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In this paper, we provide a study of the effect of directed technical change in the energy
sector on pollution emission. We make an empirical analysis under the framework of the
extended stochastic impacts by regression on population, affluence, and technology
model and the environmental Kuznets curve hypothesis and employ the patent data onto
fossil energy and renewable energy technologies from 2000 to 2015 to match the
economic and environmental data of 30 provinces in China. We show that the
prerequisite of restraining pollution emission is to transform the direction of energy
technical change rather than only increase the magnitude of energy technical change.
Furthermore, the direction of energy technical change will set up dissimilar purification
effects on different pollutants, which indicates that the path of emission reduction of
renewable energy technology is different. Moreover, promoting energy technology
cooperation in adjacent provinces can further intensify the effect of directed energy
technical change in restraining pollution emission according to the regional features of
each area, and formulating targeted environmental policies to change the energy
technology from dirty to clean can effectively curb environmental degradation, which is
the mechanism to realize the rationalization and transformation of the energy structure.
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INTRODUCTION

The rapid evolution of China’s economy has been mainly based on extensive growth patterns since
the reform and opening up, which has led to high energy consumption (EC). It may be effective in the
short term to decrease the burden on the environment by reducing the total EC by improving energy
efficiency, but it is difficult in the long term. To find a solution to this fact, some scholars focus on the
innovation of energy technology and analyze how to reduce the negative effect of the employment of
energy on the environment through the energy technical change (Lin and Li, 2014; Buonocore et al.,
2016). It is important to note that in the energy sector, technical change is not only showing the
magnitude but also the direction. It is a potential fact that there is also a directed technical change in
the energy sector since energy is a crucial input factor for modern economic growth, which can be
divided into two kinds: dirty-type fossil energy and clean-type renewable energy due to various
application technologies (Yang et al., 2019). Fossil energy has a long history, its technology is
relatively robust and leading, and its application cost is low; renewable energy belongs to the
emerging industry, its requirements on technology are higher than fossil energy, and its application
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cost is high. Consequently, there are two kinds of directed energy
technical change (DETC), dirty and clean, respectively.

However, the energy structure in China always presents the
style fact that the proportion of fossil energy (coal, oil, and gas) is
relatively in the height for a long time. In that case, if we only pay
attention to the magnitude of energy technical change and ignore
the direction of energy technical change, under the condition of
the free market, the energy technology is likely to be affected by
the features of the lock-in effect or path dependence on
technology (Acemoglu et al., 2012; Aghion et al., 2016), which
forced the energy technology to develop in the direction of the
fossil energy, thus forming the dirty direction of energy technical
change. Although this kind of DETC can also improve China’s
energy efficiency, under the rebound effect of energy, fossil EC
may increase accordingly, and the increase in fossil EC is bound
to cause continuous pollution. Finally, it is hard to overcome the
dilemma of both economic growth and environmental pollution
through the energy technical change. Consequently, both the
direction and magnitude of energy technical change should be
given high attention. DETC, in particular, may be a prerequisite
for restraining pollution emission through energy technologies.

In addition, there are great gaps in economic growth,
population, and technology among different areas in China,
which might make the pollution emission have a spatial effect.
The potential fact is that the more pollution emissions, the worse
the environmental quality. Therefore, according to the hypothesis
of the environmental Kuznets curve (EKC), there is a nonlinear
correlation between the economy and the environment
(Grossman and Krueger, 1995). When economic growth and
environmental quality are not decoupled, the requirements of
environmental quality in developed areas are commonly higher
than in underdeveloped areas (Al-Mulali et al., 2015; Pata and
Caglar, 2021). It is not only easy to form the pollution haven, that
is, the transfer of pollution industries from developed areas to
underdeveloped areas, but it also further causes significant
regional gaps in energy technical change, that is, there may be
spatial effects in energy technology. The DETC reflects the
relative intensity between renewable energy and fossil energy
technology, which is an expressive way of energy technical
change, so the DETC may also have a spatial correlation. If
we ignore the potential spatial effect between pollution emissions
and the DETC, we will not be able to obtain the correlation
accurately. To solve this problem, we make the empirical analysis
based on an extended STIRPAT model and the hypothesis of
EKC (Dietz and Rosa, 1994; Grossman and Krueger, 1995; York
et al., 2003), in the form of spatial panel data. Furthermore, some
studies have shown that China’s environmental degradation is
becoming more and more serious (Pata and Isik, 2021), and the
contribution of renewable energy and its technology to the
environment remains to be investigated (Pata and Caglar, 2021).

In general, to more effectively alleviate the contradictory
problems of environmental pollution and economic
development facing China, it is urgent to increase investment
and support for the innovation of energy technology. Combined
with environmental policies, the energy technology in China will
be promoted to show the clean direction, to complete the
substitution of fossil energy by renewable energy, and to

realize the coordinated growth of the economy and
environment in finality.

This paper is organized as follows: a literature review is
presented in Literature Review. The methodology shown in
Methodology. Data and Variables is data and variables.
Empirical Results includes the results and discussion. The
conclusions are in the final section.

LITERATURE REVIEW

Acemoglu (2002) creatively altered the research of technical
change from neutral to directed, that is, there is a specific
direction in technical change for all sectors. With the
continuous improvement in the theory of directed technical
change, it has been more and more applied to the study of
energy and environmental issues. These studies can be divided
into two categories.

The first category of research starts from the factors of
economic growth to explore the directed technical change
between the capital (K), labor (L), energy (E), and its
environmental performances, focusing on empirical analysis.
Otto et al. (2007) related the use of energy with pollution
emission and establishes a Computable General Equilibrium
(CGE) model to discuss the directed technical change on
specific productive factors. The research shows that the
substitution elasticity between different factors has an
important impact on which factors the technical change tends
to. Karanfil and Yeddir-tamsamani (2010) used the trans-log cost
function to consider the energy factor into the study scope of
directed technical change and found that the energy price is the
important factor affecting the directed technical change. Zha et al.
(2017) employed the Constant Elasticity of Substitution (CES)
production function to measure the direction of technical change
of 11 energy-intensive industries in China from 1990 to 2012. The
results show that more than half of the industries in technical
change are directed toward energy, while the rest of industries are
directed toward capital and labor, which means that recent
environmental policies have failed to promote the
advancement of green technology in China. Yang et al. (2018)
and Cheng et al. (2019) also discussed the DETC of China’s
industry and divided the energy factors into fossil and non-fossil
energy. The research shows that optimizing the technical change
in labor, capital, and non-fossil energy can alterat the energy
structure, which can promote the green transformation of
economic growth.

