 and brine were pressurized to 50°C and 20 MPa and then
injected into the reactor. In order to ensure the stability of the
reaction system, the temperature and pressure were
continuously monitored during the experiment.

4. The sample was took out and put in a vacuum-drying oven
after 24 h, and then the SEM experiment was performed.

2.3 SEM Image Processing
Scanning electron microscopy (SEM) was performed to scan the
coal samples in different scales (200X–4000X) to investigate the
morphological characteristics and mineral element composition of
the coal sample. In addition, the energy dispersive spectroscopy
(EDS) (Acquafredda et al., 1999) method was performed to get
elemental composition, which thus applies tomineral identification
and distribution.Avizo is used for SEM grayscale image processing.
SEM grayscale images were first denoised with a Gaussian filter to
obtain clearer and more detailed images (Blinchikoff and Zverev,
1976; Mayer et al., 2003; Yu et al., 2018b; Yu et al., 2019a; Yu et al.,
2019b) and then segmented by Watershed Segmentation module,
which can extract the microscopic cleats of the sample from the
sample skeleton (Vincent and Soille, 1991; Szeliski, 2010; Zhang
et al., 2020). Finally, we used the Label Analysis module to
quantitatively obtain the sample porosity, equivalent diameter,
perimeter, and area before and after solid–liquid reaction. The
equivalent diameter refers to the diameter of a circle that is the
same as the area occupied by the cleat and represents the size of the
cleat. The area fraction refers to the ratio of the number of pixels
occupied by cleats to the number of pixels in the overall picture and
represents the cleat porosity of the sample.

2.4 X-Ray Diffraction Measurements
XRD experimental analysis was conducted with a Bruker-AXS D8
Advance diffractometer (Yuan et al., 2021). These cleated samples
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were ground to 800-mesh and put into a container. Then, the
element energy spectrum of the sample was acquired by XRD
equipment, compared with the existing standard mineral energy
spectrum to determine the mineral type and content.

3 RESULTS AND DISCUSSION

3.1 Mineral Composition and
Microstructure
The mineral composition of the coal sample is mainly obtained
from the XRD experiment (Yu et al., 2018a). There are three
inorganic minerals (not including the coal matrix) in the Collie
coal sample: kaolinite (49.1%), quartz (36.6%), and siderite
(14.3%). Kaolinite [Al4 (Si4O10)(OH)8] is a common
aluminosilicate mineral in sedimentary rocks, while siderite
(FeCO3) is the carbonate mineral. These two minerals can
dissolve in acidic solutions, which in total take more than 60%
of the mineral composition.

The microstructure of the coal sample was imaged by SEM.
The SEM images showed the coal consisted of minerals and coal
matrix. The coal matrix is very dense with almost no pores, and
cleats can be clearly observed with width 0.1–1 μm. The minerals
in the SEM images show different brightness. The brighter area
represented high-density minerals, and the dark parts were lower
density minerals. EDS can obtain elemental composition,
combining with SEM images to identify mineral types. SEM-
EDS results indicated that panel (B) in Figure 1 is siderite, as the
EDS results showed the main elements in this mineral are iron,
carbon, and oxygen, while the minerals are granular and
gelatinous. Hence, panels (C) and (D) are quartz (silicon and
oxygen) and kaolinite (aluminosilicate minerals and kaolinite
booklets), respectively. These cleats provided a flow channel for
live brine and increased the reaction area when the sample had
contact with the acid system.

3.2 Microstructural Change
SEM images were obtained in different scale and resolution
before and after the experiment (Figure 2). Rows (A) and (B)
are the sample images before the experiment, whereas rows (C)
and (D) are the results after the reaction. Among them, rows (A)
and (D) are in low resolution for the large view of the sample,
while rows (B) and (C) are in high resolution for accurate image
processing.

It can be seen that there are rarely matrix pores in the sample;
however, there are many cleats throughout the sample. These
cleats provided a flow channel for live brine and increased the
reaction area when the sample had contact with the acid system.
The morphology and size of the cleats in the coal sample critically
changed. Some cleats enlarged and some closed, and also new
cleats were generated after the reaction (Figure 3). This
phenomenon may be generated by mineral dissolution and
small piece migration. The pH of CO2 saturated brine is very
low at high temperature and high pressure, leading to mineral
dissolution (Du et al., 2019).

We extracted the cleats from SEM images, shown in column
(2) of Figure 3. The expansion, generation, and closure of the
cleats are obviously shown. We found that most of the cleats
especially primary cleats enlarged a lot in these three samples,
while the disconnected narrow cleats expanded visibly after the
reaction (points c and d, e and f, k and l), forming large cleats.
Moreover, new cleats were generated (points g and h, i and j).
However, the cleats (point a) in S1 significantly shrunk (point b)
after the reaction. The dissolution of siderite and kaolinite is the
main reason leading to cleat expansion and new cleat generation
(He and Morse, 1993; O’Connor et al., 2000; Kanakiya et al.,
2017). However, mineral dissolution resulted in the small pieces
in the coal sample migration, in turn causing some cleats shrink
or even disappear. These changes in the microstructure illustrate
that the disappearance of small individual cleats makes the cleat
network better connected.

