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With the trend of electronization of the power system, a traditional serial numerical
algorithm is more and more difficult to adapt to the demand of real-time analysis of the
power system. As one of the important calculating tasks in power systems, the online
solution of Lyapunov equations has attracted much attention. A recursive neural network
(RNN) is more promising to become the online solver of the Lyapunov equation due to its
hardware implementation capability and parallel distribution characteristics. In order to
improve the performance of the traditional RNN, in this study, we have designed an
efficient vectorization method and proposed a reduced-order RNN model to replace the
original one. First, a new vectorization method is proposed based on the special structure
of vectorized matrix, which is more efficient than the traditional Kronecker product method.
Second, aiming at the expanding effect of vectorization on the problem scale, a reduced-
order RNN model based on symmetry to reduce the solution scale of RNN is proposed.
With regard to the accuracy and robustness, it is proved theoretically that the proposed
model can maintain the same solution as that of the original model and also proved that the
proposed model is suitable for the Zhang neural network (ZNN) model and the gradient
neural network (GNN) model under linear or non-linear activation functions. Finally, the
effectiveness and superiority of the proposed method are verified by simulation examples,
three of which are standard examples of power systems.
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INTRODUCTION

With the trend of the electronic power system, the scale of system computing is increasing day by
day, while the demand of real-time analysis and calculation in the process of system operation
remains unchanged. Traditional serial algorithms cannot solve this contradiction well, so various
parallel algorithms and distributed methods appear successively. In power system state estimation,
Chen et al. (2017) have used the SuperLU_MT solver to estimate the state of the actual power grid,
making full use of the parallel characteristics of multicore and multi-thread solver. Liu Z. et al. (2020)
have fully explored the parallelism in the calculation of continuous power flow and applied the
continuous Newton method power flow model to realize the parallel solution algorithm of
continuous power flow based on GPU in large scale and multiple working conditions.
Moreover, a novel distributed dynamic event-triggered Newton–Raphson algorithm is proposed
to solve the double-mode energy management problem in a fully distributed fashion (Li et al., 2020).
Similarly, Li Y. et al. (2019) proposed an event-triggered distributed algorithm with some desirable
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features, namely, distributed execution, asynchronous
communication, and independent calculation, which can solve
the issues of day-ahead and real-time cooperative energy
management for multienergy systems. Given that software
algorithms are essentially run by hardware, implementing
functions directly from hardware is also an option for real-
time computing. For example, Hafiz et al. (2020) proposed a
real-time stochastic optimization of energy storage management
using deep learning–based forecasts for residential PV
applications, where the key of the real-time computation is the
hardware controller. It is worth pointing out that compared with
the aforementioned methods, the neural dynamics method has
greater potential in the field of real-time calculation of power
systems (Le et al., 2019), and its time constant can reach tens of
milliseconds (Chicca et al., 2014) because of its parallel
distribution characteristics and the convenience of hardware
implementation.

The Lyapunov equation is widely used in some scientific and
engineering fields to analyze the stability of dynamic systems (He
et al., 2017; He and Zhang, 2017; Liu J. et al., 2020). In addition,
the Lyapunov equation plays an important role in the controller
design and robustness analysis of non-linear systems (Zhou et al.,
2009; Raković and Lazar, 2014). In the field of power systems, the
balanced truncation method, controller design, and stability
analysis are also inseparable from the solution of the
Lyapunov equation (Zhao et al., 2014; Zhu et al., 2016;
Shanmugam and Joo, 2021). Therefore, many solving
algorithms have been proposed to solve the Lyapunov
equation. For example, Bartels and Stewart proposed the
Bartels–Stewart method (Bartels and Stewart, 1972), which is a
numerically stable solution. Lin and Simoncini (Lin and
Simoncini, 2013) proposed the minimum residual method for
solving the Lyapunov equation. Stykel (2008) used the low-rank
iterative method to solve the Lyapunov equation and verified the
effectiveness of the method through numerical examples.
However, the efficiency of these serial processing algorithms is
not high in large-scale applications and related real-time
processing (Xiao and Liao, 2016).

Recently, due to its parallelism and convenience of hardware
implementation, recurrent neural networks have been proposed
and designed to solve the Lyapunov equation (Zhang et al., 2008;
Yi et al., 2011; Yi et al., 2013; Xiao et al., 2019). The RNN mainly
includes the Zhang neural network (ZNN) and gradient neural
network (GNN) (Zhang et al., 2008). Most of the research studies
on RNN focus on the improvement of model convergence. For
example, Yi et al. (2013) point out that when solving a stationary
or a non-stationary Lyapunov equation, the convergence of the
ZNN is better than that of GNN. Yi et al. (2011) used a power-
sigmoid activation function (PSAF) to build an improved GNN
model to accelerate the iterative convergence of Lyapunov
equation. In (Xiao and Liao, 2016), the sign-bi-power
activation function (SBPAF) is used to accelerate the
convergence of the ZNN model for solving the Lyapunov
equation and the proposed ZNN model has finite-time
convergence, which is obviously better than the previous ZNN
and GNN models. In recent years, some studies have considered
the noise-tolerant ZNN model. In Xiao et al. (2019), two robust

non-linear ZNN (RNZNN) are established to find the solution of
the Lyapunov equation under various noise conditions. Different
from previous ZNN models activated by the typical activation
functions (such as the linear activation function, the bipolar
sigmoid activation function, and the power activation
function), these two RNZNN models have predefined time
convergence in the presence of various noises.