The second category of research is based on the theory of
endogenous economic growth, discussing how policies affect the
directed technical change and the continuous impact on pollution
emission after the transformations in directed technical change,
focusing on theoretical analysis. Acemoglu et al. (2012)
constructed the analysis framework of directed technical
change and environment under the theory of endogenous
economic growth1. It is found that the directed technical

1This framework is called AABH model in general (Wiskich, 2021).
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change depends on the three effects of price, market size, and
productivity, and the government can transform the directed
technical change through temporary environmental policies, to
avoid environmental disasters. Energy is a crucial factor of the
economy, and the energy factor market is forward looking. André
and Smulders (2014) established a theoretical model on this basis,
which links the growth speed and direction of technical change
with energy employment and exploitation, and proposed that
energy factors should be considered in the analysis framework of
directed technical change, to better explore the long-term and
short-term effects of environmental policies on the directed
technical change and environment. Mattauch et al. (2015)
introduced the spillover effect of learning by doing it into the
framework of directed technical change and believed that an
important reason hindering the transformation of low-carbon
economy is the lock-in effect in technology caused by the high
stock of fossil energy technology, which indicates that we need to
pay attention to the issue of directed technical change within
energy sectors and that this is the key to solve environmental
pollution. Some scholars further extended this framework to the
open economy model to explore the impact of unilateral
environmental policy on directed technical change and
environment (Hemous, 2016; Bijgaart, 2017). Recently,
Wiskich (2021) has summarized the relevant theoretical
research and supplemented and improved the study of
Acemoglu et al. (2012), to achieve a more stable equilibrium.

Compared with previous studies, this paper focuses on the
empirical analysis of the impact of the DETC on pollution
emission, and the potential contributions are as follows: first,
the technical change in the STIRPAT model is decomposed
into energy efficiency and DETC, to examine the prerequisites
for restraining pollution emission through energy technology.
Second, three different types of pollutants are employed to
reflect the industrial pollution emission, to explore the
emission reduction path of renewable energy technology,
and to realize the balanced growth of renewable energy
technology. Third, combined with the EKC hypothesis, the
STIRPAT model is extended to a spatial panel, and the spatial
econometrics method is employed to make up for the lack of
considering the spatial effect of pollutants in the
existing study.

METHODOLOGY

This section shows how the STIRPAT model is extended and
explains how the model fits the EKC hypothesis. The STIRPAT
model is a way of an extensible environmental effect assessment,
and it is also a classical method to investigate the impact factors of
pollution emission (Dietz and Rosa 1994; Lin, Zhao, and
Marinova 2009). The STIRPAT model is as follows:

It � aPβ1
t A

β2
t T

β3
t εt (1)

where I is the emission of pollutants in time t. Population (P),
affluence (A), and technology (T) are considered to be important
factors affecting pollution emissions (I). Next, the model of

STIRPAT is expanded to meet the application requirements of
econometrics.

Baseline Model
The power of the STIRPAT model is not only can it expand the
estimation form of the model, but it also allows to improve the
factors affecting pollution emissions. Therefore, we take the
logarithm based on Eq. 1 to get the baseline model of panel
data, as follows:

ln Iit � α + β1 lnPit + β2 lnAit + β3 lnTit + γi + μt + εit (2)
γi and μt are areas and time-fixed effects, respectively. ε is the
residual term, and α is the constant term. The population density
per unit area of each area is used to represent the population
(P→POP). Affluence (A) is expressed as the real Gross Domestic
Product (GDP) per capita (pGDP).

It must be noted that we decompose the technology (T) in the
STIRPATmodel into two parts: energy efficiency (EE) andDETC,
to examine the impact from the magnitude and the direction of
energy technical change on pollution emissions. The larger the
magnitude of energy technical change, the higher the energy
efficiency, generally.

In addition, the EKC hypothesis illustrates that there is a high-
order nonlinear correlation between economic growth and
environment (Grossman and Krueger, 1995; Shao et al., 2011).
The quadratic and cubic terms of pGDP are included in Eq. 2, and
the model is as follows:

ln Iit � α + β1 lnPOPit

+ β2 lnpGDPit + β3(lnpGDPit)
2 + β4(lnpGDPit)

3

+ β5 lnEEit + β6 lnDETCit +∑Xit + γi + μt + εit

(3)
Xit is the control variables affecting the pollution emissions,
including the energy consumption (EC), environmental
regulation (ER), industrial structure (IS), and foreign direct
investment (FDI), which can be used to reduce the
endogenous issue.

Spatial Econometric Model
Next, we further extend Eq. 3 to the panel form of the spatial
econometric model. In the expansion of the spatial econometric
model, we need to analyze the potential features of variables
spatially, to find the suitable model.

The first fact is that most pollutants (SO2,WW, SW) have the
features of spatial diffusion and transfer, so the spatial correlation
of pollution emissions (I) is existent. Consequently, this paper
divides the sources of spatial correlation between different areas
into 1) the spillover effect of neighboring pollution emissions on
local areas and 2) the leakage effect of local pollution emissions on
neighboring areas. The difference of “spillover effect” and
“leakage effect” between different areas reflects the spatial
correlation of pollution emissions, that is, ρW ln Iit, where ρ is
the coefficient of spatial lag and W is the spatial weight matrix.

The second fact is that other independent variables in Eq. 3
may also have a spatial correlation. For example, technical change
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in a local area will not only affect the pollution emissions of a local
area but also the pollution emissions of its neighboring areas (Xie
et al., 2016).

The third fact is that environmental regulation (ER) may alter
pollution emissions by influencing technical change or
innovation, which may be one of the mechanisms of
environmental regulation affecting pollution emissions (Lanoie
et al., 2008; Li and Du, 2021). Thus, we construct two groups of
interactive variables in the way of a regulatory effect (lnDETC ×
lnER, lnEE × lnER), to control the indirect impact of
environmental regulation on pollution emissions.

