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As a basic industry for national economic development, the power industry is closely
related to the overall economic and environmental development of China. At
present, China is still dominated by thermal power generation. In order to reduce
carbon emissions, promote the realization of the “double carbon” goal, and improve
the level of clean energy utilization and the operating efficiency of the power system,
a wind-light-water storage complementary power generation system is built, and a
mathematical model of multi energy complementation is established. The minimum
economic cost and the minimum battery capacity are proposed as the objective
functions of system capacity configuration. Then a multi-objective evolutionary
algorithm based on Pareto optimal space of the NDWA-GA and the PCA is
proposed for optimal capacity allocation of multi energy complementary systems
in this paper. Compared with the traditional multi-objective optimization algorithm,
the correctness and effectiveness of the proposed method are verified. In addition,
according to the actual research object, the optimal capacity configuration of the
multi energy complementary system is given, which can guide the production and
has an important promotion significance for energy saving and emission reduction.

KEYWORDS

multi energy complementary model, multi-objective evolutionary algorithm, capacity
configuration, conserve energy, reduce emissions, production guidance

1 Introduction

At present, because of the energy shortage, serious environmental pollution increasingly
and climate change in the world, the issue of energy development has become a hot topic of
interest. Therefore, improving the rational utilization of energy can provide support for the
sustainable development of social economy (Li et al., 2017). The electric power industry is one of
the basic industries supporting the national production, and its power generation process has
also brought serious problems such as energy consumption and excessive pollutant emissions.
Therefore, improving the energy utilization efficiency and power generation efficiency on the
power generation side, while minimizing pollutant emissions, is the key work on the power
generation side.

At present, thermal power generation accounts for the largest proportion of installed
capacity in Chinese power industry and its power mainly comes from burning coal, which
results in the emission of pollutants and low efficiency. Therefore, compared with energy
conservation, the thermal power industry should first consider the carbon emission reduction
goal (Wang et al., 2013). In the past few years, the proportion of coal consumption has
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decreased by 8.4%, and the proportion of non-fossil energy
consumption has increased to 14.3%, of which the proportion of
electricity in terminal energy consumption has increased to 25.5%. In
order to achieve the “dual carbon” goal, a clean, low-carbon, safe and
efficient energy system should be built to improve the utilization level
of clean energy and the operating efficiency of the power system, and
better play the role of multi energy complementation in ensuring
energy security. In the 13th Five-Year Plan for Energy Development
(National Development and Reform Commission and National
Energy Board, 2016), it was pointed out clearly that centering on
the “low-carbon” energy system, industrial reform was promoted and
comprehensive energy utilization was promoted through continuous
improvement of energy utilization efficiency. The state will accelerate
the development of non-fossil energy, vigorously increase the scale of
wind power and photovoltaic power generation, build a number of
clean energy bases with multiple and complementary energy sources,
and raise the share of non-fossil energy in total energy consumption to
about 20 percent (State Council of the People’s Republic of China,
2021). The National Development and Reform Commission and the
National Energy Administration have also issued relevant policy
document (National Development and Reform Commission and
National Energy Board, 2021) clearly proposing “promoting multi
energy complementation and improving the consumption level of
renewable energy".

In order to reduce carbon emissions and improve the energy
pattern dominated by thermal power plants in China, and also
improve the application rate of clean energy represented by wind,
light and hydropower, a wind-light-water storage complementary
power generation system by clean energy is constructed, to
establish a mathematical model of multi energy complementation,
which can propose the minimum economic cost and the minimum
battery capacity as the objective function of system capacity
configuration. A multi-objective evolutionary algorithm based on
Pareto optimal space of the NDWA-GA and the PCA is proposed
for optimal capacity allocation of multi energy complementary
systems in this paper. Compared with the traditional multi-
objective algorithm, the results show that the proposed algorithm
has better convergence and distribution. In addition, compared with
the light-water storage model and the wind-water storage model, it is
proved that the wind-light-water storage model proposed in this paper
has the lowest economic cost under the premise of accurate prediction
of hydropower station output. The capacity configuration results show
that in February to March each year, the wind power generation can
meet the load demand, light and water will be stored in the form of
energy storage battery. When the system output cannot meet the load,
the energy storage unit is used to supplement.

