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This article deals with an innovative approach to maximum power point tracking (MPPT) in
power systems using the reservoir computing (RC) technique. Even though extensive
studies have been conducted onMPPT to improve solar PV systems efficiency, there is still
considerable room for improvement. The methodology consisted in modeling and
programming with MATLAB software, the reservoir computing paradigm, which is a
form of recurrent neural network. The performances of the RC algorithm were
compared to two well-known methods of maximum power point tracking: perturbed
and observed (P&O) and artificial neural networks (ANN). Power, voltage, current, and
temperature characteristics were assessed, plotted, and compared. It was established
that the RC-MPPT provided better performances than P&O-MPPT and ANN-MPPT from
the perspective of training and testing MSE, rapid convergence, and accuracy of tracking.
These findings suggest the need for rapid implementation of the proposed RC-MPPT
algorithm on microcontroller chips for the widespread use and adoption globally.
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1 INTRODUCTION

Recent advances in technology, industry growth, increasing populations with their proportional
energy needs highlight the problem of energy shortage.

Leggett (2021) theorized that failure to meet the global energy quest and the consistent
depletion of non-renewable energy resources resulted in renewable energy as a sustainable
alternative for energy generation in the future. Solar photovoltaic (PV) technology has been
identified as one of the most auspicious energy sources based on the Sun (Dajuma et al., 2016) as
a natural resource. Several previous studies posited that solar PV can resourcefully substitute
orthodox energy sources in addition to improving environmental conservation (Acakpovi and
Asabere, 2017)

According to the International Energy Agency (IEA) forecast, by 2050, PV technology is likely to
become a very significant source of energy that will offer about 11–13% of global electricity and
would be able to minimize about 2.3 gigatons of carbon dioxide (CO2) emissions per year. PV has
attracted more attention due to the advantages of the sun as a source of energy characterized by
inexhaustibility, omnipresence, absence of rotating parts, accessibility everywhere, and minimum
required maintenance (Boukenoui et al., 2016).
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The PV technology directly converts sunlight into electricity, a
phenomenon known as the photovoltaic effect. Furthermore, PV
systems’ optimum output power mainly depends on environmental
factors such as temperature and irradiation, installation method, and
efficiency of the PV cell. In practical operation, a PV system exhibits a
peak point on its power-voltage curve known as themaximumpower
point (Boukenoui et al., 2016; Acakpovi et al., 2018). Maximum
power point tracking (MPPT) algorithms are used to determine the
highest efficiency output of a photovoltaic system. Having the PV
array operating around this MPP at all times is promising for the
highest efficiency. However, owing to the sun movement and
variation in intensity, operating at MPP is complex and requires a
tracking system.

Tracking systems are generally made of power converters with
extreme efficiency requirements. The expectation from the
tracking systems is to enhance the energy productivity of a PV
plant by harvesting the maximum sunshine in a day. The tracking
system follows the Sun directions and variations preferably in real
time and adjusts necessary parameters to remain in conditions of
highest receptivity of solar irradiation throughout a day
(Acakpovi et al., 2012; Acakpovi et al., 2017).

Even though some MPPT exist in previous studies, global
trends indicate is certainly a big room for improvement in their
operation, which can be supported by artificial intelligence
implemented on microchips. In this regard, this article
explores the application of “reservoir computing” (RC), one of
the recent computing paradigms to improve upon existing solar
tracking algorithms and enhance PV system efficiency. RC is a
new computation framework that can be classified as one of the
artificial intelligence techniques, specifically under the recurrent
neural networks (RNN) category.

The learning complication on RC seems to be less complex
than that of the traditional RNN, making this technique very
attractive because the pre-processor, in this case the reservoir,
consists of random recurrently connected non-linear elements,
and learning actually takes place only at the output layer stage
(Soriano et al., 2015; Kudithipudi et al., 2016; Gallicchio and
Micheli, 2021; Subramoney et al., 2021).