To sum up, the extended STIRPAT model belongs to the
spatial Durbin model (SDM), which contains both the spatial lag
of the dependent variable and independent variables. The SDM
model is as follows:

ln Iit � α + ρW ln Iit +∑
7

j�1βjCit +∑
7

k�1θjWCit

+ β8(lnDETC × lnER) + β9(lnEE × lnER)
+θ8W(lnDETC × lnER) + θ9W(lnEE × lnER)
+γi + μt + εit (4)

where Cit shows the variable collection of lnPOPit, lnpGDPit,
(lnpGDPit)2, (lnpGDPit)3, lnEEit, lnDETCit, and Xit. The
interaction between the DETC and environmental regulation is
expressed by lnDETC × lnER. The interaction between energy
efficiency and environmental regulation is expressed by lnEE
× lnER.

Spatial Weight Matrix
In the spatial econometric model, the geographical distance and
economic distance are considered, to build a composite spatial
weight matrix (Case, Rosen, and Hines 1993). This is because
pollutants not only have the features of diffusion due to
geographical distance but are also generated by the employment
of energy factors and economic activities. First, we employ the square
of the inverse distance matrix to represent the geographical distance
weight matrix (WGEO). Second, the economic distance weightmatrix
(WGDP) is represented by the square of the reciprocal of the absolute
value of the difference between the GDP per capita of each area.
Third, the composite space weight matrix (WBOTH) is represented by
the weight of the WGEO and WGDP, which is as follows:

WBOTH � ϕWGEO + (1 − ϕ)WGDP (5)

ϕ represents the weight of WGEO and WGDP in WBOTH and
ϕ ∈ (0, 1). We assume that ϕ � 0.5, which shows that the
impact of geographical distance and economic distance on
spatial effect is similar, to relax the analysis.

DATA AND VARIABLES

This paper employs the annual panel data of the 30 areas of
provinces in China as the research sample and the period of
2000–2015. A total of 480 observations constitute the panel data.
Due to the missing details on EC, pollutant emission, and so on,
Tibet, Hong Kong, Macao, and Taiwan are not included.

Pollution Emissions
The potential fact is that the more pollution emissions, the worse
the environmental quality. Consequently, the emission of sulfur
dioxide (SO2), wastewater (WW), and solid waste (SW) from the
industrial sector (I) is employed to measure the pollution
emission from the I. These pollutants are closely related to the
application of energy factors and energy technology (Buonocore
et al., 2016). We also use the per capita form of the above variables
to eliminate the impact of the scale effect. The data of SW are
missing due to the alteration of the statistical scale in 2011 (Zhao
et al., 2021). Consequently, the production of industrial solid
waste is used instead of the emission.

The Magnitude of Energy Technical Change
The magnitude of energy technical change is measured by energy
efficiency (EE). Specifically, this paper uses the GDP per unit of EC
tomeasure energy efficiency2. The improvement of energy efficiency
is, of course, not only determined by energy technology. The
advancement of the application, management, and transformation
of energy structures will also affect energy efficiency. However, as an
external reflection of energy technical change and Research and
Development (R&D) investment in energy technology, the higher
the scope of energy efficiency, the lower the EC at the same economic
output, indicating the improvement of energy technology (Shao
et al., 2011).

TABLE 1 | Descriptive statistics of variables.

Variables Average Std.dev Min Max Skew Kurt Obs

SO2 0.016 0.011 0.001 0.061 1.930 7.303 480
WW 16.309 8.652 3.252 47.631 1.159 3.841 480
SW 1.821 2.633 0.094 25.267 5.414 39.870 480
DETC 0.477 0.133 0.053 0.952 0.198 3.711 480
EE 0.939 0.547 0.159 3.245 0.966 3.882 480
POP 418.196 583.643 7.161 3,825.690 3.892 20.112 480
pGDP 27,478.760 21,678.910 2,661.557 108,000 1.355 4.648 480
EC 2.691 1.488 0.556 8.093 1.114 4.169 480
ER 0.179 0.142 0.007 0.992 2.315 10.333 480
IS 46.426 7.936 19.738 66.42 −1.152 4.677 480
FDI 733.132 1,206.192 5.772 7,821.536 3.017 13.094 480

2All kinds of EC are converted to standard coal unit.
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The Direction of Energy Technical Change
The employment of patent application data to reflect technical
change or innovation has been widely applied (Popp, 2002). So,
the energy technical change is represented by the count of patents
by the application on energy technology (Yang et al., 2019) in the
China National Intellectual Property Administration (CNIPA).
Second, energy technology in this paper consists of fossil energy
and renewable energy technology patents (Johnstone et al., 2010;
Lanzi and Sue Wing, 2011; Albino et al., 2014; Noailly and
Shestalova, 2017; Cho and Sohn 2018). Third, referring to the
researches of Noailly and Smeets (2015) and Aghion et al. (2016),
the DETC is voiced by the proportion of renewable energy
technology patents in energy technology patents. For the
international patent classification code of fossil and renewable
energy technology patents, please refer to Supplementary
Appendix Tables SA1, SA2.

Control Variables
Other essential factors affecting energy technical change need to
be controlled, as follows: 1) EC is expressed by the ratio of the
total EC and the total population of the corresponding region at
the end of the year. 2) For each area, environmental regulation
(ER) is shown by the proportion of industrial pollution
investment in GDP. 3) Industrial structure (IS) is reflected by
the proportion of the added value of the secondary industry in
GDP. 4) The proportion of foreign direct investment in GDP is
used as the proxy variable of FDI. Control variables are based on
the relevant studies, such as Lin et al. (2009), Shao et al. (2011),
Al-Mulali et al. (2015), Yin et al. (2015), Zhao et al. (2021), and
Qu et al. (2021). Refer to Baseline Model for the definition of
population and affluence.

Descriptive Statistics
Datasets are collected from the China Environmental Statistical
Yearbook, China Energy Statistical Yearbook, and CNIPA. The
economic and environmental data mainly come from statistical
yearbooks. The data on energy technical change come from the
CNIPA, and they are indicated by the patent application data. For
empirical analysis, we employed the zip code and patent address
for matching the economic data and patent data. Table 1 shows
the results of descriptive statistics.

EMPIRICAL RESULTS

The empirical analysis needs first to test the spatial correlation
contained in the proxy variables of pollution emissions. The index
of Moran’s I and Geary’s C is widely employed in spatial
correlation tests3. The test results of the spatial correlation are
shown in Supplementary Appendix B Table SB1. The Moran’s I
scatter diagram is presented in Supplementary Appendix B
Figure SB1.

