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In recent years, large-scale renewable energy access to substations has brought overload,
harmonic, short circuit and other problems, which has led to an increase in the failure rate
and shortening the service life of important power equipment such as transformers.
Transformer is one of the key equipment in power system, and its operation status has an
important impact on the safe and stable operation of power grid. In order to realize the real-
time state evaluation of transformer, a real-time vibration signal detection method based
on video is proposed in this paper. Firstly, YOLOv4 is used to detect the transformer
object, and then the pyramid Lucas-Kanade optical flow method and Otsu method
are used to calculate the transformer vibration vector. Experimental results show that
the transformer vibration vector can be calculated in real time and accurately by using
the proposed algorithm, so as to realize the real-time reliable analysis of the
transformer state.

Keywords: high proportion of renewable energy access, energy infrastructure, power transformer, vibration
detection, YOLOv4 model, pyramid lucas-kanade optical flow, otsu algorithm

INTRODUCTION

In response to the call of the state to vigorously develop new energy power generation, more and
more photovoltaic power stations and wind farms are connected to the power grid, which alleviates
energy shortage and environmental pollution, but also brings many threats to the power grid. In
particular, in order to save costs, some new energy power stations require direct access to the low-
voltage side of the substation and transmit electric energy to a higher voltage level through the
substation. In this way, the adverse impact of new energy on the power grid will be directly applied to
the power transformer in the substation. As the upstream key equipment of the power system, the
transformer is not only expensive, but also undertakes tasks such as voltage conversion, power
distribution and transmission, and its operational reliability affects the operational safety of the
power grid. Once the transformer fails, it may cause a large-scale blackout, which will cause huge
direct and indirect economic losses (Munir and Smit, 2011). Therefore, the research on early fault
detection and health status evaluation of power transformer is of great significance to improve the
reliability of power transformer and ensure the safe and stable operation of power grid.

With the advancement of intelligent technology (Zhao et al., 2020; Zhao et al., 2017), for
transformer maintenance, condition based maintenance is gradually adopted to replace the
traditional regular maintenance and post-accident maintenance. The condition based
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maintenance method mainly determines the maintenance
strategy based on the monitoring results of transformer
operation status, so as to reduce the cost of equipment
maintenance, reduce shutdown loss and effectively prevent the
occurrence of failures (Berler et al., 2000). Currently, transformer
condition assessment methods are mainly divided into two
categories: online monitoring and offline detection. On-line
monitoring can make the transformer need not be out of
operation, can save manpower and material resources, and has
its own obvious advantages. Commonly used online monitoring
methods of power transformers mainly include low-voltage pulse
method, frequency response analysis method, gas
chromatography analysis method of dissolved gas in
transformer oil, online monitoring method of transformer
partial discharge and vibration analysis method of power
transformer (Judd et al., 2002). A major advantage of the
vibration analysis method is that the detection system does
not have any form of electrical connection with the
transformer under test, which will not affect the normal
operation of the power grid, fully guarantee the safety of

online monitoring and overcome the method of frequency
response analysis, the method of short-circuit reactance, etc.
can only monitor the insufficiency of transformer mechanical
failure offline.

Research Status of Transformer Vibration
Analysis
The vibration analysis method uses the vibration sensor to
measure the vibration signal on the surface of the transformer
oil tank, and then extracts the time-frequency domain
characteristics contained to realize the on-line condition
monitoring of the transformer, which belongs to the external
detection and analysis method. In the mid to late 1990s, the idea
of online monitoring of transformer operating status based on the
vibration method was proposed. Although only Russia has used
this method in the field, the results have proved that the vibration
method can be used for any type of transformer, and the accuracy
rate is relatively high. Due to the lack of in-depth research on the
vibration characteristics of windings and iron cores and lack of

FIGURE 1 | YOLOv4 model structure.

