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Coming years, the number of electric vehicles (EVs) shall increase significantly, so the
demand for electricity for charging EVs will proportionately increase as well. Thus,
the growing energy requirements for charging these EVs might put huge burden on the
electricity generation and supply infrastructure. Such a huge load growth opportunity for
utilities if integrated successfully, or if not, a significant challenge to operate and balance
grid loads in the future. Customarily, the increase in adoption of EVs in recent years has
yielded challenges to the utilities as the electricity demand of EVs occurs mostly during
peak hours. In some cases, a sojourn time may be longer than a charging time, that
means, EVs will be connected to the charging station without charging. However, the
load shifting potential of EVs may be consequential and might subsequently be used
to alleviate challenges to the electric grid system. Considering charging behaviors for EV
scheduling is crucial, as they depend on uncertainties of EV availabilities (i.e., sojourn time
and energy required). Such uncertainties would impact substantially on the deployment of
feasible EV charging scheduling. To address above-mentioned issues, firstly, we define
an idle time ratio, which is basically load shifting potential. Consequently, we develop
a heuristic EV charging scheduling scheme with an emphasis on inevitable charging
behaviors of the EV users. Such a scheduling incorporates priority determination using
the idle time ratio and TOU period as well as priority-based time slot allocation. Moreover,
accurate prioritization of EVs is realized by predicting the energy demand and idle time
ratio. Minimization of charging cost is perhaps the most perceptive objective, such that,
the EV charging scheduling is done when TOU tariff is low. Performance evaluation shows
that the proposed flexible smart charging scheduling outperforms the baseline scheduling
in terms of the charging power and charging cost.

Keywords: electric vehicle, smart charging, charging behavior, idle time ratio, charging flexibility, priority-based
EV scheduling

1 INTRODUCTION

Currently, over 1.27 million Electric vehicles (EVs) have been adopted in the United States; by 2030,
about 20 million EVs are anticipated on the United States roads.

Moreover, EVs play critical role in the Smart cities as they do not yield CO2 emission, in turn,
decarbonizing road transportation. As urban population shifts toward more sustainable energy
future, the steady growth of EVs is anticipated.

As the number of EVs increases, the demand for electricity for charging EVs will increase as well.
Thus, the growing energy requirements for charging EVs might put huge burden on the electricity
generation and supply infrastructure. Such a huge load growth could yield either opportunity for
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the utilities if integrated successfully, or significant challenges
to operate and balance grid loads in the future. The high
penetration of EVs may have a substantial impact on the
stability of the electric grid; particularly, when uncoordinated
EV charging is employed. With the uncoordinated charging,
EVs shall immediately start charging upon their arrival with
the maximum charging power until their charging targets are
completed.

Smart charging of EVs is one of the appealing approaches,
which has the potential to alleviate the challenges to the electric
grid by shifting the charging load to a low demand period. This
would not only foster demand response management but also
decrease investments needed in the EV charging infrastructure.
Thus, it can be means for reducing EV charging cost to the EV
users.

Most EV charging activities take place in residential areas,
commercial areas (i.e., shopping complex, public parking), and
workplaces. Due to the longer sojourn time than the charging
time, Electric Vehicle Supply Equipment (EVSEs) are occupied
longer than needed (i.e., EVs are connected without charging),
that may cause under utilization. Nevertheless, the load shifting
potential of EVs may be consequential and might subsequently
be used to alleviate challenges to the electric grid system.

Furthermore, considering charging behaviors for EV
scheduling is crucial, as they depend on uncertainties of EV
availabilities (i.e., sojourn time and energy required). Such
uncertainties would impact substantially on the deployment of
feasible EV charging scheduling.

In order to address such issues of user charging behavior
uncertainties, initially, we define an idle time ratio, which is
basically load shifting potential. Consequently, this paper intends
to develop a heuristic EV charging scheduling scheme with an
emphasis on inevitable charging behaviors of the EV users. Such
a scheduling incorporates priority determination using the idle
time ratio and TOU period as well as priority-based time slot
allocation. Moreover, accurate prioritization of EVs is realized by
predicting the energy demand and idle time ratio. Minimization
of charging cost is perhaps the most perceptive objective, such
that, the EV charging scheduling is done when TOU tariff is low.

The remainder of this paper is organized as follows. Section 2
describes related works while Section 3 highlights preliminaries.
Analysis of EV charging sessions and charging behavior is
described in Section 4. Proposed flexible smart charging
strategies are depicted in Section 5. Finally, conclusions and
future work are presented in Section 6.

2 RELATED WORKS

Numerous studies have been conducted on the EV charging
scheduling problem (Zeng et al., 2021). Basically, EV charging
scheduling can be mainly categorized into two categories:
centralized and decentralized approaches (Alsabbagh and
Ma, 2020). In centralized approach, the charging station operator
or the aggregator determines the charging schedule for all
EVs to achieve an optimal solution. Whereas, in decentralized
approach, EVs can determine the charging time and charging

power, that means, a decision is made at the node level. These
EVs shall have coordination with the aggregator which may act
independently or cooperatively with other aggregators. Prior
works on smart charging deal with various objectives such as
minimizing energy costs, maximizing profit, and stabilizing
power load (Wu et al., 2020).

In (Zhang et al., 2020), viewing charging preferences of
different types of users, a comprehensive satisfaction degree
model was set up to obtain different users’ charging strategies.
And Time-Of-Use (TOU) pricing strategy for EV charging was
proposed that considers the demand response and realizes the
effective dispatch of EV charging load based on price signals.

Generally, EV charging demands are characterized by
3-tuple including arrival time, departure time and the
requested charging energy. Due to the user charging behavior
uncertainties, one or more of the parameters may be
undetermined, for instance, the arrival time (Wu et al., 2020),
departure time (Frendo et al., 2021), and energy consumption
(Chung et al., 2019).

The paper (Clairand et al., 2020) aims to perform an
assessment of various strategies based on different input
parameters as well as conducts stochastic analyses using
Monte Carlo simulations to evaluate the impact of such
input parameters, in which uncertainties such as hour of
charging and required energy are considered. Similarly, in
(Fotouhi et al., 2019), the authors depicted a stochastic model
that takes into consideration the EV drivers’ behavioral
characteristics in terms of their response to the EV battery
charge level when deciding to charge or disconnect at a charging
station.

In (Zeng et al., 2021), the authors proposed a station-level
optimization framework to operate charging station with optimal
pricing policy and charge scheduling. Such a model incorporates
human behaviors in efficient charging decision process.