The rest of the article is organized as follows: Section 2 presents the
literature review and relevant background information, Section 3
presents the methodology, mainly the computation approach for
reservoir computing. Section 4 deals with the result and data analysis,
and Section 5 presents the conclusion.

2 LITERATURE REVIEW

DiverseMPPT systems have been developed in the past, including the
perturb and observe (P&O) method (Femia et al., 2007; Piegari and
Rizzo, 2010; Abdelsalam et al., 2011; Mamarelis et al., 2014; Piegari
et al., 2015). The P&O method consists of introducing some
perturbations in the PV array voltage and regularly reading the
output power of the PV module, which is compared to previous
values. The difference in reading, whether increasing or decreasing
output power, is used to determine the direction of the perturbations,
which might be reversed whenever necessary. Accurate algorithms
are developed in line with P&O to achieve MPPT.

Additionally, Nakir et al. (2016) worked on a new MPPT
algorithm for vehicle integrated solar energy system and argued
that a significant amount of energy can be economized when
electric vehicles surface is covered by PV cells. Their study
proposed a new algorithm called smart observation (SO),
which was used to achieve better MPP performance under
fast-moving conditions compared to previous algorithms.

Liu et al. (2012) and Huang et al. (2016) developed the auto-
scaling variable step method. Liu and Huang (2011) further
explored the fast- and low-cost analog method. Liu et al.
(2012) and Acakpovi (2016b) adopted the particle swarm
optimization (PSO) method for a low-power PV system. They
concluded that the steady-state performance and tracking speed
are enhanced using the PSO approach, and the cost of tracking is
reduced. Similarly, a fuzzy-logic control was proposed (Garraoui
et al., 2013; Hajighorbani et al., 2014; Chen et al., 2016) and
merged with the hill-climbingmethod. It was found that the fuzzy
rule needed to be varied dynamically according to the reading of
the sensors to attain good tracking speed and stability, which
poses several computational complexities.

Salam et al. (2013), Mellit and Kalogirou (2014), and Rezk and
Eltamaly (2015) noted that the traditional MPPTs such as
perturbation and observation (P&O), incremental conductance
(IncCond), and hill-climbing (HC) methods are not able to
recognize the global MPP from the local MPPs especially
in situations where there is more than one peak. Hence, lower
MPPT efficiency is achieved because the power generated by the
PV plant is marginally reduced. Ahmed and Miyatake (2008),
Mellit and Kalogirou (2014), and Boukenoui et al. (2016)
proposed a technique grounded on the Fibonacci search
algorithm for a PV power generation system using partial
shading conditions (PSCs). The improved Fibonacci search
technique is comparable to the variable step size in the P&O
technique. A wide range search is used as a modification carried
out with a new function that leads the operating point to the
global MPP. Contrarily, this method is limited to ensuring
convergence to the global MPP. To overcome this limitation, a
power compensation approach has been introduced by Karatepe
et al. (2008).

Moreover, an adaptive perceptive particle swarm optimization
(APPSO) was proposed by Roy Chowdhury and Saha (2010) and
Chowdhury (2021). Under any weather condition, this was meant
to track the global MPP. Nevertheless, there are significant
complexities when implementing APPSO-based MPPT.
Getting the model frame was a challenge and the principle
could not be achieved as expected upon testing. Ishaque et al.
(2012) came up with an improved PSO-based MPPT algorithm
for a PV generation system that functions under PSCs, which can
track the GMPP for countless shading circumstances. However,
the shortfall of their study is the reliance on the system-specific
parameters known as series cell number.

Likewise, Ishaque et al. (2012) proposed a PSO technique that
governed the population size inertia (PI) and integrated the
learning features by the trial-and-error method. The procedure
has effectively tracked the global MPP under partial shading
conditions and achieved a higher efficiency of about 99.5%. A
universal MPPT-based P&O algorithm was established to detect
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the global MPP position in the PV array using the power
regulation approach (Koutroulis and Blaabjerg, 2012). The
complexity of implementing this algorithm, coupled with the
cost involved, makes them impracticable.