FIGURE 2 | (A) I represents the intensity of a pixel, and its related parameters are spatial position (x, y) and time t, that is I(x, y, t). (B) In the next frame, the pixel
moves the distance of (dx,dy), and the interval time is dt.
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experience, there are still great limitations in monitoring winding
and iron core faults (Borucki, 2012; Cao et al., 2013).

With the advancing of time, the research on the transformer
vibration method is also intensified. Berler et al. (2000) conducted
a no-load and load control test on the transformer, and obtained
the transformer box vibration when the iron core and the winding
acted separately, and the experiment Laboratory research has
taken a big step forward. Garcia et al. (2006a) and Garcia et al.
(2006b) studied the relationship between vibration amplitude and
phase and operating voltage, load current and temperature,
established a mathematical model of fundamental frequency
amplitude and operating voltage, load current and
temperature, and obtained the fundamental frequency of
winding and core vibration. The amplitude is proportional to
the square of the load current and the operating voltage. This
conclusion has played an important guiding role in subsequent
transformer research.

Research Status of Vibration Signal
Detection
The detection of transformer vibration signal is an important
premise for analyzing and evaluating transformer operation state
and fault diagnosis. At present, vibration signal detection is
widely used in various engineering applications such as
machinery, vehicles, construction, aerospace, etc., and has
become an important research direction in the field of
engineering measurement (Wadhwa et al., 2016). The
detection methods of vibration signals can be roughly divided
into two categories: contact vibration measurement and non-
contact vibration measurement. The traditional contact vibration
measurement mainly adopts the method of installing sensors on
site, which has many defects. Since the contact sensor needs to be
arranged point by point, the measurement range is limited. In
addition, it is necessary to find a fixed reference object or
reference point when performing displacement monitoring. At
present, the commonly used non-contact vibration measurement
is mainly divided into two categories: laser vibration
measurement and visual vibration measurement methods
based on video images. The laser vibration measurement

method is mainly based on the principle of light interference,
which has the advantages of extremely high accuracy and
sensitivity, long measurement distance, and high measurement
frequency. The current prices of laser vibration measurement
related equipment are very expensive and the requirements for
the professionalism of the operators are also high, which greatly
restricts its large-scale promotion and application, and is
currently often used in the fields of aerospace and machinery
manufacturing.

As an emerging vibration measurement method, vision-based
vibration detection has received extensive attention from scholars
at home and abroad (Hati and Nelson, 2019; Feng et al., 2017;
Chen et al., 2015; Wadhwa et al., 2017; Sarrafi et al., 2018; Choi
and Han, 2018; Peng et al., 2020; Aoyama et al., 2018; Moya-
Albor et al., 2020; Zhang et al., 2019). Visual vibration detection
techniques can be divided into two categories according to
whether optical targets are needed. Digital image correlation
(DIC), marker tracking, and point tracking are typical
technologies that need to manually set markers on test objects
as optical targets for computer vision processing. Different from
traditional measurement techniques based on contact sensor,
DIC has been successfully applied to two-dimensional and
three-dimensional vibration measurement, so as to provide
full-field synchronous vibration information (Yu and Pan,
2017; Helfrick et al., 2011). Mark tracking uses computer
vision methods to determine the coordinates of marks printed,
projected or mounted on test objects, and also provides good
results for vibration measurement (Feng et al., 2015; Long and
Pan, 2016).