The rest of the paper is organized as follows: The second section
introduces the research status of multi energy complementary system,
capacity allocation of multi energy complementary generation system
and multi-objective evolutionary algorithm. The third section
introduces the topology of the wind-light-water storage multi-
energy complementary system, and analyzes the wind-light-water
complementary situation. The mathematical model of the multi
energy complementary system is given in this section. In the fourth
section, a multi-objective evolutionary algorithm based on the Pareto
optimal space of the NDWA-GA and the PCA is proposed to carry out
the optimal capacity allocation for the multi energy complementary
system. In order to verify the feasibility of the wind-light-water storage
model in practical application, this section constructs the light-water

storage model and the wind-water storage model, and compares the
economy of their capacity configuration and the capacity of the
battery. According to the actual case, the optimal capacity
allocation for the multi energy complementary system in this case
is given. The fifth section is the conclusion.

2 Literature review

Multi-energy complementarity is generally based on the
characteristics of a variety of energy sources, it is a way to
integrate them and use them effectively. The random and
intermittent nature of wind, light and water resources as well as
their complementary characteristics in space and timemake it possible
to establish a wind-light-water multi-energy complementary power
generation system. Heide et al. believed that renewable energy
generation across Europe, it shows that strong seasonality and will
dominate in the future (Heide et al., 2010). Combining with the
existing characteristics of various energy sources in northwest China,
Zhang analyzed the necessity, feasibility and rationality of multi-
energy complementary development (Zhang, 2012). At present, the
more mature development are the photovoltaic and wind power
complementary system. The reference (Deetjen et al., 2018)
developed a model for calculating optimal transmission, wind and
photovoltaic capacity for a region in Germany. However, photovoltaic
and wind power are complementary, and the output fluctuation is still
large, so it is necessary to configure a certain energy storage system on
this basis. The research object of the reference (Parastegari et al., 2015)
was the optimal scheduling of the complementary optical storage
energy. The optimal economic scheduling mathematical model was
established by taking the optimal economic efficiency of the system as
the objective function and integrating various power conditions and
balance states, and the particle swarm optimization algorithm was
applied to solve the problem, the reference (Yahyaoui et al., 2017)
designed an independent photovoltaic energy storage system and
successfully provided electricity for an irrigation system. A multi-
objective optimization model of wind energy storage was proposed in
the reference (Xu et al., 2018), which can be applied in wind farms to
adjust output fluctuations and reduce wind abandonment
phenomenon.

The cost of energy storage system is relatively high, and it is
difficult to apply in large-scale production. Hydropower, as the leader
of clean energy, has large storage capacity and strong regulation
capacity. It is the current development trend to use it in the multi-
energy complementary system. Because of the economic
underdevelopment in Ethiopia, the total power supply is
insufficient, the reference (Bekele and Tadesse, 2012) studied a
small wind-light-water system to make up for the shortage of
power supply in rural areas. Spain’s Canary island climate is
conducive to the development and utilization of wind and water
energy, so a new wind-hydro system was proposed in the reference
(Portero et al., 2015), and the results showed that its performance was
significantly better than that of independent wind power systems. The
research object of the reference (Liu et al., 2017) was the optimal
scheduling of the three complementary energy sources of water, light
and wind, on this basis, the system optimizationmodel was established
and the solution method was determined. The reference
(Mahmoudimehr and Shabani, 2018) designed a PV/hydro hybrid
power station for the energy system in the northern and southern
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coastal areas of Iran and configured its capacity. Small hydropower
stations in Guizhou province is taken as the research object in the
reference (Zhang et al., 2018), and wind and photovoltaic power
generation systems are combined to build a wind-light-water storage
complementary power generation system. The configuration scheme
of the system is discussed in remote mountainous rural areas with
electricity (off-grid mode) and with grid-connected conditions (grid-
connected mode) based on HOMER.