Many other studies addressed the partial shading issues of a PV
system from the perspective of microchip programming and
integrating them into complex electronics systems (Acakpovi and
Ben Hagan, 2013; Nanda and Mohanty, 2014; Acakpovi and Sunny,
2015).

2.1 Theoretical Basics of Reservoir
Computing (RC)
The human brain’s capability to process data forms the basis of
neuro-computing. The vital computing units of the nervous
system are neurons, and the synapses are the conduits through
which communication is sent to other neurons. The brain
behaves as a dynamic computational system that is not wired
for a definite task but reprocessing, reorganizing, and altering the
given prevailing brain structure. Our brains’ computational
capability has given rise to the field of Artificial Neural
Networks (ANNs). ANNs imitate biological neural networks
that can perform several computational functions.

In the field of ANNs, a “unit” is a neuron that can be
mathematically represented with equations. McCulloch-Pitts
(2021) proposed a simple two-state neuron model, which is the
first artificial neuron model. Later on, Li et al. (2016) proposed the
realistic integrate-and-fire models, also known as the spiking neuron
models, designed to describe and forecast biological processes.

Liquid state machines (LSMs) and the echo state network
(ESN) (Jaeger, 2007, 2008) are the two current computing
paradigms introduced based on ANN. Both models epitomize
a novel class of computing models stimulated by recurrent neural
networks. The principal term for these paradigms is reservoir
computing (RC) (Jaeger, 2008; Hamedani et al., 2019).

The mathematical modeling of the computing “unit” (neuron)
accounts for themajor difference between these twomodels. While in
the LSMs, the “unit” is modeled as a spiking integrate-and-fire
neuron, in the ESN architecture, the unit is implemented as
sigmoid. The spiking neuron model closely looks like the spiking
nature of biological neurons and retains the vital neuron behavior. As
a result, LSM applications primarily focus on providing an effective
biological architecture for generic corticalmicrocircuits computations.

2.2 Liquid State Machines
A recently introduced novel computational framework is the
liquid state machines (LSMs) (Zhang et al., 2015). The “liquid” is
considered as the computing core in the recurrent neural network
(RNN). A mathematical expression of spiking integrate-and-fire
neurons defines each computing unit in the “liquid.” Within
time-varying inputs, the LSM framework can perform real-time
computations. The LSM’s architecture is made up of three
different segments: 1) the processing layer, also known as the
readout layer; 2) the liquid’s state space, which means memory;
and 3) the pre-processor unit called the “liquid” (Jaeger, 2008;
Zhang et al., 2020). The outstanding characteristics of the LSM’s
architecture are that only the readout layer is trained to extract

the time-varying information from the liquid. Trentin et al.
(2015), through an experiment, showed that the readout layer
can be trained to accomplish a temporal pattern recognition task.

2.3 Solar Photovoltaic Generator
To understand the theoretical dynamics of MPP, the output of a
typical PV is used with the characteristics illustrated in Figure 1.

The nature of the curve and the optimal operational points of
Vmpp, Impp, and Pmax change when the weather conditions,
such as temperature (T) and irradiance (G), shadow and vary.
The weather and the consequent varying maximum optimal
operational points (MOOPs) cause electrical power system
variations not only to the PV generator but also to the tie-grid
and consumers (Piegari and Rizzo, 2010; Quamruzzaman and
Rahman, 2014; Sahu and Dixit, 2014). During the effect of the
non-linear variations, the intrinsic structure of the cell undergoes
numerous phenomena that adversely affect the conductivity of
the silicon material, which subsequently provoke a drop in the
generated power output, as shown in Figures 2, 3 (Nordman
et al., 2012; Verma et al., 2016).

The P-V curves of Figures 2, 3 clearly show multi-nonlinear
optimal power points at different voltages. A proposed circuit is
needed to track these optimal power points fast, accurately, and simply.

A typical electrical power system can hardly operate at these
varying voltages and optimal power points illustrated in Figures
2, 3 because of its inimicality to power system stability (Chen
et al., 2015; Li et al., 2016).