The target-less method unifies the internal features of test
objects for computer vision processing without manually setting
optical objects on test objects. Therefore, the target-less method is
suitable for objects that are difficult to access or on which optical
targets cannot be installed or printed (Long and Pan, 2016).
Poudel et al. (2005) extracted time-history signals of displacement
by using subpixel edge detection method to analyze the dynamic
characteristics of test objects. However, the process of sub-pixel
edge detection is complex, and the extraction of vibration time
history needs a lot of pre-processing. Son et al. (2015) used non-
contact target-free visual method to measure the vibration
frequency and other characteristics of cylindrical objects in
dangerous areas that are inaccessible to humans. However, this
method is susceptible to the interference of brightness change.
Huang et al. (2018) proposed a vibration measurement method
named VVM based on computer vision, which is used to measure
dynamic characteristics such as wind-induced dynamic
displacement and acceleration responses. However, VVM uses
template matching to obtain the motion information of all pixels
in the whole ROI, which increases the running time of the
algorithm. Yang et al. (2020) proposed a video-output-only
method to extract the full-field motion of a structure and
separate or reconstruct micro deformation mode and large
object motion. However, this method is also difficult to adapt
to harsh environment (different light intensity) and camera
measurement angle. Optical flow method has been the focus
of computer vision research since its beginning. This technology
determines the instantaneous velocity of specific pixels in an

FIGURE 3 | Lucas-Kanade method: estimate the optical flow of black
pixels.
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image sequence and is widely used in motion tracking and
estimation (Horn and Schunck, 1981). However, the accuracy
assessment work shows that the relatively new optical flow
technology still faces a major obstacle in practical vibration
measurement applications, that is, the optimal selection of
active feature points (Diamond et al., 2017). Overall, video
image monitoring is a non-contact monitoring method that
can not only perform static measurements such as
displacement and strain, but also suitable for dynamic
characteristics measurement. It has the advantages of simple
operation, non-contact, non-destructive, no additional quality,
and can realize long-distance, large-scale multi-point monitoring,
etc., but there are also shortcomings such as the need to set
objects, the optimal selection of active feature points, and high
requirements for ambient light and background.

Main Contributions
To solve the above problems, this paper proposes a novel vision-
based vibration detection method to realize the real-time state
evaluation of transformer in the case of high proportion
renewable energy access. Specifically, our main contributions
are summarized as follows.

1) Based on the video signal of the transformer, this paper first
uses transfer learning and YOLOv4 algorithm to detect the
transformer as the region of interest, so as to avoid setting the
target manually.

2) In this paper, Shi-Tomasi method is used to extract the feature
points in the region of interest to calculate the transformer
vibration vector, so as to avoid the interference of ambient
light and background factors.

3) In this paper, Otsu algorithm is used to select the optimal
active feature points, so as to improve the calculation accuracy
of transformer vibration vector. Firstly, the vibration vectors
of all feature points in the region of interest are calculated by

the pyramid Lucas-Kanade (LK) sparse optical flow method.
Then Otsu method is used to find the threshold of vibration
vectors to filter out the vibration vector with small modulus.
Finally, the remaining vibration vectors are summed and
averaged, and the obtained mean is the transformer
vibration vector.

The remainder of the paper is organized as follows.
Background Section reviews the YOLOv4 model and the
pyramid LK optical flow method. In Proposed Method Section,
the proposed vision-based vibration detection method is
introduced in detail. The performance of the proposed
vibration detection method is examined in Experimental
Results and Analysis Section and the conclusion is given in
Conclusion Section.

BACKGROUND

YOLOv4 Model
YOLOv4 is an efficient and powerful object detection algorithm
which combines a large number of existing technologies and
makes innovation to achieve a perfect balance between detection
speed and accuracy. The YOLOv4 model includes four parts:
input, the feature extraction network BackBone, the feature
enhancement network Neck and Prediction network, and its
structure is shown in Figure 1.

The BackBone of YOLOv4 is CSPDarknet53, which combines
Darknet53 with CSPNet (Cross Stage Partial Network). CSPNet
integrates gradient changes into feature maps in order to solve the
problem of gradient information repetition and reduce the
number of model parameters. Neck collects feature maps from
the BackBone and enhance their expression ability. The Neck of
YOLOv4 uses SPP (Spatial Pyramid Pooling) structure to increase
the receptive field. PAN (Path Aggregation Network) is used for

FIGURE 4 | Lucas Kanade method: estimate the optical flow of black pixels. The pyramid method starts from the highest level of the pyramid (with the least details)
to the lowest level of the pyramid (with rich details).
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parameter aggregation instead of FPN (Feature Pyramid
Network) to adapt to different levels of object detection.
Finally, three feature layers are extracted and predicted by

Prediction network. In addition, Mosaic data augmentation,
Label Smoothing, DropBlock regularization, CIoU loss, cosine
annealing learning rate and so on are used to improve the model
performance.