The economy of the power generation system is the basis for
allocating the capacity of each power source, which is of great practical
significance for ensuring the economy and reliability of the
complementary power generation system. Therefore, domestic and
foreign scholars have established capacity allocation models with the
minimum total investment cost or the maximum investment income
as the objective function (Chang, 2020). Based on the minimum
system cost and considered the seasonal load variation, a capacity
optimization configuration model of the wind-solar storage system
was established (Sanajaoba and Fernandez, 2016). The results showed
that wind-solar complementarity can reduce the energy storage
requirements of the system. In reference (Dou et al., 2016), the
evaluation indexes of distributed capacitor configuration scheme
and energy storage system configuration scheme is discussed, that
is, the former is evaluated from economy, reliability and
environmental protection, and the latter is evaluated from
functionality and economy. Taking Longyangxia Hydropower
Station in China as an example, a capacity configuration model of
water-light complementary system was proposed to maximize the net
income in the whole life cycle, considering the short and long term
decisions of hydropower operation (Ming et al., 2017). In reference
(Abdin and Merida, 2019), a wind-light multi-energy complementary
model was constructed based on HOMER Pro solving for the lowest
economic cost of energy and capacity configuration for each in five
different locations around the world. The results showed that
hydrogen energy is more economically advantageous than battery
storage in off-grid energy systems. A wind/light/storage grid
connected microgrid was built (Li et al., 2020). Based on
considering the life-cycle cost economy, it compared four energy
storage modes: single battery energy storage, hydrogen storage
hybrid battery energy storage, single lithium battery energy storage,
and single liquid flow battery energy storage. The results showed that
the hybrid energy storage system composed of hydrogen storage and
battery had more significant advantages in energy utilization efficiency
and the economy of the microgrid. In reference (Alghussain et al.,
2020), scholars set the lowest energy cost and maximized the
proportion of renewable energy use as the objective function,
comparing the capacity configuration of the power grid system
under four different energy storage scenarios, which were without
energy storage modules, pumped storage, hydrogen fuel cells, and
pumped storage hybrid hydrogen fuel cells. The results showed that
the proportion of supply and demand increased from 46.5% to 89.4%,
and the proportion of renewable energy increased from 62.6% to
91.8% when the hybrid energy storage system with pumped storage
and hydrogen fuel cell was used.

The hybrid energy storage of batteries and super capacitors were
applied in a grid-connected wind-light complementary power
generation system with a two-step capacity configuration (Hu
et al., 2016), and its capacity configuration is divided into two
steps. First, the HOMER software is used to obtain preliminary
results with the minimum system cost as the optimization objective

function, and then genetic algorithm is used to further optimize the
hybrid energy storage system. In reference (Sheng and Zhang, 2017),
an improved binary bat algorithm with the continuous optimization
algorithm was directly applied in the local optimization problem
generated by the wind photovoltaic diesel battery microgrid
capacity configuration optimization model. The comparison with
genetic algorithm and particle swarm optimization showed that the
proposed algorithm achieved better results in solving effect and
convergence speed. In the reference (Yu et al., 2019), a grid-
connected wind-light complementary system was constructed using
pumped storage power plants as energy storage devices, and a
variable-step cyclic discrete algorithm was proposed in which the
number of wind turbines and photovoltaic arrays were discrete
integers and the pumped storage capacity was considered as a
discrete of a certain step size. In reference (Liu et al., 2020),
photovoltaic energy storage diesel micro grid was taken as the
research object in southwest of China, the state of charge of the
energy storage system and the reliability of the self-power supply of the
system were taken as constraints, and the particle swarm optimization
(PSO) algorithm was used to solve capacity allocation. The
relationship between the theoretical output of wind farms and
retired energy storage batteries was comprehensively considered
(Wang et al., 2020), and the charging and discharging threshold
range of ideal retired batteries with a piecewise probability
distribution function were set, which reduced the recovery cost of
retired batteries. At the same time, the cycle life consumed by the
hierarchical control strategy was reduced by 27.7% compared with the
overall energy storage control strategy. The actual village coal to
electricity project in Qinhuangdao area was taken as the research
object (Zhao et al., 2021), considering the complementary system
composed of thermal storage heating and photovoltaic, proposed a
joint configuration method based on PSO algorithm. The results
showed that the investment and operation costs of photovoltaic
and thermal storage heating equipment were the least. In reference
(Chen et al., 2021), researchers introduced the incentive demand side
response in the optimal configuration of wind light hydrogen multi
energy complementary microgrid, optimized the load curve using
mixed integer programming, and solved the optimal configuration
based on the PSO algorithm. The configuration results showed that
with the reduction of photovoltaic and wind turbine construction
costs, the equivalent annual cost of the system could be significantly
reduced. In addition, the planning method, enumeration method and
hybrid method can also be used to solve the optimal capacity of each
source in the complementary generation system.