In smart charging, predictions of charging behavior
uncertainties would be beneficial when they are integrated with
EV charging scheduling. Typically, forecasting is realized with a
regression model trained on historical data to predict upcoming
data. For instance, the paper (Shahriar et al., 2021) depicts the
usage of historical data along with weather, traffic information
to predict EV session duration and energy consumption using
support vector regression (SVR), random forest (RF), XGBoost
and Deep neural networks.

Similarly, in (Chung et al., 2019), the authors investigated
several machine learning algorithms including SVR, RF
and diffusion-based kernel density estimator (DKDE) to
predict charging behavior, including stay duration and energy
consumption based on historical data. And they proposed
Ensemble Predicting Algorithm (EPA) to enhance predicting
performance by decreasing 11% of the stay duration and 22% of
the energy consumption prediction errors.

The authors addressed dynamic EV charging problems
with two objectives: minimizing the total charging cost and
minimizing the peak load. They proposed online EV charge
scheduling approaches such as greedy algorithm and prediction-
based charging strategy to focus on above-mentioned objectives
(Wu et al., 2020).
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Additionally, the EVs parked in the parking lots of the
workplaces can provide substantial charging flexibility due to
the long sojourn time (Sadeghianpourhamami et al., 2018). As
a finding shows that on an average, only 20% of the total
connection time is used for charging the EVs, smart charging
strategies and optimization of the charging sessions are essential
(Bouhassani et al., 2019).

In (Lucas et al., 2019), the authors applied regressionmethods
such as RF, Gradient Boosting, and XGBoost to estimate the
idle time of EV at the charging infrastructure Similarly, the
authors (Gerritsma et al., 2019) proposed amethod for analyzing
the time-dependent flexibility of EV demand. Basically, such a
flexibility is influenced by charging power, EV characteristics, and
other environmental factors. Their results depict that 59% of the
aggregated EV demand can be delayed formore than 8h, and 16%
for even more than 24 h.

In(Canigueral and Melendez, 2021), the methodology was
proposed to address scheduling problem, and optimizing each
user profile according to its suitable flexibility objective, since the
classification of EV sessions among generic user profiles can be
used by aggregators to deliver smart charging in a more efficient
and robust manner.

Likewise, in the paper (Sun et al., 2019), the authors proposed
an online mechanism to aim integrating the multi-dimensional
flexibility in the EV coordinated charging problem, and
exploiting the energy-flexibility and deadline-flexibility by
modeling the valuations of each EV’s charging request (i.e.,
energy demand, arrival time and deadline) as a function of the
required energy demand and deadline.

Furthermore, the authors not only developed a parameterized
aggregated plugin EV charging model using the energy
boundaries to express the charging flexibility but also proposed to
parameterize the aggregated charging policy (Long et al., 2021).
And the paper (Wu et al., 2021) highlighted a method for
evaluating the charging and discharging scheduling potential
of electric vehicles considering the uncertainty in the users’
responses in case of occasional operation of a power grid.

Some prior works focused on the use of prioritization in
the smart charging. For instance, in (Frendo et al., 2021), the
authors employed regression models trained on historical data to
predict individual EV departure time and then incorporated this
prediction in an EV charging scheduling heuristic approach in
order to maximize fair share among EVs by prioritizing for equal
chances of reaching a sufficient state of charge by the departure
time.

Most of the recent prior works either assume perfect
information about the EV user charging behavior uncertainties
or just consider the 3-tuple EV charging demand parameters
(Frendo et al., 2021). In this work, we have considered EV user
charging behavior uncertainties including energy consumption
and an idle time ratio (i.e., time-dependent flexibility). Moreover,
we not only incorporate a regression model for predicting
such uncertainties but also employ such predictions for priority
determination and ultimately, deploy heuristic priority-based EV
charging scheduling. Even though such a charging flexibility
would be beneficial for bi-directional EV charging, in this work,
we have not considered Vehicle-to-grid (V2G).

3 PRELIMINARIES

3.1 Charging Transaction
A charging transaction is characterized by three important
parameters.

• Connection time: It is the time interval between starting and
ending a connection to an EVSE. It is essentially a sojourn
time.
• Charging time: It is the time an EV is actually charging.
• Charging Power: It is max power that the EVSE can offer to

charge the EV for that transaction.

Some EV users may plug in and leave their vehicles for an
extended period at public EV designated parking lots. Thus, idle
time can be determined by the period when EVs remain at such
parking spots without charging.

On one hand, prolonged idle time may be a concern for other
EV users who need to charge their vehicles to complete their
planned trips. On other hand, if the connection time is longer
than the charging time, which means that the charging session
provides flexibility to shift a charging session to a later moment.

3.2 EV Rates
There can be two main kinds of electric tariffs: Flat and Time-
of-Use (TOU). A flat tariff is a flat rate constant over the entire
year and, at any time of the day the electricity price is the same. A
TOUrate not only varieswithin a day but also depends on seasons
and days. During defined periods of the day, electricity prices are
higher than during the rest of the day. High prices periods are
called “on-peak periods” and lower prices periods are called “off-
peak periods.”

There are several dedicated tariff plans to charge EVs
(Lee et al., 2020). One of them is Southern California Edison
(SCE) tariff, which includes various schemes such as TOU-
EV-7, TOU-EV-8, and TOU-EV-9. These plans are applied for
charging of the EVs such that these TOU periods incentivize EV
users to optimize their charging patterns to minimize electricity
costs.

In this study, we have considered the use of SCE TOU-EV
plan (Southern California Edison, 2019). In this regard, EV users
having charging demands up to 20 kW can use TOU-EV-7 tariff
plan, whereas those having charging demands from 20 to 500 kW
require to use TOU-EV-8 plan.

As SCE TOU-EV plan, TOU periods are defined as follows,
which is presented in Table 1.Summer season is from June to
September, whereas winter season is from October to May.

3.3 Clustering Mechanism
Clustering is an unsupervised machine learning technique that
divides the data points into several groups or clusters based on
their attributes or features such that data points in the same
groups are more like other data points in the same group and
dissimilar to the data points in other groups.

One of the widely-used unsupervised learning approaches
based on distance-based algorithm is K-Means. Since K-
means algorithm is dependent on initialization of centroids, it

Frontiers in Energy Research | www.frontiersin.org 3 April 2022 | Volume 10 | Article 773440

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Singh et al. Smart EV Charging

TABLE 1 | SCE TOU-EV TOU plan.