The spatial correlation test shows that Moran’s I is greater
than 0, and Geary’s C is less than 1 most times under the
spatial weight matrices of WGEO. The results show that the
three pollutants (SO2,WW, SW) have the features of positive
aggregation, that is, high (low) pollution areas and high
(low) pollution areas together, which means the leakage
effect of pollutants gradually worsens. Supplementary
Appendix Figure SB1 reveals that under the spatial
weight matrices of WGEO and WBOTH, the feature of
positive aggregation is supported with the province as the
spatial unit. Thus, it is feasible to employ a spatial
econometric model.

The Results of the Baseline Model
An analysis with the baseline model is performed based on Eq. 3.
The Lagrange multiplier (LMLAG, LMERR) and their robustness
tests (Robust-LMLAG, Robust-LMERR) are employed to explore
whether the baseline model ignores the potential spatial
correlation of the research objects. The Hausman test shows
that the fixed effect (FE) model is more suitable for estimation
than the random effect (RE)model, and the results are reported in
Table 2.

We find that the estimated coefficient of directed energy
technical change (lnDETC) is significantly negative at least at
the 10% level, which means that increasing the DETC can
reduce pollution emissions (lnSO2, lnWW, lnSW). The
empirical results in columns (2), (4), and (6) further control
the impact of energy efficiency (lnEE) on pollution emission. It
should be noted that the effect of energy efficiency on pollution
emission is uncertain; in other words, the magnitude of energy
technical change is not the prerequisite for restraining
pollution emission. It is important to note that the DETC
tends to show inconsistency in the purification capacity of
different pollutants. Specifically, it has the highest
improvement effect on solid waste (lnSW), followed by
wastewater (lnWW), and a weak purification effect on
sulfur dioxide (lnSO2). Taking the coefficients in columns
(2) and (6) as an example, for a 1% increase in the DETC,
sulfur dioxide emissions will be reduced by about 0.09%, while
solid waste emissions will be reduced by 0.17%. The estimated
coefficients of other variables rarely deviate from economic
intuition.

For different pollutants (lnSO2, lnWW, lnSW), moreover, the
estimated coefficients of affluence (lnpGDP) and its high-order
terms (lnpGDP2, lnpGDP3) show a trend of “negative, positive,
and negative,” that is, the correlation between pollution emission
and economic growth will show an inverted N-type in EKC
hypothesis. The results show that in the future, pollution
emissions and economic output will gradually achieve
decoupling in China, and economic growth will not be at the
expense of the environment.

Finally, the results of the LM test and robust LM test are
significant at least at the level of 10%, indicating that there is a
spatial correlation between pollution emission and independent
variables such as the DETC. Therefore, the further employment
of a spatial econometric model can improve the effectiveness of
the empirical results.

3Calculation methods of Moran’s I and Geary’s C are common, so they are not
shown in this paper.
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TABLE 2 | Results of SO2, WW, and SW in the baseline model.

Variables lnSO2 lnWW lnSW

(1) (2) (3) (4) (5) (6)

lnDETC −0.085* (−1.95) −0.087** (−2.00) −0.122*** (−3.00) −0.112*** (−2.73) −0.173*** (−3.48) −0.172*** (−3.42)
lnEE — 0.032 (0.39) — −0.119 (−1.58) — −0.012 (−0.13)
lnPOP 0.212 (0.84) 0.229 (0.90) 0.193 (0.82) 0.130 (0.54) 0.816*** (2.83) 0.810*** (2.76)
lnpGDP −15.64*** (−3.18) −15.76*** (−3.19) −18.77*** (−4.06) −18.31*** (−3.96) −36.36*** (−6.44) −36.32*** (−6.41)
lnpGDP2 1.733*** (3.40) 1.745*** (3.41) 2.006*** (4.19) 1.959*** (4.09) 3.850*** (6.58) 3.846*** (6.55)
lnpGDP3 −0.064*** (−3.67) −0.065*** (−3.69) −0.071*** (−4.34) −0.070*** (−4.22) −0.134*** (−6.64) −0.133*** (−6.61)
lnEC 0.805*** (8.38) 0.833*** (6.91) 0.386*** (4.28) 0.278** (2.47) 0.671*** (6.09) 0.660*** (4.77)
lnIS 0.229* (1.88) 0.242* (1.91) 0.058 (0.50) 0.009 (0.08) 0.017 (0.12) 0.012 (0.08)
lnFDI −0.086** (−2.35) −0.090** (−2.38) −0.096*** (−2.78) −0.084** (−2.40) −0.120*** (−2.85) −0.119*** (−2.76)
lnER 0.053*** (2.67) 0.054*** (2.69) 0.062*** (3.32) 0.060*** (3.22) 0.079*** (3.47) 0.079*** (3.45)
Cons 41.90*** (2.72) 42.26*** (2.74) 61.06*** (4.23) 59.70*** (4.13) 109.20*** (6.19) 109.10*** (6.16)
Hausman test 20.07** (0.018) 20.35** (0.022) 24.46*** (0.004) 28.10*** (0.002) 24.13*** (0.004) 23.43*** (0.009)
F test 47.05*** (0.000) 42.28*** (0.000) 30.20*** (0.000) 28.50*** (0.000) 226.02*** (0.000) 202.96*** (0.000)
Obs 480 480 480 480 480 480
R2 0.489 0.490 0.392 0.396 0.821 0.822
LM(lag) 11.454*** 13.228*** 74.688*** 68.177*** 5.344** 5.611**
Robust LM(lag) 9.818*** 11.575*** 72.355*** 65.897*** 6.622** 6.298**
LM(error) 19.456*** 28.316*** 6.301** 3.251* 140.667*** 112.531***
Robust LM(error) 18.288*** 27.186*** 3.911* 3.412* 136.478*** 156.866***

Notes: *, **, and *** represent significance at the 10%, 5%, and 1% level. T statistics in parentheses. FE report the within R2. Cons is the constant.

TABLE 3 | Results of SO2, WW, and SW in spatial econometric model.