However, both GNN and ZNN need to transform the solution
matrix from the matrix form to the vector form through the
Kronecker product, which is called vectorization of the RNN
model (Yi et al., 2011). The use of the Kronecker product will
make the scale of the problem to be solved larger. As the size of
the problem increases, the scaling effect of the Kronecker product
becomes more obvious. The enlargement effect of the Kronecker
product on the model size will not only lead to insufficient
memory when the RNN is simulated on software but also
make the hardware implementation of the RNN model need
more devices and wiring, which increases the volume of
hardware, the complexity of hardware production, and the
failure rate of hardware. However, no study has discussed the
order reduction of the RNN model.

It should be pointed out that the vectorized RNNmodel needs
to be solved using a hardware circuit. However, as the relevant
research of the RNN for solving the Lyapunov equation is still in
the stage of theoretical exploration and improvement, there are
no reports about hardware products of the RNN solver of the
Lyapunov equation. Relevant studies (Zhang et al., 2008; Yi et al.,
2011; Yi et al., 2013; Xiao and Liao, 2016; Xiao et al., 2019)
simulate the execution process of the RNN hardware circuit
through the form of software simulation, and this study also
adopts this form. It is undeniable that the results of software
simulation are consistent with those of hardware
implementation. Therefore, the theoretical derivation and
simulation results of the RNN in this article and in the
literature (Zhang et al., 2008; Yi et al., 2011; Yi et al., 2013;
Xiao and Liao, 2016; Xiao et al., 2019) can be extended to the
scenarios of hardware implementation.

The RNN is used to solve the Lyapunov equation, and the
ultimate goal is to develop an effective online calculation model to
solve the Lyapunov equation, so it is of great significance to
improve the calculation speed of the RNN. Current studies focus
on improving the computational speed of the RNN by improving
the convergence of RNN. However, how to efficiently realize
vectorization of the RNN model is also a breakthrough to
improve the computational efficiency of the RNN method. At
present, the Kronecker product is generally used to transform the
solution matrix into the vector form (Horn and Johnson, 1991).
The Kronecker product actually performs multiple matrix
multiplication operations, and the time complexity of
multiplying two n×n matrices is O (n̂3), so the time
complexity of the Kronecker product increases rapidly as the
scale increases. This means that the traditional matrix
vectorization method based on the Kronecker product still has
room for optimization.

In summary, this article proposes an efficient method for
vectorizing the RNN model based on the special structure of the
vectorized matrix, which is more efficient than the traditional
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expansion method by the Kronecker product. Aiming at the
expanding effect of vectorization on the problem scale, a
reduced-order RNN model based on symmetry was proposed
for solving the time-invariant Lyapunov equation, and the
validity and applicability of the reduced-order RNN model
were proved theoretically. The main contributions of this
article are as follows.

1) An efficient method for vectorization of RNN model is
proposed. Compared with the traditional vectorization
method, this method has higher efficiency and less time
consumption.

2) The reduced-order RNN model for solving the Lyapunov
equation based on symmetry is proposed, which greatly
reduces the solution scale. It is proved theoretically that the
proposed model can maintain the same solution as that of the
original model. Meanwhile, it is proved theoretically that the
proposed model is suitable for the ZNN model and GNN
model under linear or non-linear activation functions.

3) Several simulation examples are given to verify the
effectiveness and superiority of the proposed efficient
method for vectorization of the RNN and the reduced-
order RNN model. It is also verified that the neural
dynamics method is suitable for solving the Lyapunov
equation of power systems through three standard
examples of power systems.

In order to show the contributions of this study more clearly,
the logical graph using the RNN model for solving the Lyapunov
equation is shown in Figure 1, and the main novelties and
differences of this article from Refs Yi et al. (2011); Yi et al.
(2013); Xiao and Liao (2016); Xiao et al. (2019) are shown in
Table 1.

In Table1, items and numbers correspond to the three steps of
Figure 1. The relevant references include Yi et al. (2011); Yi et al.
(2013); Xiao and Liao (2016); Xiao et al. (2019).

In conclusion, Refs (Yi et al., 2011; Yi et al., 2013; Xiao and
Liao, 2016; Xiao et al., 2019) focus on constructing a stronger
RNN model to improve the convergence and noise-tolerant
ability, including using different activation functions and
neural networks. However, this study focuses on the
vectorization method and the reduced-order RNN model.

PROBLEM FORMULATION AND RELATED
WORK

Problem Formulation
Consider the following well-known Lyapunov equation (Yunong
Zhang and Danchi Jiang, 1995)

ATX(t) +X(t)A � −C, (1)
where A ∈ R

n×n is a constant stable real matrix and C ∈ R
n×n is a

constant symmetric positive-definite matrix. The objective is to
find the unknownmatrixX(t) ∈Rn×n tomake the Lyapunovmatrix
Eq. 1 hold true. LetXp∈ Rn×n denote the theoretical solution ofEq. 1.

In addition, two of the most relevant works (i.e., GNN and ZNN
models) are presented to solve the Lyapunov Eq. 1 in the following.