TOU period Summer Winter

Weekdays Weekends and holidays Weekdays Weekends and holidays

On-Peak 4 p.m.–9 p.m. N/A N/A N/A
Mid-Peak N/A 4 p.m.–9 p.m. 4 p.m.–9 p.m. 4 p.m.–9 p.m.
Off-Peak 9 p.m.–4 p.m. 9 p.m.–4 p.m. 9 p.m.–8 a.m. 9 p.m.–8 a.m.
Super-Off-Peak N/A N/A 8 a.m.–4 p.m. 8 a.m.–4 p.m.

may result in poor clustering. K-Means++ can overcome the
shortcomings of K-Means such that the former ensures a smarter
initialization of the centroids and improves the quality of the
clustering.

Gaussian Mixture Model (GMM) is a probabilistic model that
assumes all the data points are generated from amixture of a finite
number ofGaussian distributionswith unknownparameters.The
first visible difference between K-Means and GMM is the shape
the decision boundaries. GMMs are somewhat more flexible and
with a covariance matrix we can make the boundaries elliptical,
as opposed to circular boundaries with K-means.

Gaussian Mixture is a function that is comprised of several
Gaussians, each identified by k ∈ 1,…,K, where K is the number
of clusters of our dataset. Each Gaussian k in the mixture is
comprised of the following parameters:

• A mean μ that defines its centre.
• A covariance Σ that defines its width. This would be

equivalent to the dimensions of an ellipsoid in amultivariate
scenario.
• A mixing probability π that defines how big or small the

Gaussian function will be.

Like most clustering methods, the number of desired clusters
must be specified before fitting themodel.The number of clusters
specifies the number of components in the GMM.

It can be thought of mixture models as generalizing K-Means
clustering to incorporate information about the covariance
structure of the data as well as the centers of the latent
Gaussians. Thus, GMM can be applied in a similar way to K-
Means++, but there are somemajor differences between these two
algorithms.GMMis better thanK-Means++ as it does account for
variance too.

4 ANALYSIS OF EV CHARGING SESSIONS
AND CHARGING BEHAVIOR

4.1 Datasets
4.1.1 Data Collection
In this work, the original data was obtained through ElaadNL
(ElaadNL, 2020), which is a Dutch smart charging knowledge
center promoted by a grid operators consortium.

The Transaction dataset consists of a set of 10-tuple
elements: Transaction ID, ChargePoint ID, Connector ID,
UTC Transaction Start, UTC Transaction Stop, Start Card,

Connected Time, Charge Time, Total Energy, and Max Power.
Whereas the Metervalues dataset consists of a set of 7-tuple
elements: Transaction ID, ChargePoint ID, Connector ID,
UTC Time, Collected Value, Energy Interval, and Average
Power.

4.1.2 Data Processing
Before analysis, some of the data were excluded; charging sessions
having connection time more than 24 h were excluded. These
instances occurred mainly due to technical difficulties where EV
users were unable to properly connect their vehicles to the port.
Such instances account for 2.1% of the total sessions. In total,
9,800 charging sessions were analyzed to investigate the charging
behavior.

4.2 Preliminary Analysis
4.2.1 Total Energy with Respect to Time of Day
Figures 1A–C show total energy with respect to time of day
during all seasons, summer, and winter, respectively.

Corresponding to the charging transaction trend during all
seasons, as shown in Figure 1A), there are two major peaks at
7 a.m. and 4 p.m., and one minor peak at 10 a.m. It can be seen
that during daytime, total energy (kWh) remains high, whereas
during night time it is low.

Similar patterns can be observed during summer and winter
as depicted in Figures 1B,C, respectively. Only difference is that
during summer, major peaks occur at 6 a.m. and 3 p.m. and
during winter, minor peak is at 11 a.m.

4.2.2 Average Idle Time Ratio With Respect to Time
of Day
An idle time ratio can be defined as the ratio of idle
time to sojourn time. Basically it is a measure of load
shifting potential and can be viewed as smart charging
potential (Bouhassani et al., 2019) or time-dependent flexibility
(Gerritsma et al., 2019).

Figures 2A–C show average idle time ratio with respect to
time of day during all seasons, summer, and winter, respectively.

As shown in Figure 2A, during all seasons, an average idle
time ratio is low during day time, especially between 9 a.m. and
1:30 p.m., while during the night, higher average idle time ratio is
concentrated, with exception of a deep at 1 a.m. It can be observed
that higher average idle time ratio indicates that the charging
flexibility is high, that means during that period, the charging
activity may be deferred.
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FIGURE 1 | Total energy with respect to time of day for various seasons.

Similar patterns can be observed during summer and winter
as depicted in Figures 2B,C, respectively.

4.3 Analysis of Clustering EV Charging
Behavior
In this work, various clusterGMMformationwas analyzed before
selecting the best cluster formation number.

Applying the Akaike’s Information Criteria (AIC)/Bayesian
Information Criterion (BIC) criterion, the number of
components in a Gaussian Mixture can be selected in an
efficient manner. As the number of components is increased,
the AIC and BIC values decrease. At a certain point, the
value of the AIC/BIC does not change significantly anymore.
The number of clusters at which this occurs is the optimum
number of clusters that should be used. In this research work,
the four clusters identified are based on the value of the
AIC/BIC.

After obtaining optimal number of components, we then
train the model on the dataset with number of components
4 and 5. Under the GMM, the clustered data points for
different value of n_comp are shown in Figure 3. It can
seen that in Figure 3A, there are 4 clusters in total which
are visualized in different colors and in Figure 3B, there

are 5 clusters in total which are visualized in different
colors.

4.4 Cluster Labeling for Charging Sessions
Cluster labeling is the problem of picking descriptive, human-
readable labels for the clusters produced by a document clustering
algorithm; standard clustering algorithms do not typically
produce any such labels.

Clusters of charging transactions can be found based on two
variables: the time at which a charging transaction starts and the
total connection time. Based on these two variables, we can label
the different clusters. For that purpose, we have selected GMM
Visualization with 4 clusters.

Clustering labelling of charging sessions is important for the
visualization of EV charging behavior as shown in Figure 4. Each
cluster of sessions can be considered as a homogeneous group that
has the similar characteristics.

4.4.1 Morning Hour With Medium Duration (MMD)
Morning with medium duration (MMD) includes charging
sessions starting in the morning for average connection duration
of 8.5 h. It can be also called “Work and Charge.”

For instance, MMD mainly includes charging at the
workplaces.
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FIGURE 2 | Average idle time ratio with respect to time of day for various seasons.

FIGURE 3 | GMM visualization for various clusters.

Such a charging provides moderate flexibility for the system.