Pyramid LK Optical Flow
Basic Assumptions
The optical flow method studies the displacement of an object in
continuous images, for which a link between two frames is
required. The implementation of the optical flow method
requires two basic assumptions as prerequisites. First, the
image intensity does not change. In this paper, the image is
converted to grayscale processing, so it can be understood as that
the grayscale value of a pixel at a point on the object does not
change when it is displaced on the image. Second, the object
motion is small. That is, the object position does not change
dramatically on the image between two adjacent frames. Based on
these two assumptions the same object between two frames can be
linked.

Constraint Equation
The basic problems studied by optical flow method can be
represented by Figure 2 as follows.

Based on the first assumption that the intensity of the pixel
remains unchanged after the displacement occurs, the following
equation can be established.

I(x, y, t) � I(x + dx, y + dy, t + dt) (1)
where I(x, y, t) represents the intensity of a pixel, (x, y)
represents spatial position, t represents time, (dx, dy)
represents the moving distance of the pixel, dt represents the
interval time. To remove the common terms, a Taylor expansion
of Eq. 1 is performed, then add Eq. 1 to the Taylor expansion
equation as follows:

I(x + dx, y + dy, t + dt) � I(x, y, t) + zI

zx
dx + zI

zy
dy + zI

zt
dt + . . .

0
zI

zx
dx + zI

zy
dy + zI

zt
dt � 0

(2)

Dividing Eq. 2 by dt gives:

zI

zx
u + zI

zy
v + zI

zt
� 0 (3)

where u � dx
dt and v � dy

dt are two unknown variables to be solved.
zI
zx,

zI
zy, and

zI
zt are the partial derivatives of the gray values of the

pixels in the image along x and y directions and time t,
respectively, which can be calculated according to the actual
image data. Since it is not feasible to solve two unknown
variables through an optical flow Eq. 3, it is necessary to
introduce some methods such as the Lucas-Kanade method to
solve this problem.

LK Optical Flow Method
The mainstream optical flow algorithms can be broadly classified
into dense optical flow method and sparse optical flow method.
The dense optical flow method will match each point pixel on the

FIGURE 5 | Flow chart of the proposed method.
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image and calculate its offset, which has a higher accuracy for
matching moving objects, but is more computationally intensive.
The Lucas-Kanade (LK) optical flow method used in this paper is
a typical algorithm in the sparse optical flow method. Compared
with the dense optical flow method, this algorithm does not
compute all pixel points point by point, but tracks a relatively
small number of feature points, which are usually given by some
specific corner detection algorithms (e.g., Shi-Tomasi algorithm),
and uses them to represent the overall object motion.

The LK optical flow method adds the assumption of “spatial
consistency” to the two basic assumptions of the original optical
flowmethod, i.e., neighboring pixels in a certain area have similar
variations. Based on this assumption, a small window of N × N
can be drawn around the feature points and it is determined that
all pixel points within the small window have the same
movement, as shown in Figure 3.

The above method can be described by the following
equations:

Ix(q1)Vx + Iy(q1)Vy � −It(q1)
Ix(q2)Vx + Iy(q2)Vy � −It(q2)

..

.

Ix(qn)Vx + Iy(qn)Vy � −It(qn)
(4)

where q1, q2, . . ., qn are the pixels inside the small window. Ix(qi),
Iy(qi), and It(qi) represent the partial derivatives of the gray
value of pixel qi in image I along x and y directions and time t,
respectively. Vx � u � dx

dt denotes the velocity of movement in x

FIGURE 6 | (A,B) Two transformer images in transformer detection data set.