There are multiple objective functions in the mathematical model
of capacity allocation of multi energy complementary systems, which
is a typical multi-objective optimization problem that can be solved
based on multi-objective evolutionary algorithms. In recent years,
multi-objective evolutionary algorithms have been developed rapidly.
The multi-objective evolutionary algorithm based on Pareto
dominance uses the non-dominated sorting and diversity
maintenance mechanism to guide the population to the Pareto
front. Typical algorithms include non-dominated sorting genetic
algorithm II, Pareto envelop-based selection algorithm-II (PESA-II)
(Corne et al., 2001) and Strength Pareto evolutionary algorithm II
(SPEAII). Although the above algorithms can solve many multi-
objective optimization problems, when the objective function
increases or Pareto front characteristics are complex, the solving
efficiency of multi-objective evolutionary algorithm based on
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dominance relationship becomes low. With the increase of objective
function, the selection pressure of individuals on Pareto front drops
sharply. When the objective function is more than a certain threshold,
almost all individuals of the same generation are non-dominated,
which makes it difficult for evolutionary algorithms based on Pareto
dominance to distinguish these individuals. In order to solve the
multi-objective optimization problem of Pareto frontier with complex
characteristics, many improved algorithms have been proposed
including fuzzy Pareto dominant algorithm (He et al., 2014),
Vector angle-based evolutionary algorithm (Xiang et al., 2017) and
Many-objective evolutionary algorithm based on a rotation of grid
(Zou et al., 2018). The common feature of these above methods is that
the preference for a specific area of the Pareto front is introduced, so
that the population can converge to a certain part of the Pareto front.
However, it is difficult for these above methods to find the entire
Pareto front.

Through the decomposition multi-target evolution algorithm
transforming multi-target optimization problems into a series of
single target optimization sub-problems, the evolution algorithm is
used to optimize these sub-problems based on a certain number of
adjacent problems. Representative algorithms include non-dominated
sorting genetic algorithm III (NSGA-III) (Deb and Jain, 2014), and
modified particle swarm optimization based on decomposition with
different ideal points (MPSO/DD) (Qin et al., 2020).

In order to make full use of the complementary characteristics of
each power source, weaken the impact of the instability of new energy
output on the power grid, improve the application rate of clean energy
represented by wind, light and hydropower, and improve the energy
pattern dominated by thermal power plants in China, a
complementary wind-light-water storage power generation system
is constructed and a multi-objective evolutionary algorithm based
on the NDWA-GA and the PCA with Pareto optimal space is
proposed for the optimal capacity allocation of the multi-energy
complementary system in this paper. Through the above method
the dependence on thermal power generation and carbon emissions
can be reduced, which is of great significance for the implementation
of the national energy conservation and emission reduction and the
“double carbon” policy.

3 Wind, light, water and storage multi-
energy complementary model

3.1 Multi-energy complementary system
topology design

Because wind power and photovoltaic power generation are
characterized by randomness, intermittency, and volatility,
especially the daily output characteristics of wind power are just
opposite to the load, it is difficult to directly connect them to the
large power grid for users. The units in the hydropower station have
the ability to start and stop quickly, which can be well used to
supplement the photovoltaic and wind output characteristics and
can effectively solve the problem of new energy grid connection
consumption. The structure of the wind-light-water storage
coupling system is shown in Figure 1, which mainly includes
power generation module, energy storage module, energy
conversion module and user module. The power generation
module consists of wind turbine, photovoltaic turbine and
hydroelectric turbine, which is a power generation system
composed entirely of clean energy without carbon emission. The
energy conversion module includes rectifier and inverter. The
rectifier converts the alternating current generated by the wind
turbine into direct current, and the direct current generated by the
photovoltaic power is transmitted through the direct current
transmission line. The energy is transferred in both directions
between the battery in the storage module and the DC
transmission line, and the DC power is inverted and sent to the
customer through the AC transmission line. The AC power from the
hydropower station is transmitted through the AC transmission line.