4.4.2 Daytime With Short Duration (DSD)
Daytime with short duration (DSD) comprises the charging
sessions may commerce throughout the day with relatively short
duration, i.e., average of 1.5 h. It can be also called “Stop and
Charge.”

For example, DSD includes electric taxi, visitors, car sharing.
Such a charging provides minimum flexibility for the system.

4.4.3 Afternoon/Evening With Medium Duration
(AEMD)
Afternoon/evening with medium duration (AEMD) includes
charging sessions starting in the afternoon or the evening having
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FIGURE 4 | GMM clustering with labeling.

average duration of 4.5 h. It can be also called “Park and
Charge.”

For instance, AEMD includes charging at shopping centers,
eating places (restaurants, bar) and recreation centres (movie
theatre, physical fitness).

Such a charging provides some flexibility for the system.

4.4.4 Afternoon/Evening With Long Duration (AELD)
Afternoon/eveningwith long duration (AELD) includes charging
sessions starting in the afternoon or the evening having average
duration of 15 h. It can be also called “Home and Charge.”

For instance, charging at home is an example of AELD.
Such a charging provides the highest flexibility for the system.

4.5 Predictive Analysis of EV User
Behavior
This subsection discusses the regression methods for EV user
behavior prediction.Themain goal is to predict EV users’ energy
demand and idle time ratio based on the historical charging data
when their EVs are being charged.

4.5.1 Regression Algorithms
Regression models depict the relationship between a target
(output) variable, and one or more predictor (input) variables.
Several regression algorithms such as Support Vector Regression
(SVR), Decision Trees, Random Forest, and Least-Squares
Boosting (LSBoost) can be considered.We have selected Random
Forest and LSBoost to predict the idle time ratio and energy
consumption for the EV charging scheduling.

4.5.1.1 Random Forest
Random Forest (RF) is an ensemble learning technique, which is
commonly used for both classification and regression problems.
Its main idea is to use of multiple decision trees, like a forest.
Initially, the algorithm starts with a number of bootstrap samples
from the original data. Each of these samples will generate a
decision tree with an adjusting operation, in which afterwards
several predictors are randomly sampled. The algorithm goes on

choosing the best split from the group of the sampled variables,
instead of considering them all. The square root of the total
number of variables is assumed by the algorithm as the default
number of the predictors’ value.

4.5.1.2 Least-Squares Boosting
LSBoost is one of boosting algorithms under regression
ensembles. Such an ensemble method, which uses the least
squares as the loss criteria, fits to minimize mean-squared error.
At every step, the ensemble endows a new learner to the difference
between the observed response and the aggregated prediction of
all learners grown previously.With a given learning rate η ∈ [0,1],
the ensemble may fit each incoming learner to yn − ηf(xn), where
yn is the observed response and f(xn) is the aggregated prediction
from all weak learners grown so far for observation xn.

4.5.2 Model Accuracy Evaluation
For the purpose of evaluating model performance, model
accuracy evaluationmetrics are used to evaluate and compare the
above-mentioned machine learning algorithms.

To assess the prediction accuracy, various performance
indicators are utilized as the root mean square error (RMSE),
mean absolute error (MAE), and the coefficient of determination,
R2.

• Coefficient of determination (R2). It represents the
proportion of the variance in the dependent variable which
is explained by the linear regression model. It is a scale-free
score, the value of R square will be less than one.
• Mean Absolute Error (MAE). It represents the average of the

absolute difference between the actual and predicted values
in the dataset. It measures the average of the residuals in the
dataset.
• Root Mean Square Error (RMSE). It is the square root

of mean squared error, that is the average of the squared
difference between the original and predicted values in the
dataset. It measures the standard deviation of residuals.

Basically, idle time ratio and energy consumption are
evaluated.
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TABLE 2 | Metric evaluation with respect to idle time ratio and energy consumption.

Method All seasons Summer winter

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

For Idle Time Ratio

 Random Forest 0.8519 0.0591 0.1189 0.809 0.06995 0.1377 0.792 0.0705 0.1422
 LSBoost 0.97 0.023 0.034 0.942 0.042 0.082 0.931 0.049 0.089

For Energy Consumption

 Random Forest 0.9129 1.3289 3.283 0.9098 1.291 3.1927 0.896 1.5538 3.6426
 LSBoost 0.9612 1.2662 2.9896 0.9588 1.202 2.8486 0.9415 1.4636 3.3957

In case of idle time ratio, the final dataset was formed
with the ten variables, including: six numeric independent
variables—total energy, max charging power, charge time,
transaction start time, transaction stop time, and Connector ID;
four categorical independent variables—EVSE ID, seasons, TOU
period, and week of the day; and, idle time ratio, the numeric
response variable.

Similarly, in case of energy consumption, the final dataset
was formed with the ten variables, including: six numeric
independent variables—max charging power, charge time, idle
time ratio, transaction start time, transaction stop time, and
Connector ID; four categorical independent variables—EVSE ID,
seasons, TOU period, and week of the day; and, total energy, the
numeric response variable.

Hyperparameter tuning refers to the shaping of the model
architecture by searching the right hyperparameter to find high
precision and accuracy. There are several parameter tuning
techniques, two of the most widely used parameter optimiser
techniques including Random search and Grid search can be
considered. In this study, we have used Random search cross
validation (CV) method provided by the scikit-learn library. Two
main parameters must be input for this exercise to be carried
out and which determine its accuracy and time: the number of
iterations (n_iter) and the Cross Validation (cv). In this study,
n_iter: 100 (candidates) and cv: 10 (folds) were used.

After performing hyperparameter tuning, optimized
hyperparameters are obtained for each method.

For Random Forest, optimized hyperparameters used
are as follows: “n_estimators”: 500; “max_depth”: 60;
“min_samples_split”: 7; “min_samples_leaf ”: 2; “max_features”:
“sqrt”; and “bootstrap”: True.

For LSBoost, optimized hyperparameters used are as follows:
“min_samples_leaf ”: 2; “learning_rating”: 0.1.

Table 2 provides the model accuracy evaluation metrics of
each algorithm in terms of the R2, RMSE, and MAE.

The lower value of MAE and RMSE implies higher accuracy
of a regression model, whereas a higher value of R2 is considered
desirable.

It can be observed that LSBoost has achieved the best accuracy
in predicting the idle time ratio with low RMSE of 0.034, low
MAE of 0.023 and high R2 of 0.97 for all seasons. Similarly, the
LSBoost provides the best prediction values for the summer and
winter seasons.

Likewise, in case of the energy consumption, for all scenarios,
the LSBoost regression method yields the highest R2 score and
the lowest MAE and RMSE.