FIGURE 7 | AP curve of transformer test set.

FIGURE 8 | Single image detection result of YOLOv4 model.
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direction, Vy � v � dy
dt denotes the velocity of movement in y

direction.
The system of Eq. 4 can be expressed in the form of the

following matrices:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ix(q1) Ix(q1)
Ix(q2) Ix(q2)

..

. ..
.

Ix(qn) Ix(qn)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[Vx

Vy
] �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−It(q1)
−It(q2)

..

.

−It(qn)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

For the basic optical flow method, two unknown variables
cannot be solved because there is only one optical flow
equation. In contrast, there are n equations (n> 2) in the
LK optical flow method, which is overdetermined, and this
system of equations can be solved by ordinary least squares as
follows:

[Vx

Vy
] � ⎡⎣ ∑

i

Ix(qi)2 ∑
i

Ix(qi)Iy(qi)
∑
i

Iy(qi)Ix(qi) ∑
i

Iy(qi)2 ⎤⎦−1⎡⎣ −∑i Ix(qi)It(qi)
−∑

i

Iy(qi)It(qi) ⎤⎦
(6)

Pyramid LK Optical Flow Method
The LK optical flow method is based on the assumption that the
magnitude of object motion is small, so only the first-order term
is retained when the Taylor expansion is performed during the
calculation of the constraint equations above, and large errors
may occur when the magnitude of object motion is large. To solve
this problem, the LK optical flow method can be improved by
using the pyramid method.

As demonstrated in Figure 4, by downsampling the image, the
pyramid LK optical flow method can reduce the larger
displacements in the higher-level pyramid image to obtain a
more accurate optical flow vector at that scale, and then scale up
the higher-level vector as an initial guide for the next layer when
solving layer by layer from the top down. At this time, the object
position guided by the optical flow vector from the upper level
zoomed in and the actual object position of the current layer will
have errors, but the error is usually consistent with the scale of
small movements, so it can be calculated on this basis to obtain
the optical flow vector of the current layer, and repeated
downward in turn to the original map of the bottom layer to
obtain a more accurate optical flow vector under large
movements.

PROPOSED METHOD

Transformer Detection
Firstly, the transformer vibration video is read, and the specific
position of the transformer is obtained in the first frame image,
so as to detect the vibration in the region of interest. This paper
combines transfer learning and YOLOv4 object detection model
for transformer detection. Due to the limited number of
transformer images, if YOLOv4 model is trained directly, the
performance of the model on the test set is poor due to over
fitting. In this paper, we use the idea of transfer learning for
reference, use large data sets to pre-train the model, transfer the
weights of the trained model, and establish YOLOv4
transformer learning model. The model is used to detect the
transformer in the first image and get the transformer
location area.

FIGURE 9 | The feature points in the whole image area are represented
by green dots. The peripheral feature points of the transformer will interfere
with the calculation of the transformer vibration vector.

FIGURE 10 | The feature points in the region of interest are represented
by green dots, which can more accurately calculate the transformer vibration
vector compared with the feature points in Figure 9.
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Feature Points Detection
In this paper, the Shi-Tomasi method is used to calculate the
feature points. Because the characteristic points of the edge
and peripheral area of the transformer have nothing to do
with the vibration of the transformer, the introduction of
these characteristic points is easy to cause interference, so it is
necessary to set ROI (region of interest) as the feature point
detection range. The first frame is converted to gray image,
and the transformer position and its center point are obtained
according to the prediction results of YOLOv4 model. In this
paper, a region in the center of the transformer is set as the
feature point detection range according to the proportion, and
the transformer feature points in the first frame are calculated
as the initial feature points. In addition, the number and
quality of the generated feature points can be controlled by

setting those maximum number, those quality level, the
minimum distance between adjacent feature points, the size
of those operation area and other parameters.