Variables lnSO2 lnWW lnSW

(1) (2) (3) (4) (5) (6)

rho (ρ) 0.217*** (3.02) 0.171** (2.41) 0.095 (1.12) 0.179* (1.89) 0.173*** (4.19) 0.156*** (4.13)
lnDETC −0.125** (−2.51) −0.133*** (−2.89) −0.131** (−2.50) −0.129** (−2.56) −0.171* (−1.89) −0.173* (−1.85)
lnEE 0.139 (1.13) 0.309** (2.11) −0.024 (−0.16) 0.062 (0.33) 0.060 (0.30) 0.134 (0.65)
lnPOP 0.859 (1.01) 0.871 (1.07) 1.204* (1.78) 1.241* (1.89) 1.235 (0.89) 1.284 (0.94)
lnpGDP −15.530* (−1.68) −11.63 (−1.32) −23.89*** (−3.14) −21.42*** (−3.00) −15.98 (−1.45) −13.01 (−1.13)
lnpGDP2 1.754* (1.88) 1.311 (1.46) 2.680*** (3.37) 2.394*** (3.22) 1.801 (1.57) 1.487 (1.25)
lnpGDP3 −0.064* (−2.07) −0.048 (−1.58) −0.097** (−3.57) −0.087*** (−3.40) −0.066* (−1.67) −0.055 (−1.35)
lnEC 0.738*** (2.66) 0.702*** (2.81) 0.543** (2.08) 0.537** (2.10) 0.969** (1.96) 1.025** (1.98)
lnIS −0.169 (−0.66) −0.078 (−0.35) −0.485 (−1.57) −0.389 (−1.36) −0.143 (−0.68) −0.068 (−0.34)
lnFDI −0.016 (−0.28) −0.008 (−0.13) −0.049 (−0.63) −0.040 (−0.56) −0.053 (−0.98) −0.057 (−1.03)
lnER 0.062** (2.19) 0.117** (2.00) 0.056** (2.08) 0.131*** (2.69) 0.073*** (2.59) 0.088** (2.45)
lnDETC×lnER — 0.018* (1.91) — 0.028* (1.80) — 0.006 (0.36)
lnEE×lnER — 0.086** (2.01) — 0.039 (0.90) — 0.023 (0.89)
W*lnDETC −0.104 (−0.70) −0.183 (−1.16) −0.107 (−1.03) −0.133 (−1.31) −0.288 (−1.07) −0.317 (−1.18)
W*lnEE −0.550* (−1.80) −0.721** (−2.41) −0.430** (−1.98) −0.193 (−0.69) −0.669 (−1.53) −0.435 (−0.80)
W*lnPOP −0.404 (−0.32) −1.205 (−0.94) −0.726 (−0.65) −0.992 (−0.89) 0.523 (0.40) 0.568 (0.48)
W*lnpGDP −13.33 (−0.70) −6.828 (−0.40) 1.015 (0.06) 5.075 (0.32) −51.45** (−2.10) −52.33* (−1.91)
W*lnpGDP2 1.364 (0.72) 0.652 (0.39) −0.321 (−0.18) −0.758 (−0.48) 5.420** (2.13) 5.498* (1.93)
W*lnpGDP3 −0.047 (−0.75) −0.021 (−0.38) 0.016 (0.27) 0.032 (0.59) −0.187** (−2.13) −0.189* (−1.92)
W*lnEC 0.265 (0.60) 0.406 (1.05) 0.154 (0.46) 0.247 (0.73) −0.850*** (−2.60) −0.910*** (−2.80)
W*lnIS −1.18*** (−3.33) −0.83** (−2.31) −0.269 (−0.69) −0.007 (−0.02) −1.517*** (−4.70) −1.371*** (−3.79)
W*lnFDI −0.31*** (−2.62) −0.26** (−2.23) −0.103 (−1.09) −0.088 (−0.90) −0.209 (−1.51) −0.184 (−1.41)
W*lnER −0.079** (−2.12) 0.018 (0.27) −0.062 (−1.33) −0.058 (−0.86) −0.103* (−1.68) −0.051 (−1.06)
W*lnDETC×lnER — 0.055 (1.61) — −0.003 (−0.14) — 0.012 (0.55)
W*lnEE×lnER — −0.147* (−1.66) — 0.068 (1.03) — 0.102 (0.90)
Obs 480 480 480 480 480 480
R2 0.563 0.604 0.395 0.420 0.854 0.856

Notes: *, **, *** represent significance at the 10%, 5%, and 1% level. T statistics in parentheses. Cons is the constant. W is the spatial weight matrix.
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The Results of the Spatial Econometric
Model

The estimation of the spatial econometric model is based on Eq. 4
with the spatial weight matrix of WBOTH, and the results are
shown in Table 3.

We can find that after controlling the environmental
regulation (lnER) and their interaction terms (lnDETC × lnER,
lnEE × lnER) in columns (2), (4), and (6), the coefficient of spatial
lag ρ is significantly positive at the level of 10%, which confirms
that all of the pollutants (lnSO2, lnWW, lnSW) have spatial
correlation once again. Subsequently, the local DETC can
reduce local pollutant emissions. Although the directed
energy technical change of neighboring areas (W*lnDETC)
has a restraining effect on the local pollution emission, the
results are not significant. The results show that the
W*lnDETC will not improve the local pollution emission,
and the cooperation in energy technology in various areas is
inadequate. In addition, energy efficiency (lnEE) still cannot
have a significant impact on pollution emission, which is
consistent with the results of the baseline model.

Combined with the empirical results of Tables 2, 3, we
believe that the prerequisite for restraining pollution
emission through energy technology innovation is to focus
on the direction of energy technical change, not just to
improve the magnitude of energy technical change. Secondly,
pollution emissions and economic growth are still showing signs
of decoupling, especially in wastewater and sulfur dioxide. This
result can be found from the inverted N-type in EKC hypothesis.
Thirdly, the lnEC is bound to cause environmental
deterioration, which mainly depends on the fact that China’s
energy structure is still dominated by fossil energy.

Moreover, referring to LeSage and Pace (2009) and Zhao et al.
(2021), we decompose the spatial correlation into the direct
effects and the indirect effects based on the results in columns
(2), (4), and (6) of Table 3. The direct and indirect effects are
shown in Table 4.

Except for population (lnPOP) and technology (lnDETC,
lnEE), similar factors have a similar impact on pollution
emission, but for different pollutants, the level of direct and
indirect effects is different. Specifically, the effect of lnDETC
on pollution emission is determined by the direct effect, that is,

TABLE 4 | The direct and indirect effects of the spatial econometric model.