Figure 5 shows the prediction outcomes with the LSBoost
regression.

Figure 5Adepicts predicted values vs. actual values for the idle
time ratio while Figure 5B illustrates predicted values vs. actual

FIGURE 5 | Prediction outcomes with the LSBoost regression for Idle Time Ratio and Energy Consumption.

Frontiers in Energy Research | www.frontiersin.org 8 April 2022 | Volume 10 | Article 773440

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Singh et al. Smart EV Charging

values for the energy consumption. Both cases have relatively
high prediction accuracy.

5 FLEXIBLE SMART CHARGING
STRATEGIES

In this section, we present a charge scheduling algorithm to find
optimal solutions.

5.1 System Model
Considering an EV charging network that is controlled and
managed by a Centralized Controller (CC) along with charging
station (CS) local controllers (LCs). The purpose of CC is to
provide updated TOU plan and to minimize the peak load in the
distribution system.

In such an EV charging infrastructure, EVSEs are distributed
in various locations such as commercial, workplaces, and
residentials (i.e., condos) in the particular area. Each location has
LC for managing its EVSEs. And the CC is used for managing
and coordinating all the LCs. The participating EV users need
to subscribe to the system in order to participant in recharging
activities.

Whenever recharging is required, the EV user can initiate
a charging session by sending a charging request through his
Mobile Apps.

Consider a set of EVs i ∈ N. Each EV i operates with a battery
characterised by its maximum capacity Bi (kWh) and its state of
charge SoCi defined as the available capacity and expressed as a
percentage of its nominal capacity Bi. SoCi ∈ [SoCmini ,SoCmaxi],
where SoCmini and SoCmaxi are the minimal and the maximal
allowable values of SoC, respectively. SoCi is bounded as depicted
in Eq. 1.

SoCmini ≤ SoCi ≤ SoCmaxi (1)

Upon arrival, an EV i sends a charging request to the CS local
controller. Such a charging request has a 3-tuple of parameters,
{ tari , tdei ,SoC

ini
i }, which can be used to describe a charging

behavior. Here, tari is arrival time, tdei is a departure time, and
initial SoC is SoCini

i . It should be noted that tari < tdei .
The time horizon is divided into time slots, t = {1,…,T}, each

of length Δt represents the time interval [t− 1, t]. In order words,
Δt is a time duration between two consecutive meter readings.

Time slots can be in either charging period or idle period
depending upon whether EV i performs its charging task at a
given time slot t. Thus, we define a binary variable xi,t that can
be expressed as in Eq. 2.

xi,t = {
1 if connected and charging such that Pi > 0, i.e.,charging period,
0 if is connected, but not charging such that Pi = 0, i.e., idle period,

(2)

The connection time for transaction k of the EV i is the period
duringwhich anEV is plugged in to anEVSE,which is givenusing
Eq. 3.

𝛶i = tari − tdei (3)

If EV i is assigned to EVSE j, then at each time period t,
EVSE j may provide a charging power Pit to EV i. Typically,
the maximum charging power is equivalent to the minimum of
the maximum charging power allowed for the EV battery, and
the maximum charging power of the EVSE. Furthermore, for
unidirectional charging, the lower bound is equal to zero; that
means, a discharging process shall not be occurred.

Thus, the charging power of an EV battery is bounded, which
can be given as in Eq. 4.

0 ≤ Pit ≤ P
max
i ,∀i ∈ N , t ∈ T (4)

Depending on the charging power Pi and charging efficiency η
of EV i, the time required to charge EV i can be computed as in
Eq. 5.

Γi =
Θreq

i Bi

Piη
(5)

Considering the binary charging variable xi,t, the charged time
can be derived by counting the number of non-zero values for
average power [kW] during transaction k, as expressed in Eq. 6.

Γi =
T

∑
t=1
(xi,tΔt) (6)

It should be noted that the charged time should be less or equal
to the connection time, i.e., Γi ≤ 𝛶i.

While charging with charging power Pit , the EV i retrieves an
amount of energy in the time period t, which is given as in Eq. 7.

Θit = PitΔtη (7)

Thus, Θit , (kWh) is the energy transfer to a EV i in each charging
stage.

Energy demand [kWh], which is the total energy during
charging transaction k, can be formulated as in Eq. 8.

Θi =
T

∑
t=1
(xitΘit) (8)

Let’s assume the predicted energy demand be Θdem
i , then the

actual energy demand should not exceed the predicted energy
demand and is scheduled within SoC limits, i.e., Θi <= Θ

dem
i and

SoCini
i +Θi <= SoCmaxi . This constraint guarantees that the EVSE

meets an EV’s energy need during the connection time.

5.2 Charging Strategies
5.2.1 Instant Strategy
Instant charging strategy allows vehicles to charge immediately.
That means, it is assumed that an EV is plugged in to an EVSE
as soon as it arrives at a charge station and start charging
immediately. The vehicle keeps charging until the battery is fully
charged or unplugged by the EV user.

5.2.2 Allotted-Slot Strategy
In allotted-slot strategy, a charging session is divided into smaller
time slots and allotted over the total connected time. Such a
strategy has the potential for large fleets, where immediate access
to charging is unnecessary.
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5.2.3 Deferred Strategy
Deferred strategy selects the charging schedule based on time-
of-use (TOU) tariff rates and EV user’s schedule. That means, a
charging session is shifted to the off-peak time period. Deferred
strategy can selectively charge the vehicle at lower TOU rate as
much as possible at each charge event. Typically, it can be utilized
for relatively long-term parking. This strategy employs required
energy and schedule information tomaximize the cost benefit for
EV users and reduce grid peak demand.

5.3 Flexible Smart EV Charging
The charging parameters including the energy consumption and
idle time ratio play crucial role on EV charging scheduling to
determine an optimal solution. Fundamentally, when an EV
user initiates a charging session, the prediction of idle time
ratio and energy consumption could provide positive impact on
determining charging slot allocation scheduling.

Let binary variablewi,t denote whether EV i ∈ N is assigned for
charging at an EVSE j ∈ J at time slot t ∈ T.

wi,t = {
1 ∀i ∈ N , t ∈ T
0 Otherwise, (9)

Considering the charging network service capability, at most M
EVs can be charged concurrently. Therefore, during each time
slot, the total number of EVs being charged should satisfy Eq. 10.