FIGURE 1 | SEM-EDS for the mineral in the coal sample: (A) coal matrix, (B) siderite, (C) quartz, and (D) kaolinite.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 10 | Article 8028833

Li et al. Saturated Brine–Coal Reaction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Both the dissolution and migration of minerals affect the
microstructure of the coal sample. The SEM images showed
that the cleat area has increased significantly, indicating that
the porosity and pore volume of the coal sample have increased
after the experiment, which is consistent with that reported in the
previous research (Liu et al., 2015; Liu et al., 2017; Yu et al., 2018a;
Zhang et al., 2016). It can also be observed that the original small
cleats were connected forming a new large path, and such a
change will greatly increase permeability (Cai et al., 2018).

3.3 Cleat Quantified Analysis
We processed the image and calculated the specific cleat change.
All cleats were identified and marked with a different color, and
the largest cleats (max-cleat) of each sample were also extracted
(Figure 3). The tested samples were analyzed using the average
cleat aspect ratio, cleat porosity, average cleat width, and cleat
density. Meanwhile, the perimeter, area, aspect ratio, and fraction
were applied for the maximum cleat. The results showed that the
cleats in the coal sample after geochemical reaction dramatically
changed, especially the largest micro-cleats (Figure 4).

The cleat porosity of these three samples all rose before and
after the reaction, changing from 3.36 to 10.33%. The average
cleat width also increased after the reaction, and the variation was
from 0.29 to 5.49. Such results indicated CO2-saturated brine can
indeed expand the cleats. The average aspect ratio varied in each
cleat, from 6.27 to 21.78. The average aspect ratio of S1 decreased,
while that of S2 and S3 increased after the reaction. The main
reason that can explain this is many isolated cleats were
connected after the reaction in S2 and S3, therefore leading to
the rise in the average aspect ratio. The cleat density shows a
distinct change, due to some smaller cleats merging into larger
cleats and the formation of new cleats.

The max-cleat of each sample is significantly important for
fluid and gas flooding; hence, we also analyzed the max-cleat
(Figure 4). The size max-cleat also increased after the reaction:
the largest increment value is 127.83% (max-cleat perimeter),
308.02% (max-cleat area), 31.27 (max-cleat aspect ratio), and
49.19% (max-cleat area faction). It is concluded that the max-
cleat changed mostly among all cleats, which would severely put
an impact on the sample permeability.

FIGURE 2 | SEM images before (A,B) and after (C,D) the reaction; rows (B,C) are in high resolution, while rows (A,D) are in low resolution.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 10 | Article 8028834

Li et al. Saturated Brine–Coal Reaction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The increment of cleat size after the reaction illustrated that
the micro-cleat structure in the coal has greatly changed, leading
to the increase of porosity and the connectivity improvement of
the cleat network, thereby providing a better flooding path and
storage space for CO2 in the deep coal seam. It is worth
mentioning that this result is consistent with that reported by

Zhang et al. (2018), who observed that the calcite-rich coal was
partially dissolved during CO2-saturated brine flooding, resulting
in a significant increase in absolute porosity and connectivity. Yu
et al. (2018b) studied fractured shale exposed to CO2-saturated
brine, and they also found that connectivity and apertures of
micro-fractures in the shale were significantly improved after

FIGURE 3 | Comparison of cleat shape and size before and after the reaction: (1) the original SEM image, (2) extracted cleat, (3) individual cleats, and (4) extracted
largest cleat.
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CO2-saturated brine injection. However, CO2-saturated brine did
not always increase rock permeability. The permeability of
unconsolidated sandstone was greatly reduced after CO2-
saturated brine injection. The decrease in permeability was
induced by the blockage of pore throats, caused by the release,
migration, and reattachment of fine particles at the initial stage of
CO2 injection (Yu et al., 2019a). Nevertheless, the storage of CO2

in different formations still needs further research.

4 CONCLUSION

CO2 injection into deep geological formations has been proven to be
an effective way to mitigate climate change. However, the injected

CO2 reacts with the formation water and forms acidic brine (Yu
et al., 2018c; Yu et al., 2019a), which would react with the coal seam
and change the microstructure of the coal seam. Therefore, it is very
important to fully understand the interaction of CO2-saturated brine
with coal seam and its impact on themicrostructure. However, most
of the work is focused on the qualitative geochemical changes (Du
et al., 2019; Gunter et al., 1993; Hedges et al., 2007), and there is only
limited work to better understand micron-scale dissolution,
although microscale microstructure changes are critical to the
CO2 storage in deep coal seams.

Therefore, we conducted experiments to study microstructure
changes before and after reaction between CO2-saturated brine
and coal samples at the micrometer scale. The microstructure of
coal partially dissolves after being exposed to live brine, which is

FIGURE 4 | Histogram of the variation of cleat parameters in coal: (A) total aspect ratio; (B) porosity; (C) average width of all cleats; (D) fracture density; (E)
perimeter; (F) area; (G) aspect ratio of maximum cleat; (H) the maximum cleat fraction.
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consistent with the change in cleat size and shape. The mineral
dissolution at the edge of the cleat greatly increases the volume
fraction of the cleat, resulting in a significant increase in the
equivalent diameter and area of the cleat. In addition, it is
important that the reaction between live brine and coal causes
a better connectivity of the cleat network because the fraction of
the maximum cleat has increased from 25 to 72.4%, which means
that some isolated cleats connected increased the fraction of the
maximum cleat, leading to an increase in CO2 storage space and
coal seam permeability.

Thus, overall, we have concluded that the changes in the
microstructure of coal should be measured on a microscale,
preferably combined with quantitative analysis, to improve the
accuracy and reliability of CO2 storage in deep coal seams.
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