Variables lnSO2 lnWW lnSW

Direct Indirect Direct Indirect Direct Indirect

lnDETC −0.141*** (−3.09) −0.229 (−1.16) −0.122** (−2.41) −0.103 (−1.07) −0.188* (−1.92) −0.392 (−1.16)
lnEE 0.289* (1.94) −0.779** (−2.15) 0.079 (0.41) −0.195 (−0.76) 0.127 (0.55) −0.480 (−0.71)
lnPOP 0.858 (1.06) −1.241 (−0.89) 1.316* (1.89) −1.086 (−1.10) 1.358 (0.97) 0.868 (0.77)
lnpGDP −12.35 (−1.48) −10.28 (−0.52) −22.26*** (−3.06) 7.93 (0.52) −15.39 (−1.44) −63.03* (−1.94)
lnpGDP2 1.388 (1.63) 1.013 (0.52) 2.496*** (3.28) −1.065 (−0.68) 1.746 (1.56) 6.635* (1.95)
lnpGDP3 −0.051* (−1.76) −0.034 (−0.51) −0.090*** (−3.46) 0.043 (0.80) −0.064* (−1.66) −0.229* (−1.93)
lnEC 0.722*** (2.74) 0.625 (1.39) 0.533** (1.98) 0.167 (0.56) 1.005* (1.74) −0.850** (−2.14)
lnIS −0.125 (−0.57) −0.982** (−2.27) −0.415 (−1.39) 0.068 (0.17) −0.126 (−0.61) −1.607*** (−3.59)
lnFDI −0.014 (−0.25) −0.304** (−2.37) −0.032 (−0.45) −0.079 (−0.88) −0.061 (−1.06) −0.230 (−1.40)
lnER 0.120** (2.14) 0.043 (0.61) 0.135*** (2.75) −0.068 (−1.05) 0.085** (2.34) −0.044 (−0.86)

Notes: *, **, *** represent significance at the 10%, 5%, and 1% level. T statistics in parentheses.

TABLE 5 | Robustness test with POLS method.

Variables lnSO2 lnWW lnSW

(1) (2) (3) (4) (5) (6)

lnDETC −0.100** (−2.02) −0.105** (−2.07) −0.125** (−2.35) −0.122** (−2.31) −0.137** (−2.33) −0.145** (−2.35)
lnEE — 0.060 (0.77) — −0.042 (−0.53) — 0.111 (1.03)
lnPOP 0.523 (1.48) 0.582 (1.59) 0.888*** (2.74) 0.847*** (2.60) 1.258*** (3.17) 1.367*** (3.05)
lnpGDP −22.82*** (−4.62) −22.93*** (−4.63) −19.03*** (−4.02) −18.96*** (−4.01) −30.02*** (−4.84) −30.21*** (−4.78)
lnpGDP2 2.501*** (4.88) 2.514*** (4.90) 2.092*** (4.25) 2.083*** (4.24) 3.241*** (5.07) 3.265*** (5.00)
lnpGDP3 −0.090*** (−5.14) −0.091*** (−5.17) −0.075*** (−4.47) −0.074*** (−4.46) −0.114*** (−5.23) −0.115*** (−5.15)
lnEC 0.600*** (4.01) 0.662*** (3.52) 0.456*** (3.36) 0.414** (2.45) 0.946*** (5.63) 1.059*** (4.57)
lnIS −0.067 (−0.37) −0.057 (−0.32) −0.250 (−1.15) −0.257 (−1.17) −0.134 (−0.85) −0.116 (−0.74)
lnFDI −0.067* (−1.83) −0.072* (−1.95) −0.079* (−1.88) −0.076* (−1.84) −0.081* (−1.89) −0.090** (−2.07)
lnER 0.045** (2.03) 0.046** (2.09) 0.067*** (3.21) 0.066*** (3.16) 0.108*** (4.21) 0.111*** (4.21)
Cons 60.21*** (3.85) 60.15*** (3.84) 53.61*** (3.76) 53.65*** (3.75) 82.17*** (4.31) 82.06*** (4.26)
Time-fixed effect Yes Yes Yes Yes Yes Yes
Area-fixed effect Yes Yes Yes Yes Yes Yes
Obs 480 480 480 480 480 480
R2 0.9091 0.9092 0.8787 0.8788 0.9334 0.9336

Notes: *, **, *** represent significance at the 10%, 5%, and 1% level. T statistics in parentheses. Cons is the constant. R2 is adjusted.
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the DETC can play an important role in restraining local
pollution emission, while the impact on the pollution
emission of neighboring areas is weak. For SO2, the direct
effect of energy efficiency (lnEE) on pollution emission is
positive, but its indirect effect is negative, which can be
explained as follows: 1) the advancement of energy
efficiency will lead to the increase of local EC, which is not
conducive to the improvement of local pollution emission. 2)
The increase of local EC has a crowding-out effect on the EC of

neighboring areas, to improve the pollution emission of
neighboring areas.

Robustness Tests
This paper has carried out robustness tests as follows: first, the
results of the baseline model are compared and examined by
employing the Pooled Ordinary Least Square (POLS) method.
Second, considering the spatial weight matrix of WGEO, the
results of the spatial econometric model are verified again.
Third, the substitution variable is employed to remeasure the
direction of energy technical change.

Robustness Test With POLS Method
Compared with Table 2, the estimated coefficients of the
central independent variables in Table 5 have no reverse in
direction and significance. For example, the lnDETC is
negative, and energy efficiency (lnEE) is still not significant.
The estimated coefficient of affluence (lnpGDP, lnpGDP2,
lnpGDP3) still shows the trend of “negative, positive, and
negative,” correlation of an inverted N-type, which is
consistent with the results of Table 2. The purification
effect of directed energy technical change on solid waste
(lnSW) is still the highest.

Robustness Test With Different Spatial Weight
Matrixes
The geographical distance weight matrix (WGEO) is employed
to replace the composite space weight matrix (WBOTH) to
estimate Eq. 4 again, as shown in Table 6. The directed
energy technical change will still purify the pollutants, and
the pollution emission will be restrained. The coefficient of
spatial lag (ρ) is still significantly positive. The connection
between pollution emission and economic growth also
presents an inverted N-type. The above results prove the
relative robustness and effectiveness of the spatial
econometric model.

TABLE 6 | Robustness test with different spatial weight matrixes.