N

∑
i=1
(wi,t) ≤M (10)

Average Idle time ratio for charging transaction k of the EV i is
given by

Ψi =
𝛶i − Γi
𝛶i

(11)

So, Ψ can be viewed as a measure of flexibility in load shifting
for a given charging session. As per the Elaad dataset, it can be
observed that there are about 45%of charging transactions having
Ψ = 0, whereas about 55% of charging transactions have Ψ > 0
including 28% of charging sessions having Ψ > 0.5.

Basically, smart charging with flexibility depends on charging
behavior of the EV users. For instance, some EV users are willing
to leave the charging station immediately after charging activity
is completed.While some remain connected to the EVSEwithout
charging even after the completion of charging activity.

Furthermore, some EV users want to have fully charging,
i.e., Θi = SoCmax. Whereas some want only partial charging i.e.,
Θi < SoCmax.

If the value of Ψ is larger, then it is likely to have more the
flexibility in EV charging.

Typically, amount of flexibility in EV charging depends on
following factors:

• Time-of-use (TOU) plans
• Driving range capabilities of EVs
• Recharging opportunities during day or night time for

convenience and availability

By considering the TOU tariff, shifting the load to the TOU
period with lower rates can reduce the charging cost significantly.

Having TOU rate and average charging rate at time slot t, the
charging cost for EV i can be derived as.

Cu =
T

∑
t=1
(rtΔtPitη) (12)

One of the objectives of flexible smart charging is to charge the EV
at a given charging transaction at as low TOU rates as possible to
minimize the charging cost.

The objective function is expressed inEq. 13 as a charging cost
minimization problem for all the EVs.

Cm =min
N

∑
i=1
(Cui)

subject to
(13)

SoCmini ≤ SoCi ≤ SoCmaxi (14)

0 ≤ Pit ≤ P
max
i , (15)

The constraint Eq. 14 shows that SOC should be within the
allowable limit, and the constraint Eq. 15 determines the limit for
charging power.

We now introduce a heuristic approach to address above-
mentioned problem. The proposed effective flexible smart
charging strategy comprises of behavioral load shifting approach
based on recharging priority. Such a priority not only depends on
charging behavior including energy demand and idle time ratio
but also considers the TOU plan. Thus, it can allow the system
to selectively charge EVs at the lower TOU rates as much as
possible.

The local controller in conjunction with the centralized
controller determines the flexible charging process to schedule
feasible charging session for each EV. In the first stage, the
system can predict the energy demand and idle time ratio for an
incoming EV using regression model trained on historical data.
In the second stage, with the given TOU plan and predicted idle
time ratio, the system can determine priority to each EV. In the
final stage, using above-mentioned priorities and energy demand,
the system can optimally schedule timeslots to the EVs in order
to minimize the charging cost.

Figure 6 depicts flow chart for flexible smart charging scheme
that includes three stages as mentioned above.

As depicted in Figure 6, the attributes such as arrival time,
departure time and initial SoC shall be known upon arrival of
each EV. Then the system employs regression model trained on
historical data to predict the energy demand and idle time ratio.

Fundamentally, the proposed flexible smart charging scheme
is based on two major modules–1) Priority determination
module, and 2) Timeslot allocation module.

Figure 7 shows various modules in the proposed scheme.
Priority determination and timeslot allocation modules are
depicted in Figures 7A,B respectively.

In the priority determination module, two priority variables
are considered–one for determination of recharging urgency,
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FIGURE 6 | Flow chart for flexible smart charging scheme.
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which is influenced by two parameters–idle time ratio and TOU
period and another for minimization of charging cost, which
considers of TOU period along with TOU rate.Thus, this scheme
provides one of the appropriate scheduling approaches for EV
charging.

As per SCE TOU plan, a session either summer or winter
(ses ∈ {sum,win}) may have different TOU periods. Now, let us
derive all possible subsets of TOU periods, which are as follows.

Ωses
1 = {Ω

ses
tou1
}

Ωses
2 = {Ω

ses
tou2
}

Ωses
3 = {Ω

ses
tou3
}

Ωses
4 = {Ω

ses
tou1
,Ωses

tou3
}

Ωses
5 = {Ω

ses
tou2
,Ωses

tou3
}

Ωses
6 = {Ω

ses
tou1
,Ωses

tou2
}

Ωses
7 = {Ω

ses
tou1
,Ωses

tou2
,Ωses

tou3
}

where, for sum ∶ tou1 = on− peak; tou2 =mid− peak; tou3 = off− peak;

forwin ∶ tou1 =mid− peak; tou2 = off− peak; tou3 = super− off− peak.

(16)

In case of the summer season, only two TOU periods can be
existed at a time, for instance, during weekdays, on-peak and
off-peak, and during weekends, mid-peak and off-peak. Thus,
for the summer season, only subsets from Ωses

1 to Ωses
5 are valid.

Whereas the winter season can have three TOU periods, namely,
mid-peak, off-peak and super-off-peak, thus, all of the subsets are
valid.

The priority that reflects the urgency to recharge can
be denoted by Πα depends upon the decision variables
αk ∶ k ∈ {1,2,3}.

α1 = {
1 if Ψ = 0, and∀Ωses

y ∶ y = {1,2,…,7} ,
0 Otherwise (17)

α2 = {
1 if Ψ > 0, and∀Ωses

y ∶ y = {1,2,3}
0 Otherwise (18)

α3 = {
1 if Ψ > 0, and∀Ωses

y ∶ y = {4,5,6,7}
0 Otherwise (19)

As shown in Figure 7, the recharging urgency priority Πα is set
according to the decision variable αk. For instance, when α1 is 1,
Πα is 3, that means, the recharging urgency priority is the highest.
And when α3 is 1, Πα is 1, that means, the recharging urgency
priority is the lowest.

The recharging urgency priority Πα depends on the accuracy
of the predicted value of Ψ, That is, the more accurate Ψest is, the
more precisely EVs can be prioritized.

As per the SCE TOU-EV-8 plan, TOU period may have
different TOU tariff. We shall assign a priority to TOU period
(Ωses

toux), which can be expressed as follows: Ωses
toux(x),x ∈ {1,2,3}.

Here, higher the value of x, higher the TOU priority. That
means, in summer season, off-peak has the highest priority,

FIGURE 7 | Priority determination and timeslot allocation modules in the proposed scheme.
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FIGURE 8 | Outcomes for different scheduling mechanisms in summer.

whereas on-peak has the lowest. Similarly, in the winter season,
super-off-peak has the highest priority, whereasmid-peak has the
lowest.

Furthermore, in case of α3 = 1, Ω
ses
toux(x) shall be labeled as

ascending Ωses
toux(x) → ac when the following two conditions are

met.