Transformer Vibration Detection
Using pyramid LK sparse optical flow method, the displacement
vector of the feature points between the first frame and the next
frame is calculated. Due to the inevitable error in the calculation
process, it is not easy to take the displacement vector of one of the
feature points to represent the overall displacement vector of the
transformer. Usually, several feature points are calculated on a
certain object, and the transformer can be regarded as a rigid
object, that is, each feature point on the transformer will have an
approximate displacement.

In this paper, firstly, the displacement vectors of all the
feature points in the specific region of the transformer are
calculated by the LK sparse optical flow method. Then the
modulus of all vectors is calculated, and Otsu method is used
to get the threshold value of vector modulus to remove the
displacement vector with smaller modulus value. Finally, sum
and average the remaining displacement vectors, and the
average value is the displacement vector of the transformer
in the image. By combining the transformer displacement and
time interval between every two frames, the vibration velocity
of the transformer can be calculated. Furthermore, the
vibration data of transformer in three-dimensional space
can be calculated by binocular vision. Figure 5 shows the
flow chart of the proposed method.

EXPERIMENTAL RESULTS AND ANALYSIS

Transformer Detection Experiments
Experimental Environment
The experimental environment for building YOLOv4 object
detection model is windows 10 64 bit operating system, the
CPU is 32-core Intel Xeon e5-2695 V3, the memory capacity
is 32GB, the GPU is NVIDIA grid p40-24q, the NVIDIA driver
version is 441.66, and the video memory size is 24 g. The deep
learning framework used is tensorflow GPU 2.2, CUDA version is
10.1, cudnn version is 7.6.5.32.

TABLE 1 | Comparison between the transformer vibration vectors calculated by the proposed algorithm and the vibration vectors which are assigned artificially.

Transformer vibration vectors which
are assigned artificially

Transformer vibration vectors
calculated by the proposed algorithm

Transformer vibration vectors
calculated by method without object

detection

x direction
(pixel)

y direction
(pixel)

x direction
(pixel)

y direction
(pixel)

x direction
(pixel)

y direction
(pixel)

1 0 1.0016 −0.0020 0.0580 0.0017
1 0 1.0063 0.0231 0.0574 0.0003
−1 0 −1.0207 −0.0085 −0.0578 −0.0033
−1 0 −1.0002 −0.0086 −0.0582 0.0022
0 1 0.0131 1.0003 0.0046 0.0746
0 1 −0.0023 0.9948 0.0059 0.0878
10 10 10.0089 10.0051 1.6643 1.4486
10 10 9.9913 9.9812 2.3282 1.0817

FIGURE 11 | Generator synthesis video.
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Data Set Construction
Transformer images are screened and sorted, and labels are made
to construct transformer detection data set. The data set contains
489 transformer images of different types, different angles and
different environments, as shown in Figure 6. The data set is
randomly divided into training, validation and test set, with 396
images in the training set, 44 pictures in the validation set and 49
pictures in the test set. In the process of model training, random
data enhancement is carried out on the training set data,
including scaling, length-width distortion, flipping, gamut
distortion and other operations.

YOLOv4 Model Performance and Transformer
Detection Results
The concept of transfer learning is introduced into themodel training
process and YOLOv4 pre-trained model is used to help training. The
model is iterated for 100 times, which is divided into freeze training
and thaw training two stages. In the first 50 iterations, the weights of
the first 249 layers are frozen, the batch size is set to 2, and the initial
learning rate is set to 0.001. If the validation loss dose not decrease for
three epochs, the learning rate would be automatically reduced by
half. If the validation loss dose not decrease for 10 epochs, the training
process would be stopped in advance. In the second 50 iterations, the
weights of the first 249 layers are thawed and the batch size is set to 2.
The initial learning rate is 0.0001, and the methods of learning rate
decline and early stop are the same as those of the first stage. The AP
curve of transformer test set is shown in Figure 7 as follows.