Variables lnSO2 lnWW lnSW

(1) (2) (3)

rho (ρ) 0.352*** (3.87) 0.142* (1.79) 0.248*** (3.55)
lnDETC −0.117** (−2.31) −0.139*** (−2.74) −0.170* (−1.78)
lnEE 0.087 (0.69) −0.021 (−0.14) 0.008 (0.04)
lnPOP 0.863 (1.10) 0.987 (1.47) 0.878 (0.97)
lnpGDP −17.88* (−1.75) −27.93*** (−3.56) −21.93* (−1.73)
lnpGDP2 2.002* (1.92) 3.079*** (3.81) 2.364* (1.80)
lnpGDP3 −0.074** (−2.08) −0.110*** (−4.01) −0.084* (−1.86)
lnEC 0.777*** (2.81) 0.474* (1.92) 0.771** (2.42)
lnIS −0.026 (−0.10) −0.560* (−1.82) −0.127 (−0.60)
lnFDI −0.049 (−0.91) −0.059 (−0.81) −0.035 (−0.61)
lnER 0.056** (1.99) 0.045* (1.69) 0.081*** (2.80)
W*lnDETC −0.131 (−0.80) −0.230** (−2.00) −0.301 (−1.11)
W*lnEE 0.124 (0.22) −0.556** (−2.03) −0.814** (−1.99)
W*lnPOP 0.650 (0.57) 0.695 (0.62) 1.435 (1.46)
W*lnpGDP −6.259 (−0.23) −1.587 (−0.09) −32.20* (−1.81)
W*lnpGDP2 0.769 (0.29) 0.077 (0.04) 3.716* (1.91)
W*lnpGDP3 −0.031 (−0.36) −0.002 (−0.02) −0.136* (−1.94)
W*lnEC −0.104 (−0.16) 0.100 (0.25) −1.541*** (−2.96)
W*lnIS −0.877 (−1.53) −0.648 (−1.32) −1.824*** (−3.46)
W*lnFDI −0.288* (−1.86) −0.169 (−1.46) −0.335 (−1.50)
W*lnER −0.046 (−0.73) −0.037 (−0.67) −0.115* (−1.82)
Obs 480 480 480
R2 0.529 0.406 0.857

Notes: *, **, *** represent significance at the 10%, 5%, and 1% level. T statistics in
parentheses. Cons is the constant. W is the spatial weight matrix.

TABLE 7 | Robustness test with an alternative variable in baseline model (FE).

Variables lnSO2 lnWW lnSW

(1) (2) (3) (4) (5) (6)

lnpRETP −0.118*** (−4.68) −0.120*** (−4.72) −0.102*** (−4.27) −0.098*** (−4.06) −0.196*** (−3.25) −0.195*** (−3.19)
lnEE — 0.051 (0.64) — −0.115 (−1.56) — −0.026 (−0.29)
lnPOP 0.278 (1.13) 0.305 (1.22) 0.221 (0.95) 0.162 (0.68) 0.808*** (2.80) 0.795*** (2.71)
lnpGDP −15.80*** (−3.27) −15.99*** (−3.31) −18.83*** (−4.12) −18.39*** (−4.02) −36.34*** (−6.42) −36.24*** (−6.39)
lnpGDP2 1.761*** (3.52) 1.780*** (3.55) 2.018*** (4.26) 1.973*** (4.17) 3.847*** (6.57) 3.837*** (6.53)
lnpGDP3 −0.065*** (−3.80) −0.066*** (−3.83) −0.072*** (−4.40) −0.070*** (−4.29) −0.133*** (−6.61) −0.133*** (−6.56)
lnEC 0.809*** (8.60) 0.854*** (7.27) 0.383*** (4.29) 0.279** (2.51) 0.659*** (5.98) 0.636*** (4.61)
lnIS 0.162 (1.35) 0.181 (1.46) −0.005 (−0.04) −0.049 (−0.41) −0.047 (−0.33) −0.057 (−0.39)
lnFDI −0.080** (−2.24) −0.085** (−2.32) −0.086** (−2.52) −0.075** (−2.18) −0.105** (−2.49) −0.102** (−2.39)
lnER 0.044** (2.22) 0.045** (2.26) 0.058*** (3.12) 0.056*** (3.01) 0.080*** (3.49) 0.080*** (3.46)
Cons 41.32*** (2.74) 41.89*** (2.77) 60.65*** (4.24) 59.34*** (4.15) 109.0*** (6.16) 108.7*** (6.12)
Hausman test 23.21*** (0.006) 23.58*** (0.009) 31.16*** (0.000) 32.51*** (0.000) 28.79*** (0.001) 27.22*** (0.002)
F test 50.96*** (0.000) 45.84*** (0.000) 21.62*** (0.000) 19.76*** (0.000) 225.08*** (0.000) 202.16*** (0.000)
Obs 480 480 480 480 480 480
R2 0.509 0.510 0.306 0.310 0.821 0.822

Notes: *, **, *** represent significance at the 10%, 5%, and 1% level. T statistics in parentheses. FE report the within R2. Cons is the constant.
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Robustness Test With Alternative Variable
This paper employs the count of applications with renewable
energy technology patent per 10,000 researchers (pRETP) to
describe the output capacity of renewable energy technology.
The stronger the output capacity of renewable energy patents, the
higher the DETC, so this alternative variable can be employed to
reflect the direction of energy technical change. Tables 7, 8 show
the estimated results of the baseline model and spatial
econometric model after employing the alternative variable of
DETC, respectively.

The estimated coefficients of lnpRETP, lnEE, and affluence
(lnpGDP, lnpGDP2, lnpGDP3) in Table 7 have no great alteration
in direction and significance, and the empirical results are
consistent with Table 2.

After considering the potential spatial correlations of
dependent variables and independent variables, the empirical
results in Table 8 are consistent with Tables 3, 6. In general, the
empirical results with this paper are robust and effective
relatively.

CONCLUSION

Based on the fact that the energy technical change in China has failed
to alleviate the coexistence of high EC and high pollution, this paper
holds that economic growth has a rigid demand for energy factors,
which is the important reason for the formation of high EC. Facing
high EC, if we want to use energy technical change to restrain
environmental pollution, it is not enough to only take note of the
magnitude of energy technical change; the direction of energy

technical change also needs to be paid attention to. From the
perspective of reducing pollution emissions from the industrial
sector, the DETC is a powerful weapon to control environmental
degradation. Through appropriate environmental policies, it is worth
noting for stakeholders to change the energy technology from dirty to
clean and even develop designated clean energy technologies (such as
solar energy, wind energy, and nuclear energy) according to regional
features, so as to realize the comprehensive substitution of clean energy
for dirty energy, which is a mechanism to realize the rationalization
and transformation of the energy structure in China.