3.2 Water-wind-light complementarity
analysis

According to the mechanism of wind and photovoltaic power
generation, its output is influenced by the natural environment (such
as wind power level, light intensity, and temperature.) and is highly

FIGURE 1
Structure diagram of wind/PV/hydropower/storage coupling system.
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volatile. Wind power generation relies on wind generating units,
which converts wind kinetic energy into electric energy by rotating
windmill blades driven by wind. Its power generation is mainly
affected by uncertain environmental factors such as wind speed,
sunshine, terrain and air pressure. Photovoltaic power generation
uses photovoltaic effect to convert solar energy into electricity. Its
power output is non-linear and mainly depends on the external
environment such as light intensity and temperature, which makes
photovoltaic power generation has significant weather sensitivity. In
clear weather, photovoltaic output is generally consistent with the
changing trend of light intensity and temperature, showing a parabolic
shape. However, under the condition of cloudy or rainy weather,
photovoltaic output shows an obvious decline.

The Hanzhong area in southern Shaanxi Province is taken as the
research object in this paper. This region is the subtropical climate
with abundant rainfall and sufficient power output from hydropower
plants. Due to its location at the southern foot of the Qinling
Mountains, the wind power rises along the mountains, resulting in
increased wind power and sufficient wind energy. According to the
distribution of wind speed and air density during the year, the local
wind turbine output is maximum in winter and spring, and minimum
in summer. The climate is humid and mild, with four distinct seasons,
long frost-free period, warm and dry spring, cool and wet autumn, and
abundant light energy. The average annual flat source temperature is
about 15°C, the sunshine hours are between 1495.6 h and 1836.2 h,
and the frost-free period is more than 8 months on average, so there
are more superior conditions for photovoltaic wind turbine power
generation.

For the wind-light-water storage complementary power
generation system, the battery capacity configuration is relatively
small, mainly for smoothing the fluctuation of the short-time
wind-light power, which can avoid the phenomenon of frequent
start and stop of the hydropower unit due to the fluctuation of the
total wind-light power. However, the hydropower unit is mainly used
to maintain the balance of the system power supply, the power balance
between the power supply system and the load can be expressed by the
following formula.

PL t( ) � PPV t( ) + PW t( ) + PHP t( ) − PB t( ) (1)
where, PL(t)–load power; PPV(t)–photovoltaic power output; PW(t)–
wind turbine power output; PHP(t)–hydroelectric power output; PB(t)–
battery discharge power.

In terms of system power complementarity, according to the
analysis of the natural complementary characteristics of water-
wind-light in the region, the local hydropower resources are very
unevenly distributed in time, with sufficient water resources in the
rainy season and scarce in the dry season, which makes the power grid
in the dry period having a huge risk of energy supply shortage. The
wind power and photovoltaic energy supply and demand are in line
with hydropower’s dry season and flood season, which can provide
considerable power support for the dry season when hydropower is
insufficient, effectively alleviating the contradiction of seasonal supply
and demand balance, which is a useful complement to hydropower on
a long-term scale. In terms of capacity complementary characteristics,
hydropower with certain regulation capacity can use the reservoir
storage capacity to smooth out the natural water changes to achieve
rapid and accurate control of power output, which has good capacity
characteristics. Wind power photovoltaic is affected by natural factors
with strong uncertainty, wind power daytime low night high power

characteristics make it having a significantly anti-peak characteristics,
large-scale wind power access often increase the pressure of grid
peaking at the same time also bring greater fluctuations in system
power. However, the complementary operation of wind power and
photovoltaic can not only effectively alleviate the intensification of
peak load regulation during the day, but also effectively make
hydropower transfer its low power to peak load during the low
load period, converting the power benefit into capacity benefit. So
that hydropower in the peak load period has sufficient capacity space
for full peaking operation, to improve the hydropower peaking
capacity at the same time also effectively suppress the short-term
volatility of wind power photovoltaic. When the wind-light output can
meet the load demand, hydropower units do not carry out power
generation operations, the use of reservoirs to store natural water.
When the wind-light output does not meet the load demand, the use of
hydropower devices to supplement the missing power, and when the
full generation of hydropower still cannot meet the load demand, load
cutting operations should be carried out.