GNN
According to the principle of GNN (Yi et al., 2011) and combined
with the characteristics of Lyapunov equation, a corresponding
GNNmodel can be designed to solve the Lyapunov equation. The
design steps are as follows:

First, construct an energy function based on norm as follows:

Δ � ‖ATX(t) +X(t)A + C‖2F
2

(2)

where ‖.‖F means F-norm. The minimum value of the energy
function is the solution of the Lyapunov equation.

Second, based on the principle of the negative gradient descent
of the GNN, the following formula can be constructed:

−zΔ
zX

� −A(ATX(t) +X(t)A + C) − (ATX(t) +X(t)A + C)AT

(3)
By introducing the adjustable positive parameter γ, the

following GNN model can be obtained:

_X(t) � −γA(ATX(t) +X(t)A + C)
−γ(ATX(t) +X(t)A + C)AT (4)

where γ> 0, X(t) ∈ Rn×n, and X(0) ∈ Rn×n is the initial value
of X(t).

Finally, the conventional linear GNN (Eq. 4) can be improved
into the following non-linear expression by employing a non-
linear activation function array F(·):

_X(t) � −γ(AF(ATX(t) +X(t)A + C)
+ F(ATX(t) +X(t)A + C)AT) (5)

where F(·): Rn×n → Rn×n denotes a matrix-valued activation
function array of the GNN models. In this study, the bipolar
sigmoid activation function (BPAF) is selected as the
representative of the non-linear activation function of the
GNN model for simulation because of its strong convergence
(Yi et al., 2011). The expression of BPAF is as follows:

F(x) � 1 − exp(−δx)
1 + exp(−δx) (6)

where δ is a constant and δ > 1.

ZNN
First, following Zhang et al.’s design method (Zhang et al., 2002),
we can define the following matrix-valued error function to
monitor the solution process of Lyapunov Eq. 1:

E(t) � ATX(t) +X(t)A + C (7)
Then in view of the definition of E(t) and the design formula

dE(t)/dt � −γφ(E(t)), the dynamic equation of the ZNN model
for solving the online Lyapunov Eq. 1 is derived as follows:

AT _X(t) + _X(t)A � −γφ(ATX(t) +X(t)A + C) (8)
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where φ(·): Rn×n → Rn×n denotes a matrix-valued activation
function array of the ZNN models. The definition of γ in the
ZNN model is the same as that in the GNN model.

In this study, the RNZNN-1 model is selected as the
representative of the non-linear activation function of
the ZNN model for simulation because of its strong
convergence (Xiao et al., 2019). The expression of the non-
linear activation function in the RNZNN-1 model is as follows:

φ(x) � (a1|x|η + a2|x|ω) sign(x) + a3x + a4 sign(x) (9)
where design parameters 0< η< 1, ω> 1, a1 > 0, a2 > 0, a3 ≥ 0,
a4 ≥ 0, and sign(x) denotes the signum function.

AN EFFICIENT METHOD FOR
VECTORIZATION OF RNN MODEL

General Method of Vectorizing RNN Model
The RNN model needs to be transformed to the vector form so
that it can be used for software simulation (Li X. et al., 2019) and
hardware implementation.

Vectorization of the GNN Model
Yi et al. (2011) pointed out that the vectorization of GNN model
is as follows:

vec _X(t) � − γ((A ⊗ I)F((AT ⊗ I)vecX(t) + (I ⊗ AT)
vecX(t) + vecC) + (I ⊗ A)F((AT ⊗ I)vecX(t)
+ (I ⊗ AT)vecX(t) + vecC))

� −γ((A ⊕ A)F((AT ⊕ AT)vecX(t) + vecC))
(10)

where

A ⊕ A � A ⊗ I + I ⊗ A (11)
AT ⊕ AT � AT ⊗ I + I ⊗ AT (12)

where ⊗ means the Kronecker product. Given X � [xij] ∈ Rn×n,
we can vectorize X as a column vector, vec(X) ∈ R

n2×1, which is
defined as vec(X) � [x11, . . . , x1n, x21, . . . , xn1, . . . , xnn]T.

Since the order of matrix addition and matrix transpose is
interchangeable (Cheng and Chen, 2017),

(Y + Z)T � YT + ZT (13)
Applying this property to Eq. 11, we can get

(A ⊗ I + I ⊗ A)T � (A ⊗ I)T + (I ⊗ A)T (14)
According to Chen and Zhou (2012), the relationship between

the matrix transpose and Kronecker product is as follows:

(Y ⊗ Z)T � YT ⊗ ZT (15)
Applying this property to Eq. 14, we can get

FIGURE 1 | Logical graph of using a RNN model for solving the Lyapunov equation.

TABLE 1 | Main novelties and differences of this article from the relevant
references.

Number Item Refs. [9,15-17] This article

1 Constructing RNN model ✓ 7

2 Vectorization 7 ✓
3 Reduced-order RNN model 7 ✓
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(A ⊗ I)T + (I ⊗ A)T � AT ⊗ IT + IT ⊗ AT (16)
Considering I � IT and combining Eqs 11, 12, 14 and 16, we

can get

(A ⊕ A)T � AT ⊕ AT (17)

Vectorization of the ZNN Model
The vectorization process of the ZNN model is similar to that
of the GNN. Carry out Kronecker product on Eq. 8, and we
can get:

(AT ⊕ AT)vec _X(t) � −γφ((AT ⊗ I)vecX(t) + (I ⊗ AT)vecX(t) + vecC)
� −γφ((AT ⊕ AT)vecX(t) + vecC)

(18)

Vectorization of the RNN Model
By comparing Eqs 10, 17 and 18, it can be seen that the key of
vectorization of the RNN model is to solve AT ⊕ AT.