Consequently, this paper uses patent application data to analyze
the impact of directed technical change in the energy sector on
pollution emission. Under the extended STIRPAT model and EKC
hypothesis, we employ patenting data onto CNIPA and the economic
data between 2000 and 2015 covering 30 main provinces in China.
Research shows that 1) theDETC can restrain pollution emission, but
the impact of energy efficiency on pollution emission is uncertain.
This fact indicates that the prerequisite to restrain the pollution
emission through the energy technical change should be to transform
its direction, rather than only increase its magnitude. 2) The
constraint effect of DETC on pollution emission will be dissimilar
according to theifferrence of pollutants. Specifically, solid waste is the
most affected, followed by wastewater, while it has a relatively weak
purification effect on sulfur dioxide, which shows that there are
variances in the path of DETC to achieve emission reduction. 3) The
constraint effect of DETC on pollution emission is mainly reflected
on the local areas, and its effect on neighboring areas is limited, which
indicates that the coordinated management of pollutants and
technical cooperation between different areas need to be
improved. 4) The correlation between pollution emission and

TABLE 8 | Robustness test with alternative variable in spatial econometric model (SDM).

Variables lnSO2 lnWW lnSW lnSO2 lnWW lnSW

Spatial weight matrix: WBOTH Spatial weight matrix: WGEO

rho (ρ) 0.165** (2.51) 0.094 (1.08) 0.208*** (4.06) 0.281*** (3.45) 0.028*** (6.20) 0.289*** (3.52)
lnpRETP −0.113*** (−3.53) −0.088*** (−2.79) −0.095** (−2.12) −0.091** (−2.36) −0.087*** (−2.70) −0.096** (−1.98)
lnEE 0.120 (1.07) −0.044 (−0.29) 0.033 (0.17) 0.063 (0.51) −0.055 (−0.34) −0.026 (−0.15)
lnPOP 0.814 (1.01) 1.123 (1.60) 1.072 (0.82) 0.838 (1.12) 0.920 (1.32) 0.766 (0.88)
lnpGDP −13.58 (−1.50) −22.48*** (−2.90) −14.36 (−1.21) −16.18 (−1.58) −26.67*** (−3.36) −20.75 (−1.53)
lnpGDP2 1.548* (1.68) 2.528*** (3.14) 1.619 (1.31) 1.817* (1.74) 2.942*** (3.59) 2.233 (1.59)
lnpGDP3 −0.057* (−1.85) −0.092*** (−3.33) −0.059 (−1.38) −0.067* (−1.88) −0.105*** (−3.78) −0.078 (−1.64)
lnEC 0.749*** (2.84) 0.532** (2.05) 0.940** (1.98) 0.781*** (2.94) 0.463* (1.85) 0.761** (2.46)
lnIS −0.205 (−0.83) −0.495 (−1.61) −0.143 (−0.68) −0.071 (−0.29) −0.586* (−1.90) −0.139 (−0.63)
lnFDI −0.003 (−0.05) −0.038 (−0.51) −0.053 (−0.98) −0.034 (−0.67) −0.047 (−0.68) −0.024 (−0.44)
lnER 0.055* (1.90) 0.056** (2.05) 0.078** (2.34) 0.048* (1.73) 0.046* (1.67) 0.088** (2.32)
W*lnpRETP −0.127* (−1.90) −0.030 (−0.67) −0.044 (−0.62) −0.204*** (−3.50) −0.054 (−1.14) 0.044 (0.49)
W*lnEE −0.584* (−1.87) −0.472** (−2.11) −0.744* (−1.82) 0.062 (0.11) −0.722** (−2.54) −1.036*** (−2.65)
W*lnPOP −0.515 (−0.40) −0.982 (−0.91) −0.052 (−0.03) 0.180 (0.15) 0.053 (0.05) 0.624 (0.62)
W*lnpGDP −17.49 (−0.96) 0.289 (0.02) −47.87** (−2.14) −6.822 (−0.26) 0.976 (0.06) −26.40* (−1.67)
W*lnpGDP2 1.793 (0.98) −0.271 (−0.16) 4.997** (2.17) 0.812 (0.31) −0.245 (−0.14) 3.032* (1.79)
W*lnpGDP3 −0.061 (−1.00) 0.016 (0.28) −0.171** (−2.16) −0.031 (−0.37) 0.012 (0.20) −0.110* (−1.83)
W*lnEC 0.307 (0.67) 0.102 (0.28) −0.994*** (−2.92) 0.038 (0.06) −0.033 (−0.08) −1.812*** (−2.90)
W*lnIS −1.184*** (−3.88) −0.252 (−0.70) −1.484*** (−4.14) −0.901* (−1.74) −0.699 (−1.53) −1.880*** (−3.13)
W*lnFDI −0.277** (−2.40) −0.067 (−0.67) −0.137 (−1.22) −0.238 (−1.56) −0.112 (−0.92) −0.278 (−1.34)
W*lnER −0.104*** (−2.85) −0.064 (−1.33) −0.089* (−1.76) −0.096 (−1.62) −0.032 (−0.60) −0.075 (−1.63)
Obs 480 480 480 480 480 480
R2 0.589 0.400 0.850 0.562 0.406 0.853

Notes: *, **, and *** represent significance at the 10%, 5%, and 1% level. T statistics in parentheses. Cons is the constant. W is the spatial weight matrix.
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economic growth shows an inverted N type in the EKC hypothesis,
which indicates that with the improvement of the DETC, economic
growth and environmental quality can be decoupled.

In general, increasing the direction of energy technical change is a
vital tool to ease the conflict between economic growth and pollution
emission, that is, making the energy technical change show a clear
direction. So, the above conclusions provide implications to
stakeholders as follows: first, facing the fact that in energy
structure, the proportion of fossil energy is high, advocating the
clean application of fossil energy is the realistic path to restrain the
dirty direction of energy technical change. Second, we should
coordinate the development of renewable energy technology in
the fields of wind energy, solar energy, marine energy, nuclear
energy, and biomass energy, to realize the clean direction of
energy technical change. Third, we should actively promote the
collaborative management of pollutants and the exchange and
cooperation of energy technical change in various areas, to
achieve an efficient environment resource-sharing mechanism.
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