The circuit in Figure 4 represents a proposed actual nature of
the circuit used to implement the RC’s maximum power point
tracking algorithm in the microcontroller.

The RC MPPT algorithm modifies the input reference voltage
(Vref) and the proportional integral (PI) loop stimulates the panel
operating voltage (Vpv) to the set reference voltage. Then, a control
PI loop is needed to signal the corresponding duty cycle (δ) to a
pulse widthmodulator (PWW) to trigger switching, which is usually
achieved with power electronic bipolar transistors (FET, BJT, and
MOSFET) (Ahmad et al., 2016; Ajami et al., 2016).

However, for mathematical and computation analysis, a standard
solar photovoltaic equivalent circuit in Figure 5 is needed.Herein, the
double diode model of the photovoltaic cell is used.

When sunlight illuminates a PV solar cell, a photocurrent
(Iph) is generated. This current is, however, subject to losses due

FIGURE 1 | Characteristics of selected solar panel.
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FIGURE 2 | I-V curves showing the effects of weather on photovoltaic solar cell.

FIGURE 3 | P-V curves showing the effects of changing weather on photovoltaic solar cell.

FIGURE 4 | Electrical circuit model to implement MPPT using RC.
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to semiconductor imperfections, variations in weather,
temperature, irradiance, and shadow, among others (Kumar
and Chatterjee, 2016; Nayanar et al., 2016).

Generally, the losses encountered in a PV cell are modeled by a
series resistance (Rs) and a shunt resistance (Rsh). Additionally,
the model of a PV cell makes use of two diodes with respective
saturation currents Is1 and Is2 and respective ideality factors n1
and n2, as illustrated in Figure 5.

With the assumption that these diodes are performing at their
optimum levels to ensure the switching capabilities, their effects are
greatly used to depict the variations in the fluctuations in maximum
power point both intrinsically electrically and extrinsically
environmentally (Kulkarni and Teuscher, 2012; Elsaharty et al., 2016).

An equivalent mathematical equation derived from the
equivalent circuit of Figure 5 is presented below:

Ipv � Isc − IS1[e Vpv + Rs Ipv
n1Vt

− 1] − IS2[eVpv + Rs Ipv
n2Vt

− 1]
− Vpv + RsIpv

Rsh
,

(1)
where Isc is the short circuit current, Vpv is the voltage generated
by the solar panel, Ipv is the current generated by the solar panel,
Rs is the series resistance of the PV model, Rsh is the shunt
resistance of the PV model, Is the saturation current, Vt is the
thermal voltage, (IS1) represents the saturation current of diode
D1, (IS2) represents the saturation current ofdiode D2,
ideality factor(n1) � 1, and ideality factor (n2) � 1.

Assuming n1 and n2 are performing at optimum switching
capabilities, then the corresponding power equation and the duty
cycle is obtained as

Ppv �Vpv

⎧⎨⎩Isc − IS1[eVpv +Rs Ipv
n1Vt

− 1]− IS2[eVpv +Rs Ipv
n2Vt

− 1]
−Vpv +RsIpv

Rsh

⎫⎬⎭, (2)

Duty cycle(δ) � 1 − Voc

Vpv
. (3)

RC is well known as a powerful computational tool that
supports real-time computation on a continuous variable. Its
performance is assessed from the perspective of two properties:
separation and approximation.

The liquid or the reservoir is said to have the separation property if
the LSM or ESN has different internal states for two different input
sequences. Euclidian distance or Hamming distance is used to
measure the distance between different states. The measure of the
readout capability to produce the desired output from the given liquid
states is known as the approximation property (Jaeger, 2008; Kulkarni
and Teuscher, 2012; Jayawardene and Venayagamoorthy, 2015;
Alomar et al., 2016)

2.4 Application of Reservoir Computing to
Maximum Power Point Tracking
Under the category of the recurrent neural network, the echo state
network (ESN) has recently emerged with more reliability and
flexibility in training. ESN uses a reservoir, basically a large and
sparsely connected RNN for which the weight and connectivity of
neurons are randomly assigned and fixed (Jaeger, 2008;
Jayawardene and Venayagamoorthy, 2015). Figure 6 illustrates
the architecture of ESN.