According to Eq. 12, the calculation ofAT ⊕ AT can be divided
into three steps:

1) Calculate AT ⊗ I

AT ⊗ I �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

1 ..
.

. . . . . . / ..
.

1 ..
.

0 . . . a11 . . . . . . / 0 . . . an1
..
. ..

. ..
.

1 ..
. ..

. ..
.

..

. ..
. ..

.
1 ..

. ..
. ..

.

..

. ..
. ..

.
1 ..

. ..
. ..

.

a1n . . . 0 . . . . . . . . . ann . . . 0
..
.

1 ..
.

. . . . . . . . . ..
.

1 ..
.

0 . . . a1n . . . . . . . . . 0 . . . ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

where
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
aij . . . 0

..

.
1 ..

.

0 . . . aij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is a diagonal matrix with n rows and n

columns. AT ⊗ I is a matrix with n2 rows and n2 columns.

2) Calculate I ⊗ AT

I ⊗ AT �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.
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.

1 ..
.

0 . . . 0 . . . . . . . . . a1n . . . ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
AT 0 . . . 0
0 AT . . . 0
..
. ..

.
1 ..

.

0 0 . . . AT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

where I ⊗ AT is a matrix with n2 rows and n2 columns.

3) Add AT ⊗ I to I ⊗ AT

AT ⊗ I + I ⊗ AT �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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FIGURE 2 | Circuit schematics which realizes GNN.

TABLE 2 | Comparison of the original-order RNN and the reduced-order RNN under Example 1.

Linearity Non-linearity

Original-order RNN Reduced-order RNN Original-order RNN Reduced-order RNN

Scale 9 6 9 6

Proportion 66.7%

ZNN F-norm 2.8400e-5 2.4700e-5 3.1127e-4 1.9507e-4
GNN F-norm 5.4000e-5 1.5208e-4 3.4400e-5 4.0500e-5
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FIGURE 3 | Comparison of the convergence between the original-order and the reduced-order RNN models under Example 1. (A) is ZNN, (B) is GNN.

TABLE 3 | Comparison of the original-order RNN and the reduced-order RNN under Example 2.

Linearity Non-linearity

Original-order RNN Reduced-order RNN Original-order RNN Reduced-order RNN

Scale 25 16 25 16

Proportion 64%

ZNN F-norm 2.6800e-5 2.1400e-5 3.1300e-5 5.1600e-6
GNN F-norm 8.1400e-5 1.7200e-5 1.6487e-4 1.8600e-5

FIGURE 4 | Comparison of the convergence between the original-order and the reduced-order RNN models under Example 2. (A) is ZNN, (B) is GNN.
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An Efficient Method for Vectorization of
RNN Model
According to the previous analysis, no matter how the matrix A is
changed, the matrix structure of AT ⊕ AT is fixed. Based on the
special structure of AT ⊕ AT, an efficient method for vectorization
of the RNN model is proposed in this article. The steps are as
follows.

1) Create a matrix with n2 rows and n2 columns named K and
fill K with the elements of A according to Eq. 19.

2) Fill K with the elements of A according to Eq. 20.
3) Add the corresponding element of A to the diagonal element

of K according to Eq. 21.

The vectorization method of the RNN model proposed in this
article is still based on the Kronecker product, but the time
complexity is greatly reduced. Because the vectorization method
proposed in this article replaces matrix multiplication with
assignment and addition.

THE REDUCED-ORDER RNN MODEL FOR
SOLVING LYAPUNOV EQUATIONS BASED
ON SYMMETRY
Since the solution of Eq. 1, X*, is always symmetric, as long as
the upper trigonometric elements of X* are solved, the

TABLE 4 | Comparison of the original-order RNN and the reduced-order RNN under Example 3.

Linearity Non-linearity

Original-order RNN Reduced-order RNN Original-order RNN Reduced-order RNN

Scale 100 55 100 55

Proportion 55%

ZNN F-norm 5.4400e-5 4.0800e-5 5.1745e-4 6.9400e-5
GNN F-norm 9.8582e-4 9.9281e-4 3.8700e-5 8.3900e-5

FIGURE 5 | Comparison of the convergence between the original-order and the reduced-order RNN models under Example 3. (A) is ZNN, (B) is GNN.

TABLE 5 | Comparison of the original-order ZNN and the reduced-order ZNN under Examples 4-6.

Linearity (15) Linearity (35) Linearity (97)

Original-order
ZNN

Reduced-order
ZNN

Original-order
ZNN

Reduced-order
ZNN

Original-order
ZNN

Reduced-order
ZNN

Scale 225 120 1225 630 9409 4753
Proportion 53.3% 51.4% 50.5
ZNN F-norm 3.3541e-2 3.2454e-2 3.4016e-2 1.5757e-2 1.6214e-3 3.1051e-3
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lower trigonometric elements of X* can be obtained
correspondently, which can greatly reduce the computational
amount of solving the Lyapunov equations. Based on this idea, a
reduced-order RNN model for solving the Lyapunov equation
based on symmetry is proposed in this article.