{
tar ∈Ω

ses
toux1

Ωses
toux1
(x1) <Ω

ses
toux2
(x2) , ∀x1,x2 = {1,2,3}

(20)

If above conditions are not satisfied, then it shall be labeled as
descending Ωses

toux(x) → dc.
In timeslot allocation module, Παand labelledΩ

ses
toux(x) are

used as input values. When {Πα = 3}, then timeslots are allocated
instantaneously. And if {Πα = 2}, then timeslots are allocated in
allotted manner. Then if the conditions {Πα = 1&Ω

ses
toux(x) → dc}

meet, then timeslots are allocated in allotted manner as well.
In such a case, even though the load shifting is possible, the
charging cost would not be minimized. Finally if the conditions
{Πα = 1&Ω

ses
toux(x) → ac} meet, then the minimization of the

charging cost is possible while performing load shifting from
lower TOU priority to higher TOU priority.

Furthermore, we characterize the instantaneous timeslot
allocation as instant strategy, timeslot allocation in allotted
manner as allotted-slot strategy, and timeslot allocation with
higher TOU priority as deferred strategy.

5.3.1 Performance Evaluation and Results
We extensively evaluate the performance of the proposed smart
charging mechanism. For this purpose, a real-world dataset from
the Elaad is employed. And we have adopted SCE TOU-EV-8 for
TOU plan as mentioned in Section 3.

We have considered two scenarios–one for summer season
and another for winter season. In both scenarios, the EV charging
network includes 30 EVSEs in the workplace. The deployed
EVSEs are three-phase Level 2 chargers with maximum charging
power of 11 kW.Thewhole day is equally divided intoT = 96 time
slots, with each slot duration as Δt = 15 min.

To assess the proposed flexible charging strategy, a baseline
scheduling, which is exclusively based on first come, first served

FIGURE 9 | Outcomes for different scheduling mechanisms in winter.
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FIGURE 10 | Charging transactions for different EVs in winter.

(FCFS) scheduling, is considered such that a comparison between
two scheduling mechanisms can be conducted.

We have used MATLAB R2020a not only to pre-process
the historical data and generate regression models but also to
simulate the EV charging environment.

With historical data of the participated EVs, the system can
generate regression models, which shall be used to predict the
energy consumption and idle time ratio for the EVs.

We assume that 50 EVs randomly arriving to the workplace.
For the convenience, they are homogenous having same battery
capacity (Bi = 40kWh) and charging efficiency (η = 1). And the
minimum andmaximum SoC are set to 20 and 90%, respectively.

Moreover, the initial SoC for the EV must be at least min 
SoC.

Theoutcomes for different schedulingmechanisms in summer
season is illustrated in Figure 8. Figure 8A depicts the charging
power for baseline scheduling and flexible smart scheduling
in summer season, while Figure 8B shows charging cost for
baseline scheduling and flexible smart scheduling in summer
season.

From Figure 8A, with baseline scheduling, a major peak at
7 p.m. and twominor peaks (one at 7 a.m.; another at 4 p.m.) can
be observed. These peaks occur due to either people are arriving
to the work or leaving from the work. Furthermore, it can be

TABLE 3 | Charging transactions during different seasons.

Summer season Winter season

Transaction ID 𝛶i Γi Ψi Transaction ID 𝛶i Γi Ψi

TID-01s 3.54 1.75 0.51 TID-01w 10.03 7.15 0.29
TID-02s 2.6 2.6 0 TID-02w 5.72 3.47 0.39
TID-03s 6.09 3.25 0.47 TID-03w 2.66 2.5 0.06
TID-04s 20.24 5.53 0.73 TID-04w 1.73 1.48 0.14
TID-05s 1.53 1.53 0 TID-05w 13.87 2.41 0.83
TID-06s 22.22 3.25 0.85 TID-06w 12.58 6.07 0.52
TID-07s 14.72 2.25 0.85 TID-07w 1.31 1.29 0.02
TID-08s 13.63 9.25 0.32 TID-08w 3.96 3.21 0.19
TID-09s 13.04 3.63 0.72 TID-09w 2.73 1.5 0.45
TID-10s 4.21 4.21 0 TID-10w 3.5 3.5 0
TID-11s 14.98 2.27 0.85 TID-11w 5.15 3.25 0.37
TID-12s 8.61 7.71 0.11 TID-12w 2.74 2 0.27
TID-13s 5.37 1.78 0.67 TID-13w 14.79 3 0.80
TID-14s 11.54 2.25 0.81 TID-14w 8.48 2.31 0.73
TID-15s 4.96 2.5 0.5 TID-15w 5.09 2.21 0.57
TID-16s 6.77 6.61 0.02 TID-16w 12.49 3.48 0.72
TID-17s 17.09 1.25 0.93 TID-17w 5.46 3.21 0.41
TID-18s 3.12 3 0.04 TID-18w 13.05 11.5 0.12
TID-19s 16.1 6.5 0.6 TID-19w 12.9 7.19 0.44
TID-20s 13.72 2.75 0.8 TID-20w 15.06 3 0.80
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FIGURE 11 | TOU period distribution of charging time in summer for various scheduling mechanisms.

observed that there no charging activities occur between 1 a.m.
and 5 a.m. Using the flexible smart scheduling, these peaks are
flattened by shifting some loads to the Off-peak TOU period.
Particularly, the peak occuring at 7 p.m., which lies in the On-
peak TOU period, is reduced significantly. It can be noticed that
no load can be shifted to the time between 2 and 5 a.m. as people
are not staying at the workplace after 2 a.m.

From Figure 8B, it can be observed that the proposed flexible
smart charging scheme can achieve good output for reducing
charging costs in comparison to the baseline scheduling scheme,

since the former can significantly reduce charging cost during
mid-peak TOU periods. More specifically, the proposed flexible
smart charging scheme can reduce the total charging cost at 19 h
by about 40%.

The outcomes for different scheduling mechanisms in winter
season is illustrated in Figure 9. Figure 9A depicts the charging
power for baseline scheduling and flexible smart scheduling
in winter season, while Figure 9B shows charging cost for
baseline scheduling and flexible smart scheduling in winter
season.
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FIGURE 12 | TOU period distribution of charging time in winter for various scheduling mechanisms.

5.4 Case Studies
In this sub-section, we have conducted case studies on the
existing real-time charging transactions and analysis of the
impact of the proposed flexible smart charging scheme.