A reservoir of size N consists of an N × 1 input weight
vector v and N neurons with connection weights between them
giving an N × N sparse matrix W. The vector r denotes the
readout weights. At a given time n, the “state” of the reservoir
consists of the state of all the outputs of each neuron at the
considered time, denoted by the N × 1 state vector X (n). The
current state of the reservoir may be updated to the next state
as follows:

X(n + 1) � tanh[WX(n) + Vu(n)]. (4)
In Eq. 4, u(n) represents the input signal. It has been assumed

that all inputs use the sigmodial (tanh) as the activation function
(Jaeger, 2008; Kulkarni and Teuscher, 2012; Jayawardene and
Venayagamoorthy, 2015; Alomar et al., 2016).

Referring to Figure 6, the output function is determined as follows:

y(n) � tanh[XT(n)r]. (5)
The purpose of the model output, which consists of the

Readout training, is to find r such that, for any input u(n)
and its desired output d(n), the mean square error (MSE)
determined by Eq. 6 that is minimized:

MSE � 1
L
∑L
n�1

[tanh−1(d(n)) − y(n)]^2, (6)

r � P*tanh−1(d). (7)
In Eq. 6, L represents the duration of the training signals.
A careful analysis of Eqs 6, 7 shows that the problem can be

formulated as a linear equation, which can be written in matrix
form and solved for the readout as

P �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XT(1)
XT(2)
XT(3)

.

.

.
XT(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ L × N, (8)

FIGURE 5 | Double diode equivalent circuit (Bakhoda et al., 2016).

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 7841915

Seddoh et al. Power Tracking Using Reservoir Computing

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


where P* denotes matrix pseudoinverse of P. The matrix P
contains, in each row, the state vector X(n) of each time step
(Jaeger, 2008; Macausland, 2014).

3 METHODOLOGY FOR IMPLEMENTING
THE RC-MPPT
3.1 Modeling of Reservoir Computing to
Implement MPPT (RC-MPPT)
The modeling process starts with a training of the echo state
network (ESN) algorithm based on refined and documented data
in previous studies. Consider a training sequence with input/
output of the form below:

X(n), J(n), . . . , X(k), J(k).
The goal is to deduce a train ESN for which the output Y(n) is

approximately close to that of the teacher output J(n) while the

ESN is triggered by input X(n). The following steps explain the
implementation procedure:

Step 1. Design a dynamic reservoir (DR) network (Win, W,
Wback) which is not trained yet and has the property of echo
state, whose internal units exhibit dynamic and random
characteristics as displayed in Figure 7

The weights are generated based on the following basic sub-
steps:

(i) Generate a random weight matrix internally and label it
as W0.

(ii) Apply a normalization to the random matrix W0 based on
the equation below to obtain W1:

W1 � 1

|αmax| ·W0.

αmax is the spectral radius of W0

FIGURE 7 | Schematic architecture of algorithm implementation.

FIGURE 6 | Echo state network (ESN) structure.
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(iii) The next stage has to do with scaling W1 to W0 by applying
the following equation:

W � βW1,

where β is the spectral radius of W.

(iv) Generate randomly, input weights Win, and output
backpropagation weights.

Wback leads to the untrained network (Win, W, and Wback).
Step 2. In step two, the ESN network training characteristics are

estimated using a simple routine procedure underMATLAB software

(i) Arbitrarily set the state of the network to start.

(ii) Drive the network with the training data as follows:

X(n), J(n), . . . , X(k), J(k), n � 0, . . . , T.

By applying the input data X(n), the output J (n-1) can be
computed as follows:

Y(n + 1) � f(WinX(n + 1) +WY(n) +Wback(n)).

(iii) At the initial time n = 0, the system output is not yet defined,
so assume J (0) = 0.