The Reduced-Order ZNNModel With Linear
Activation Function
Vectorization
Let’s consider a ZNN model with linear activation function after
vectorization. The formula is as follows:
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(22)

where K � AT ⊕ AT.

For the convenience of later discussion, S ∈ R
n×n is

constructed. Assign the following values to S as follows:

S �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 / n
n + 1 n + 2 / 2n
..
. ..

.
1 ..

.

n(n − 1) + 1 n(n − 1) + 2 / n2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

Each element of S is the index number of the element of A at the
same position.

We can expand Xp to vecXp ∈ R
n2×1. Assuming that xp

2
and xpn+1 are, respectively, the elements of the 1st row and the
n + 1th row of vecXp. Due to the symmetry, xp2 will be equal
to xp

n+1.

Reduce the Column Number of K
If the Kronecker product is directly carried out on Eq. 1, then
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(24)

We can useKvecX � −vecC to express Eq. 24. Lan (2017) points
out that if A is stable and C is symmetrically positive definite,
then the Lyapunov Eq. 1 has a unique symmetric positive
definite solution. Therefore, the K matrix of Eq. 24 must be
invertible.

Multiply both sides of Eq. 22 by the inverse matrix of K,
then we get

FIGURE 6 | Comparison of the convergence between the original-order
and the reduced-order ZNN models under Example 4.

FIGURE 7 | Comparison of the convergence between the original-order
and the reduced-order ZNN models under Example 5.
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(25)

From Eq. 25, we can see that K−1vecC is the solution of the
Lyapunov Eq. 1, which means K−1vecC � vecX*. Since X* is a
symmetric matrix, the differential equations of x2(t) and
xn+1(t) are the same. If x2(0) and xn+1(0) are equal, then the
time domain trajectories of x2(t) and xn+1(t) are the same,
namely, _x2(t) � _xn+1(t) and x2(t) � xn+1(t). Therefore, for Eq.
22, the column n + 1 of K can be added to the second column.
Similarly, the same operation of column addition can be
performed on the other columns in the symmetric positions.
So the column number of K reduces to 0.5(n + 1)n. Eq. 22
becomes
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Reduce the Row Number of K
When the steady state is considered, the differential term of Eq.
26 is 0, and we can get:
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Asmentioned before, ifA is stable andC is symmetrically positive
definite, then Lyapunov Eq. 1 has a unique symmetric positive
definite solution. Therefore, the number of equations should be
the same as the number of variables (Cheng and Chen, 2017),
namely, the rank of the coefficient matrix of Eq. 27 is equal to
0.5(n + 1)n, which means the row vector set of the coefficient
matrix of Eq. 27 is linearly correlated.

We can construct the augmented matrix of Eq. 27 and name it
as G. If we define the first row of G as the vector α1, the second

FIGURE 8 | Comparison of the convergence between the original-order
and the reduced-order ZNN models under Example 6.

TABLE 6 | Comparison of the time cost of two vectorization methods for RNN models.

Scale Method A (ms) Method B (ms) Proportion (%)

3 0.032 0.117 19.7
5 0.049 0.132 37.1
10 0.117 0.225 52.0
15 0.221 9.677 2.3
20 0.811 2.245 36.1
30 1.818 9.349 19.4
35 2.070 28.916 7.2
40 3.206 28.254 11.3
50 5.106 71.949 7.1
97 34.983 921.778 3.8
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row as the vector α2, and so on, the row n2 is defined as the vector
αn2 .

According to the knowledge of linear algebra, the vector set
α1, α2, . . . , αn2 is linearly dependent only if at least one of the
vectors in the set can be represented linearly by the other vectors.

Let us define the vectors which can be represented linearly by
the other vectors as the redundant vectors. Suppose that

αn2 � h1α1 + h2α2 + . . . + hn2−1αn2−1 (28)
where h1, h2, . . . , hn2−1 are real numbers and at least one of them
is not equal to 0. Then αn2 is a redundant vector. As long as the
redundant vectors are found out and the equations of their
corresponding rows are deleted, a new augmented matrix with
full row rank can be obtained.

According to the aformentioned analysis, as long as A is stable
and C is symmetrically positive definite, then the redundant
vectors must exist, which means there are always some vectors
that satisfy Eq. 28. However, A and C are independent of each
other. Considering there are always some vectors satisfying Eq. 28
in the case of any stable A and any symmetrically positive definite
C, there is only one possibility that for some redundant vector,
there is another vector that is equal to it, and the row indexes of
both of them are symmetric in the matrix S. Only in this way,
based on the symmetric characteristics of matrix C, can the
redundant vectors always satisfy Eq. 28 when A and C are
independent of each other.

For a redundant vector, its own row index and the row index of
another vector equal to it can form a pair of indexes. We can use
these index pairs to find the redundant vectors and delete the
corresponding rows. In general, in an index pair, the equation
corresponding to the index whose value is larger is selected for
deletion.

After the row deletion, the row number of K also reduces to
0.5(n + 1)n. Eq. 26 becomes
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We can use Krvec _Xr � −γ(KrvecXr + vecCr) to express Eq. 29.