The AP of the transformer is 99.77%, indicating that YOLOv4
model can accurately detect the transformer. The detection result
of a single transformer image is shown in Figure 8, where the area
in the red box is the detected transformer area of interest.

Transformer Vibration Detection
Experiments
In this paper, the synthetic transformer vibration video is used as
the test data, and the transformer image is embedded into the
background image as the foreground. The displacement vector of
the transformer in each frame is manually set, which is compared
with the vibration vector detection results of the proposed
algorithm to evaluate the algorithm performance. The running
environment of vibration vector detection algorithm is windows
10 64 bit operating system, the CPU is g4600, the GPU is gtx1050,
the memory size is 8G, and the image size of the input video is
666 × 666.

1) Vibration Vector Measurement Results and Analysis
In order to reduce interference, this paper does not calculate the
feature points in the whole image area (as shown in Figure 9), but
detects the transformer position through the YOLOv4model, and
selects a region in the center of the transformer as the feature
point region of interest (as shown in Figure 10). In comparison,
the feature points calculated in this region are more
representative of the transformer itself, and it is more accurate
to use these feature points to calculate the vibration vector of the
transformer. Next, the pyramid LK sparse optical flow method is
used to calculate the vibration displacement vector of these
feature points between two adjacent frames. Then, we use
Otsu algorithm to obtain a threshold of the modulus of these
vibration vectors, and remove the vibration vectors whose
modulus are less than the threshold to reduce the
computational interference. Finally, the average value of all
remaining vibration vectors is calculated as the vibration
vector of the transformer.

TABLE 3 | Calculation error of vibration vector under different videos.

Vibrating objects NRMSE (%) RMSE MAE MAPE (%) PCV

Transformer (x-direction) 0.229 0.0045 0.0040 0.0206 0.0007
Generator (x-direction) 0.078 0.0015 0.0043 0.0348 0.0003
Transformer (y-direction) 0.065 0.0013 0.0010 0.1063 0.0006
Generator (y-direction) 0.087 0.0017 0.0014 0.0004 0.00008

TABLE 2 | Comparison between the generator vibration vectors calculated by the proposed algorithm and the vibration vectors which are assigned artificially.

Generator vibration vectors which are
assigned artificially

Generator vibration vectors calculated
by the proposed algorithm

Generator vibration vectors calculated
by method without object detection

x direction
(pixel)

y direction
(pixel)

x direction
(pixel)

y direction
(pixel)

x direction
(pixel)

y direction
(pixel)

1 −1 0.9956 −1.0006 0.3380 −0.3294
1 −1 1.0002 −1.0025 0.3381 −0.3318
1 −1 1.0047 −1.0009 0.3457 −0.3291
1 −1 0.9934 −1.0011 0.3460 −0.3307
−1 1 −0.9977 1.0013 −0.3590 0.3414
−1 1 −1.0059 0.9998 −0.3541 0.3371
−1 1 −0.9942 0.9989 −0.3470 0.3375
−1 1 −1.0000 1.0014 −0.3454 0.3354
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FIGURE 13 | Three real videos. (A) Tuning Fork (B) Low B String (C) Chime.

FIGURE 12 | The vibration frequencies of four feature points, and comparison of four feature points spectra calculated by the artificially set vibration vectors and the
proposed method. (A) frequency and spectrum of transformer vibration. (B) frequency and spectrum of generator vibration.
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FIGURE 14 | (A–C) are frequencies and spectra calculated by taking the motion coordinate sequences of four feature points in Tuning Fork, Low B String, and
Chime videos, respectively. (A) frequency and spectrum of tuning fork vibration. (B) frequency and spectrum of low B string vibration. (C) frequency and spectrum of
chime vibration.
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The video synthesized in this paper restores the vibration
pattern of the transformer in reality as much as possible, and the
transformer image is manipulated by swinging back and forth,
and also tested under different motion amplitudes, and some of
the test data are recorded in Table 1.