(iv) At any time when bigger than or equal to the washout time
T0, record the compacted data made of input/reservoir/
previous-output states (X(n) Y(n) O (n –1)) as an
additional row into a state matrix M. At the final stage,
the size of the state matrix M should be

(T − T0 + 1) × (K +N + L).

(v) Likewise, for each time longer than or equal to T0, record the
sigmoid-inverted teacher output tanh−1I(n) in a new row to
be added to the teacher collection matrix.

T. The final size of the teacher collection matrix should be

(T − T0 + 1) × L.

Step 3. Computation of output weights.

(i) Multiply the pseudoinverse ofM with T, leading to an output
matrix (Wout) of size (K + N + L) x L. Wout is given by

(Wout)T � M−1T. (10)
A linear optimization approach was used to determine the

pseudoinverse elements according to the Moore–Penrose
theorem (Macausland, 2014).

FIGURE 8 | Variation of the duty cycle for a smaller step size of Δδ = 0.001.

FIGURE 9 | Variation of the duty cycle for a bigger step size of Δδ = 0.4.
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TABLE 1 | A summary of the 2D and 3D optimal output points using the RC-MPPT for multiple curves (degradation).

Curve
(Degradation)

Temp.
(+C)

Irradiance
(G)

Vpv (V) Ipv(A) Rs(Ω) Rsh(Ω) Duty
cycle (δ)

ΔPmax

(PvPmax − Pprev)
Pmax(W)

1 25 1,000 17.1000 1.1700 14.6153 15.4386 −0.2163 (20–20) 20.0000
0

2 25 1,000 17.0500 1.1450 14.8908 15.6950 −0.2199 (20–19.5222) 19.5222
0.4778

3 25 1,000 17.1500 1.0850 15.8064 14.8878 −0.2128 (20–18.6077) 18.6077
1.3923

4 25 1,000 16.4500 1.0850 15.1612 15.1612 −0.2583 (20–17.8422) 17.8422
2.1518

5 25 1,000 16.2500 1.0600 15.3301 13.5714 −0.2615 (20–17.225) 17.2250
2.775

6 25 1,000 16.4500 1.0100 16.28713 10.1365 −0.2462 (20–16.6145) 16.6145
3.3355

7 25 1,000 14.7000 1.0500 14 14 −0.3877 (20–15.435) 15.4350
4.565

8 25 1,000 14.6000 0.9400 15.53191 12.6213 −0.3904 (20–13.724) 13.7240
6.276

9 25 1,000 14.0000 0.9300 15.05376 13.0000 −0.4428 (20–13.02) 13.0200
6.98

TABLE 2 | Summary of computational performance.

Computational method Training Operation Convergence Testing MSE Training MSE Accuracy Efficiency

P&O—MPPT No Simple Oscillatory — — Quite Quite
ANN—MPPT Always Complex Fast 10–6 10–5 Good Better
RC—MPPT Once Simple More faster 3.5e−16 2.25e−14 Excellent Best

FIGURE 10 | Mean square error (MSE) for training, validation, and testing of the ANN-MPPT.
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FIGURE 11 | Ground truth curve showing the output of RC-MPPT.

FIGURE 12 | Duty cycle against temperature variation in 3D.
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FIGURE 13 | Maximum power against voltage variation in 3D.

FIGURE 14 | Power (W) against current (A) and voltage (V) illustrating various MPP in 3D.
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(ii) The next step consists of Transposing (Wout)t to Wout.

Step 4. Exploitation.
At this stage, all essential elements of the network (Win, W,

Wback, Wout) are known and ready for use. While applying the
input sequence V(n), the output Y (n+1) can be deduced as
follows:

Y(n + 1) � f act(Wout(V(n + 1),X(n + 1), J(n))) (11)
where f act is the activation function. In this case, the function
tanh is as illustrated by Jaeger (2008), Kulkarni and Teuscher
(2012), Jayawardene and Venayagamoorthy (2015), and Alomar
et al. (2016).