Reduced-Order GNN Model With Linear
Activation Function
Consider a GNN model with linear activation function after
vectorization. The formula is as follows:
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(30)

When the steady state is considered, the differential term of
Eq. 30 is 0, and Eq. 30 is changed into Eq. 24. From the
aforementioned derivation, it can be known that both KvecX �
−vecC and KrvecXr � −vecCr can obtain the solution of
Lyapunov Eq. 1. On this basis, an attempt is made to
construct a reduced-order GNN model with linear activation
function after vectorization, as follows:
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(31)
When the steady state is considered, Eq. 31 is changed into

KrvecXr � −vecCr, which means the solution of Lyapunov Eq. 1
can be finally obtained by solving Eq. 31.

Reduced-Order RNN Model With
Non-Linear Activation Functions
Before every non-linear activation function is introduced into the
linear RNN, it will be theoretically proved that their introduction
can guarantee the correct convergence of RNN. However, the
reduced-order RNN in this article does not change the structure
of RNN, but only changes the size of RNN. Because both the
problem scale and the specific values of the matrix are generally
expressed in symbolic form in the theoretical derivation (Xiao
and Liao, 2016; Xiao et al., 2019), and the reduced-order RNN
model in this article is still applicable to the relevant theoretical
proof of introducing the non-linear activation functions into the
linear RNN. In other words, the reduced-order method in this
article can be applied to the RNN model with non-linear
activation functions.

The Generation of the Reduced-Order RNN
Model
The steps for generating the reduced-order RNN model are as
follows:
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1) S is constructed, and the construction logic is as described
above.

2) Considering that the indexes in the symmetric positions of S
can form n(n−1)

2 index pairs, we construct a matrix L and fill L
with n(n−1)

2 index pairs. It is important to note that all of the
elements in the first column of L must be the upper
trigonometric elements (excluding diagonal elements) of S.
For the convenience of presentation, suppose M is the first
column of L, and N is the second column of matrix L.

3) ForK and vecC of RNNmodel, the rows corresponding to the
element values of N are deleted.

4) For K and vecC obtained in step 3, add the symmetric columns
according to the element values of M and N, and the columns
obtained by the additionwill replace the columns corresponding to
the element values ofM, while the columns corresponding to the
element values ofN will be deleted. For vec _X(t) and vecX(t), the
rows corresponding to the element values of N will be deleted.

It should be pointed out that in mathematical proof, if the
order of row reduction and column reduction is exchanged, the
correctness of the reduced-order RNN model cannot be proved
or another proof method is needed to complete the proof.
However, in the case that the mathematical proof has been
completed, the order of row reduction and column reduction
does not affect the final result, since we know in advance which
rows and columns are to be deleted. In the aformentioned steps
of generating the reduced-order RNNmodel, the reason why we
carry out step 3 first is that it can reduce the computational
amount of the column addition to achieving higher
computational efficiency.

The Significance of the Reduced-Order
RNN Model
In order to better explain the value and significance of the
reduced-order RNN model proposed in this article, the
differences before and after the order reduction are shown
from the perspectives of software simulation and hardware
implementation, respectively. For the convenience of
discussion, the GNN is taken as an example to illustrate.

Simulation on the Software
Weuse the ode45 function ofMATLAB to solve the GNNmodel after
vectorization. By comparing Eq. 30 and Eq. 31, it can be seen that the
memory requirement of the reduced-order GNN model is much
smaller than that of the original GNNmodel. Therefore, the reduced-
order GNN model greatly alleviates the problem of insufficient
memory that may occur in the software simulation of the GNN.

Hardware Implementation
When we use the traditional GNN model, the structure of the
circuit diagram is shown as Figure 2 (Yi et al., 2011).

Where M � [mij] ∈ Rn2×n2 � A ⊕ A, P � [p1, p2, . . . , pn2]T �
vecC ∈ Rn2×1, Y � [y1, y2, . . . , yn2]T � vecX ∈ Rn2×1.

When we use the reduced-order GNN model, the structure of
the circuit diagram is shown as Figure 2, except that the n2 in the
diagram becomes 0.5(n + 1)n.

So the reduced-order GNNmodel greatly reduces the number of
devices and wiring required for the hardware realization of GNN
model, which is conducive to reducing the volume of hardware, the
complexity of hardware production, and the failure rate of hardware.

ILLUSTRATIVE VERIFICATION

The simulation examples in this article are all completed on the
MATLAB 2013b platform. In this article, the ode45 function of
MATLAB is used to simulate the iterative process of RNN (Zhang
et al., 2008). The corresponding computing performance is tested
on a personal computer with Intel Core i7-4790 CPU @3.2GHz
and 8 GB RAM.

Since there are great differences between software and hardware
in the principle of realizing the integral function, there will be a big
gap between the time cost in simulating the RNN process using
software and the time cost in implementing the RNN model using
hardware. Considering the research on the RNNmodel used to solve
the Lyapunov equation is still in the stage of theoretical exploration,
and has not reached the stage of hardware production for the time
being, this article does not discuss the influence of the proposed
reduced-order RNN model on the time consuming of RNN.

The Reduced-Order RNN Model for Solving
Lyapunov Equation Based on Symmetry
Example 1
Let us consider the Lyapunov Eq. 1 with the following coefficient
matrices:

A � ⎡⎢⎢⎢⎢⎢⎣−11 2 3
4 −7 6
1 8 −12

⎤⎥⎥⎥⎥⎥⎦ and C � I3×3

where A is similar to Example II in Xiao et al. (2019). However, A
andC of Example II in Xiao et al. (2019) do not fit the definition of
Eq. 1, so we changeA a little bit and setC to be the identity matrix.