It can be seen from the data in Table 1 that the error
between the transformer displacement vector calculated by
the proposed method and the artificially set data is small, and
the accuracy is high, with significant advantages over methods
without object detection. No matter in the state of low
displacement or high displacement, the accurate results are
obtained. In the real environment, the vibration data of
transformer can also be obtained according to the proposed
method, so as to analyze the vibration of transformer reliably.
Except for the first frame, the processing time of single frame
is about 11 m, which fully ensures the real-time performance
of the algorithm.

To ensure the practicality of the method in this paper,
experiments are conducted on other synthetic videos and the
error rate is calculated to evaluate the performance of the
algorithm in different scenarios.

The vibration vector is measured from the generator synthesis
video shows in Figure 11, and the comparison of the calculated
results with the set amount is presented in the following Table 2.
It can be seen that the proposed method still maintains excellent
performance on different synthesis videos.

Normalized root-mean-square error (NRMSE), root mean square
error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), percentage change in variance (PCV)
were introduced to calculate the error rate (Zhang et al., 2016;
Bokde et al., 2020). The error metrics are defined as follows:

NRMSE �

1
n∑n

i�1(ai − bi)2
√

bmax − bmin
× 100% (7)

RMSE �

1
n
∑n

i�1(ai − bi)2
√

(8)

MAE � 1
n
∑n

i�1

∣∣∣∣∣∣∣ai − bi

∣∣∣∣∣∣∣ (9)

MAPE � 1
n
∑n

i�1
|ai − bi|

bi
× 100% (10)

PCV �
∣∣∣∣∣1n∑n

i�1(bi − �b)2 − 1
n∑n

i�1(ai − �a)2
∣∣∣∣∣

1
n∑n

i�1(ai − �a)2 (11)

where ai and bi are the observed and forecasted data at time t,
respectively. n is the number of data for forecast evaluation.

The vibration vectors of individual feature points in the two
synthesized videos are calculated separately for each frame, and
the calculation results are evaluated in comparison with the set
standard value calculation errors using Eqs 7–11, and the results
are shown inTable 3. It can be seen that the proposedmethod can
maintain its accuracy on different synthesized videos and has
some practicality.

2) Vibration Frequency Test Results and Analysis
The vibration vector calculated by the method in this paper is
used to predict the pixel coordinates of the feature points in each
frame, and the spectrogram of the feature point motion can be
obtained by collecting these coordinates into a series and then
performing FFT calculation, and the accuracy performance of the
method can be analyzed according to the spectrogram. As shown
in Figure 12, the blue curve is the theoretical spectrum calculated
based on the predefined values of the synthesized video, and the
red curve is the spectrum calculated by the method of this paper.
It can be seen that the proposed method maintains a good
stability and accuracy.

The following real videos as shown in Figure 13 are
introduced to evaluate the methodology of this paper.

As can be seen in Figure 14, the motion spectrum of the
four feature points in the same video is more consistent, which
proves the anti-interference property of the method in
this paper.

The object vibration frequencies are obtained based on themotion
spectra of the feature points calculated under the synthetic video and
various real videos, and compared with the real frequency calculation
errors using Eqs 9–11 to evaluate the algorithm performance. As can
be seen from Table 4, the error of the calculation results of the
vibration frequencies of objects in different videos by the method in
this paper is very small, all within an acceptable range, which ensures
its practicality.

CONCLUSION

This paper presents a real-time transformer vibration signal detection
method based on video. Firstly, the precise positioning of power
transformer is realized by YOLOv4 model. Secondly, the
displacement vector of feature points is calculated by pyramid LK
optical flow method within the range of interested transformer. Then,
the interference term of displacement vector is filtered by Otsu
algorithm. Finally, the vibration vector of transformer is calculated
by vector average. Experimental results show that the proposed
algorithm can accurately calculate the vibration vector and
frequency, which provides an important basis for the real-time state
evaluation of the power equipment.
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