Figure 7 represents the internal architecture of the proposed
reservoir computing algorithm for MPPT tracking. Based on the
descriptions above, the algorithm can be implemented through
programming with MATLAB software.

4 DATA ANALYSIS AND RESULTS

In this section, we examined the simulated results and conducted
a comparative analysis between the two well-known methods of
maximum power point tracking, namely, Perturbed and
Observed (P&O) and Artificial neural network (ANN), to our
novel approach of reservoir computing for maximum power
point tracking.

4.1 Analysis of Simulated Results for
Perturbed and Observed (P&O)
The simulated results of Figure 8,9 show that, for a very small
step size of 0.001, the variations of δref are insignificant and the
change from 0.8 to 0.75 occurred only after 9 s. On the contrary,
when the step size is raised to 0.4, which is close to the reference
value of 0.8, the variations were faster, leading to a value of 0.5
after 6 s.

Summarily, a smaller step size (Δδ) takes a longer time to
reach the maximum power point (MPP), making it very slow.
However, a bigger Δδ took a faster time to reach the MPP. It must
be noted that a step size (perturbation) can be classified as small
or big based on the reference duty cycle (δref).

However, the challenge is that, with a bigger Δδ, the MPP
might easily be missed. A further attempt to backtrack the MPP
might also fail, thus keeping the MPP unstable and fluctuating,
which clearly violates power system operations and control
stability.

4.2 Analysis of Simulated Results of
Artificial Neural Network
The implementation was successful. The model converged faster
irrespective of the step size that was smaller or bigger. The error
margin was also better. Based on the simulation results, the mean
square error (MSE) was (10)^ (−5) as illustrated in Figure 10,
when tracking maximum power point compared to the P&O.

However, certain local minimum power points were observed,
which were not necessarily optimal. Also, for every new
characteristic dataset, there was a need for training as previous
state memorization and state updates were not possible.

4.2.1 Simulation Results of RC-MPPT
Simulated results implemented usingMATLAB were obtained. In
order to assess the relationships that exist between the inputs and
the outputs using the RC-MPPT, 2D, several 3D curves were
plotted as illustrated from Figures 11–14. A summary of the
result is shown in Table 1. The MPPT algorithm allows the
creation of random networks that simulate and train the readout
layer utilizing the echo state network (ESN). The learning
algorithm is computed after the data has been normalized. We
further compute the matrix pseudoinverse spectral radius.
Subsequently, the activation sigmoidal function is used to
implement the readout (i.e., the output) layer.

After the exploitation of the various parameters in 2D and 3D,
Tables 1, 2 summarize the optimal parameters at every stage for
the different sets of data used in the RC-MPPT algorithm. The
various relationships, interdependency, and effects on one
another were also observed numerically. Interesting
relationships exist between these parameters obtained at
optimal points for the datasets used.

5 CONCLUSION

In summary, this article investigated the implementation of
reservoir computing for maximum power point tracking of
solar PV systems. Reservoir computing is one of the recurrent
neural network techniques that had not been applied to MPPT
before, though having promising results. The article,
therefore, considered a mathematical conceptualization and
developed an algorithm to implement the reservoir
computing paradigm that was programmed with MATLAB
software. The results were compared with two well-
established computational approaches that have been used
for MPP tracking in the past: P&O and ANN.

Findings revealed that the RC-MPPT presented more
advantageous results than the predecessor techniques in terms
of lower computational complexity compared to ANN, assured
convergence, accuracy of tracking, and least MSE irrespective of
the varying complexity in changing environmental conditions.
RC is also particularly interesting for MPPT applications because
of its non-linear and super high memory or storage
characteristics.

The findings from the study highlight very important issues
for theory and practice. The improved tracking accuracy
associated with other benefits constitutes an extension of
knowledge and an improvement of previous AI techniques
used to address the same problem. For practice, the algorithm
may be implemented on a microchip and made available to
users for improved solar PV efficiency. Full implementation of
the algorithm on microchips is highly recommended for
further studies. Again, further studies should consider
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comparing the performances of the RC-MPPT to newly
emerging AI techniques.
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