This is done based on historical charging data from Elaad
and an optimization criterion based on flexible smart charging
scheme, in which SCE TOU plan is applied to determine TOU
priority.
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In order to study an impact of a charging behavior, we have
selected some representive charging transactions for different
EVs in the winter season from the Elaad dataset. As shown in
Figure 10, each charging transaction has own charging pattern.
For instance, the start time of some charging transaction are
in the morning hour, while others in the evening. Likewise,
some have long charging period, while some have long idle
period.

For instance, EV1, which arrives at 6:30 a.m. and departs at
the noon, has connection and charged time of 5 h 30 min and
3 h 15 min, respectively. Thus, the EV1 is connected without
charging for 2 h 15 min, in turn Ψ = 0.41. Likewise, as the
arrival and departure time of EV3 are 5 p.m. and 0:15 a.m.,
respectively, it has connection and charged time of 7 h
15 min and 3 h, respectively. Thus, the EV3 is connected
without charging for 4 h 15 min, in turn Ψ = 0.59. In such
cases, load shifting is possible for minimizing charging
cost.

EV4 that arrives at 9:15 a.m. and departs at 1 p.m. has
same connection and charged time of 3 h 45 min. Similarly,
EV6 that arrives at 6:45 p.m. and departs at 22:45 p.m. has
same connection and charged time of 4 h. Since both EV4
and EV6 leave immediately after the completion of charging
activities, Ψ = 0.

EV2 has connection time and charged time of 8 h 15 min and
6 h, respectively. Thus, the EV2 is connected but not charging
for 2 h 15 min, in turn Ψ = 0.28. Similarly, EV5 has connection
time and charged time of 8 h 45 min and 3 h 15 min,
respectively. Thus, the EV5 is connected but not charging for
5 h 30 min, in turn Ψ = 0.63. In such cases, even though load
shifting is possible, it cannot yield charging cost reduction.
It can.

In general, with higher ratio of Ψ, more flexible will be EV
charging such that the load in TOU period with higher tariff can
be shifted to that with lower tariff.

We have selected some of the representative charging
transactions for different seasons from Elaad datasets.
Fundamentally, 20 charging transactions for summer season
and 20 for winter season.

Table 3depicts charging transactions during different seasons.
Each charging transaction contains Transaction ID,𝛶i, Γi, andΨi.

TOU period distribution of charging time in summer
for various scheduling mechanisms is shown in Figure 11.
Figure 11A depicts such distribution for baseline scheduling,
whereas Figure 11B depicts such distribution for flexible smart
charging scheduling.

It can be observed that with higher Ψ, charging transactions
have greater charging flexibility such that charging load can be
deferred to the time slots with higher TOU priority. For instance,
in TID-11s, for baseline scheduling, all the charging sessions lie in
the on-peak TOU period. Then, after applying the flexible smart
charging, all the charging sessions have been deferred to the off-
peak TOU period.

In case of TID-01s, about 43% of charging time slots
have been deferred to the off-peak TOU period from the
on-peak TOU period upon applying the flexible smart
charging.

If Ψ is zero, then there is no charging flexibility. In such a case,
the instant strategy is applied, for instance, TID-02s, TID-05s and
TID-10s.

TOU period distribution of charging time in winter for
various scheduling mechanisms is depicted in Figure 12. Such
distribution for baseline scheduling is depicted in Figure 12A,
whereas such distribution for flexible smart charging scheduling
is depicted in Figure 12B.

Similarly, during winter season, charging transactions having
higher Ψ have greater charging flexibility so charging load can be
deferred to the time slots with higher TOU priority. For instance,
in TID-13w, for baseline scheduling, all the charging sessions lie
in the mid-peak TOU period. Then, after applying the flexible
smart charging, all the charging sessions have been deferred to
the super-off-peak TOU period.

In case of TID-16w, 64% of charging time slots have
been deferred to the off-peak TOU period from the
mid-peak TOU period upon applying the flexible smart
charging.

In TID-05w, initially, the TOU period distribution of
charging time was 50% for mid-peak and 50% for off-
peak. Then after employing the flexible smart charging,
charging time slots have been deferred such that the TOU
period distribution of charging time is changed to 100% for
super-off-peak.

In case of TID-18w, initially, the TOU period distribution
of charging time was about 44% for mid-peak, 39% for off-
peak and 17% for super-off-peak. Upon employing the flexible
smart charging, the TOU period distribution of charging time
became about 28% for mid-peak, 54% for off-peak and 17% for
super-off-peak.

If Ψ is zero, then there is no charging flexibility. In such a case,
the instant strategy is applied, for instance, TID-10w.

Finally, the most appropriate smart charging strategy for each
cluster label is determined. Instant charging strategy is suitable
for the cluster label with Daytime with short duration (DSD)
since it has smaller value of Ψ. While slot-allotted strategy can
be applied for the cluster label with Morning hour with medium
duration (MMD) as MMDmay have only one TOU period even
though MMD has higher value of Ψ. Deferred charging strategy
with flexible load shifting is the best suited to the cluster label
with Afternoon/evening with long duration (AELD) since it has
the highest value of Ψ. It can be applied to the cluster label with
Afternoon/evening with medium duration (AEMD) as AEMD
spans between 11 a.m. and mid-night as well as moderate value
of Ψ.

6 CONCLUSION AND FUTURE WORK

This paper establishes a novel approach to address issues of user
charging behavior uncertainty for EV charging scheduling by
utilizing historical data.

Firstly, we have not only analyzed the real-time data from
the ElaadNL to obtain user charging behavior such as energy
consumption and idle time ratio but also used machine learning
algorithms (i.e., GMM) to cluster them according to the charging

Frontiers in Energy Research | www.frontiersin.org 17 April 2022 | Volume 10 | Article 773440

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Singh et al. Smart EV Charging

behavior and then labeled them. Furthermore, we have used
regression models (i.e., RF, LSBoost) to predict those user
charging behavior parameters.

Secondly, we have proposed a heuristic EV charging
scheduling scheme with an emphasis on user charging behaviors.
Such a scheduling incorporates priority determination using the
idle time ratio and TOU period as well as priority-based time slot
allocation. Minimization of charging cost is perhaps the most
perceptive objective, such that, the EV charging scheduling is
done when TOU tariff is low.

Results clearly demonstrate that the proposed flexible
smart charging scheduling outperforms the baseline
scheduling in terms of the charging power and charging
cost.

Limitations of this work are that we have not considered
bi-directional charging (i.e., no discharging) and EV battery
degradation. Our future work will focus on charging/discharging
in V2G network such that EVs can also supply excess energy
to the electric grid and impact of the EV battery degradation.
Furthermore, we will conduct detail investigations on our
flexible smart charging scheme as well as the related case
studies.
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