In this example, we set γ � 10, η � 0.25, ω � 4,
a1 � a2 � a3 � a4 � 1, and δ � 4 (Yi et al., 2011; Xiao et al., 2019).

In order to demonstrate the advantages of the reduced-order
RNN model, this article compares the performance of the reduced-
order RNN and the original-order RNN, as shown in Table 2. In
Table 2, linearity and non-linearity, respectively, mean the linear
activation function and the non-linear activation function. Scale
means the row number of vecX or vecXr. Proportionmeans the row
number of vecXr divided by the row number of vecX. The ZNN
F-norm and GNN F-norm, respectively, mean ‖ ATX +XA + C ‖F
at the end of the simulation of ZNN and GNN.

In order to study the effect of order reduction method proposed
in this article on the convergence of the RNN model, the F-norm
curves of the original-order RNN model and the reduced-order
RNN model are drawn, as shown in Figure 3. In Figure 3A, LAF
means the ZNNmodel with linear activation functions. NAFmeans
the ZNN model with the non-linear activation function of Eq. 9. In
Figure 3B, LAF means the GNN model with linear activation
functions. BPAF means the GNN model with the non-linear
activation function of Eq. 6. In both Figure 3A and Figure 3B,
F-norm refers to ‖ ATX(t) +X(t)A + C ‖F.
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Example 2
To enlarge the scale of the example, we consider Lyapunov Eq. 1
with the following coefficient matrices:

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−17 3 4 5 6
3 −17 3 4 5
4 3 −17 3 4
5 4 3 −17 3
6 5 4 3 −17

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and C � I5×5

where A is similar to Example III in Xiao et al. (2019).
However, A and C of Example III in Xiao et al. (2019) do not
fit the definition of Eq. 1, so we changeA a little bit and setC to be
the identity matrix.

In this example, RNN’s model parameters are the same as
Example 1. Similar to Example 1, we can get Table 3 and
Figure 4. The definitions of all nouns in Table 3 are the same
as those inTable 2, and the definitions of all nouns in Figure 4 are
the same as those in Figure 3.

Example 3

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−50 5 2 5 9 5 8 3 6 10
8 −51 10 10 7 1 4 4 3 8
4 3 −51 2 4 10 3 9 8 5
6 10 8 −49 6 10 5 1 2 5
2 2 9 2 −47 5 1 1 7 5
7 9 9 2 1 −47 2 2 2 4
3 6 1 9 3 4 −42 7 4 6
7 10 4 6 2 10 10 −44 7 6
7 1 3 6 2 4 6 7 −44 9
8 5 9 2 3 2 1 5 1 −44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C � I10×10

A 10p10 matrix is randomly generated and then α-shift is
applied to the matrix to make it stable (Yang et al., 1993), which
is the generation process ofA of Example 3 in this article.C is set to
be the identity matrix.

In this example, RNN’s model parameters are the same as
Example 1. Similar to Example 1, we can get Table 4 and
Figure 5. The definitions of all nouns in Table 4 are the same
as those inTable 2, and the definitions of all nouns in Figure 5 are
the same as those in Figure 3.

Based on the information in the aforementioned three tables,
we can draw the following conclusions:

a) The reduced-order RNN model has a very obvious effect, with
the scale reduced by about 33–45%. Moreover, the effect of the
reduced-order RNN model becomes more obvious with the
increase in the size of the example. According to
lim
n→∞

0.5n(n+1)
n2 � 0.5, it can be seen that when the size of the

example is larger, the percentage of the scale decrease is closer to
50%. The reduced-order RNN model not only greatly alleviates
the problem of insufficient memory in the software simulation of
RNN but also greatly reduces the number of devices and wiring
required for the hardware realization of RNN model, which is
conducive to reducing the volume of hardware, the complexity
of hardware production, and the failure rate of hardware.

b) Under different case scales, whether it is ZNN or GNN,
whether it is linear activation function or non-linear

activation function, the steady-state errors of the reduced-
order RNN model are very close to 0, which means the
reduced-order RNN model can always converge to the
correct solution of the Lyapunov equation. This indicates
that the reduced-order RNN model is applicable to ZNN
and GNN, as well as the scenarios of linear activation function
and non-linear activation function, which is consistent with
the theoretical derivation results above.

c) Under different case scales, the difference in the steady-state
accuracy between the reduced-order RNN and the original-order
RNN is very small, indicating that the reduced-order RNN
basically does not affect the steady-state accuracy of RNN.

Based on the information in the aforementioned three figures,
we can draw the following conclusions:

a) Under different case scales, the reduced-order RNNmodels with
linear or non-linear activation functions either have a little effect
on the iterative convergence characteristics or enhance the
convergence at the beginning of the iteration process and
have a little effect on the convergence at the end of it.

b) Under the non-linear activation functions, the convergence of
the ZNN model is always stronger than that of the GNN
model when other conditions are fixed.

c) Under the linear activation function, the convergence of the ZNN
model is weaker than that of the GNNmodel when the size of the
examples is small (e.g., Example 1 andExample 2). The convergence
of the linear ZNN model is stronger than that of the linear GNN
model when the size of the examples is large (e.g., Example 3).

d) For both ZNN and GNN, the convergence of the RNN model
with non-linear activation function is always stronger than
that of the linear RNN model.

e) With the increase in the size of the examples, the convergence
of ZNN is basically unchanged, while the convergence of
GNN will become significantly worse.

Example 4
In order to verify the applicability of neural dynamics method to
the power system, the corresponding Lyapunov equation
describing system controllability is generated for the IEEE
three-machine nine-node system according to the principle of
the balanced truncation method in (Zhao et al., 2014). The input
signal is the rotor speed deviation and the output signal is the
auxiliary stabilizing signal (Zhu et al., 2016). It should be noted
that the IEEE standard systems used in this article come from the
examples of the PST toolkit (Lan, 2017), and the linearization
process of the system is realized by the svm_mgen.m of PST
toolkit. We set γ � 10.A ∈ R

15×15 andC ∈ R
15×15 of the Lyapunov

equation are detailed in Supplementary Material.
In this example, the linear ZNN was selected for testing. Similar

to Example 1, we can get Table 5 and Figure 6. The definitions of all
nouns inTable 5 are the same as those inTable 2 and the definitions
of all nouns in Figure 6 are the same as those in Figure 3.

Example 5
Similar to Example 4, we generate the corresponding Lyapunov
equation describing system controllability of the IEEE 16-machine
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system. A ∈ R
35×35 and C ∈ R

35×35 of the Lyapunov equation are
detailed in Supplementary Material. We set γ � 100. The
simulation results are shown in Table 5 and Figure 7. The
definitions of all nouns in Figure 7 are the same as those in
Figure 3.

Example 6
Similar to Example 4, we generate the corresponding Lyapunov
equation describing system controllability of the IEEE 48-
machine system. A ∈ R

97×97 and C ∈ R
97×97 of the Lyapunov

equation are detailed in Supplementary Material. We set
γ � 100. The simulation results are shown in Table 5 and
Figure 8. The definitions of all nouns in Figure 8 are the
same as those in Figure 3.

It can be seen from Table 5 and Figures 6–8 that the neural
dynamicsmethod used to solve Lyapunov equations is also suitable
for solving Lyapunov equations in power systems, and the reduced-
order RNN mosdels proposed in this article is effective in the
example of power systems. Moreover, with the increase in the
power system scale, the convergence and steady-state accuracy of
ZNN model are almost unchanged, indicating the applicability of
the RNN model to power systems of different scales.

It is worth mentioning that the integration between the electric
power and natural gas systems has been steadily enhanced in recent
decades. The incorporation of natural gas systems brings, in
addition to a cleaner energy source, greater reliability and
flexibility to the power system (Liu et al., 2021). Since the
dynamic model of the electricity–gas coupled system can be
expressed by differential-algebraic equations (Zhang, 2005;
Yang, 2020), which means the dynamic model of the
electricity–gas coupled system is the same as that of the power
system, the aforementioned applicability analysis of the methods
proposed in this article for large power systems are also applicable
to large electricity–gas coupled systems.

An Efficient Method for Vectorization of
RNN Model
Table 6 compares the time cost of the RNN model vectorization
method proposed in this article and the traditional RNN model
vectorization method. For the sake of convenience, the former is
called method A and the latter is called method B. In order to better
demonstrate the effect of the vectorization method of RNN model
proposed in this article, four examples are added, as shown inTable 6.
Four newly added examples are generated in the sameway as Example
3 and are detailed in Supplementary Material, where ms means
millisecond; scale means the order of A; and proportion refers to the
time taken by method A divided by the time taken by method B.

It can be seen from Table 6 that method A is significantly
better than method B in terms of time cost, with the decrease in
time cost between 48 and 98%.With the increase in the size of the
examples, the proportion of time cost improvement generally
increases. It should be pointed out that when the system sizes are
15, 35, and 97, the corresponding examples are the IEEE standard
systems mentioned before, which indicates that the vectorization
method proposed in this article is also effective in the example of
power systems.

CONCLUSION

1) Wepropose an efficientmethod for vectorizingRNNmodels,which
can achieve higher computational efficiency than the traditional
method of vectorizing RNN based on the Kronecker product.

2) In order to reduce the solving scale of the RNN model, a
reduced-order RNN model for solving the Lyapunov equation
was proposed based on symmetry. At the same time, it is proved
theoretically that the proposed model can maintain the same
solution as that of the original model, and it is also proved that
the proposed model is suitable for both the ZNN model and
GNN model under linear or non-linear activation functions.

3) Several simulation examples are given to verify the
effectiveness and superiority of the proposed method, while
three standard examples of power systems are given to verify
that the neural dynamics method is suitable for solving the
Lyapunov equation of power systems.

Because the neural dynamics method has parallel distribution
characteristics and hardware implementation convenience, its
convergence and computation time are not sensitive to the system
scale. Considering the current development level and trend of the
very large-scale integration (VLSI) chip and the ultra large-scale
integration (ULSI) chip, the wide application of the neural
dynamics method in large-scale systems is expected.

In addition, the research on the RNN model used to solve the
Lyapunov equation is mainly in the stage of theoretical improvement
and exploration, and there are few reports about hardware products.
Thehardware product designwill be themain content of the next stage.
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