In summary, the wind-light-water resources in the region have
strong complementary characteristics throughout the year, so it is
suitable to add wind-light storage power generation devices on the
basis of existing hydropower plants. Not only the extraction of fossil
energy can be reduced, but also the utilization rate of clean renewable
energy can be effectively increased. The combined operation of wind,
light and water mainly uses the energy storage characteristics of the
hydropower plant itself and the flexible start-stop feature to calm the
sharp fluctuations of wind power and photovoltaic, hydropower and
wind-light combined operation can improve the impact of wind power
and photovoltaic volatility on the power system, reduce wind power
abandonment. On the other hand, it can also make up for the lack of
seasonal characteristics of hydropower to a certain extent by using the
complementarity between the two, which provides an important
support for future research on multi-energy complementary
coordination.

3.3 Mathematical model of multi-energy
complementary system

In this paper, wind-light-water storage is used as the research
object to configure the optimal wind-light storage power supply
capacity for existing hydropower plants to meet the regional power
supply demand. According to the characteristics of each power source
within the power supply system, a capacity configuration model is
established, which takes power system investment cost and battery
capacity minimization as the target and power balance, SOC, and
hydropower unit as the constraints. The calculation results are also
evaluated and analyzed in terms of load shortage rate, battery charging
and discharging times and the number of starts and stops of
hydropower units.

3.3.1 Systematic investment model
The prerequisite for capacity configuration of the system is to

calculate the investment cost of the system. The system investment
mainly includes wind turbines, photovoltaic installations, and battery
storage systems. Wind turbines and PV installations have a long
service life (generally considered to be up to 20–25 years for wind
turbines and 25 years for PV installations), so the time value of the
fund needs to be considered. In addition, when PV installations exceed
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their useful life, the power generated is only about 80% of their rated
power, which affects the power generation revenue. The investment
costs of PV systems, wind power systems and energy storage systems
are described in turn in the following section.

1) Photovoltaic systems

In the construction of a PV system, its initial construction cost
needs to be considered and equated to years (i.e., the average annual
initial investment cost). In addition, PV power is DC power, and in
order to convert it into AC power that can be used directly by the
system, a converter matching the power generation capacity needs to
be purchased, which likewise needs to be equated to years (i.e., the
annual equivalent cost of the PV converter). During the working of the
system, its implementation of strict maintenance measures is needed,
so the operation and maintenance costs of the system also need to be
considered. In summary, the investment cost of PV system mainly
considers the average annual initial investment cost Cpv of PV system,
the operation and maintenance cost CPVOM of PV system and the
annual equivalent cost CPVCON of PV converter.

The average annual initial investment cost of a PV system can be
expressed as follows.

Cpv � PpvUpvγ 1 + γ( )lpv
1 + γ( )lpv − 1

(2)

where, PPV–Total PV capacity; Upv–Installed cost of PV unit capacity;
γ–Interest rate; lpv–Life of PV installation.

The annual operation and maintenance (O&M) cost of a PV
system can be expressed as the product of the PV capacity and the
O&M cost per unit of capacity.

CPVOM � PpvMpv (3)
where, Mpv–unit capacity PV O&M costs.

The annual equivalent cost of a PV converter is related to the
equipped PV capacity and can be expressed as the following.

CPVCON � PpvUPVCONγ 1 + γ( )LPVCON
1 + γ( )LPVCOM − 1

(4)

where, UPVCON–PV converter unit power cost; LPVCON–PV converter
lifetime.

2) Blower system

Consistent with the PV system, the investment cost of the wind
turbine power generation system is mainly the average annual initial
investment cost Cw of the wind turbine system, the operation and
maintenance cost CWOM of the wind turbine system and the annual
equivalent cost CWCON of the wind turbine converter.

The average annual initial investment cost of the wind turbine
system can be expressed as the following.

Cw � PWUWγ 1 + γ( )lw
1 + γ( )lw − 1

(5)

where, PW–total capacity of the wind turbine system; UW–installed
cost per unit capacity of the wind turbine system; lw–life of the wind
turbine.

The annual operation and maintenance cost of the wind turbine
system can be expressed as the product of the capacity of the wind
turbine system and the operation and maintenance cost per unit
capacity.

CWVOM � PWMW (6)
where, MW–unit capacity wind turbine operation and maintenance
costs.

The wind turbine should be installed with the same power
converter device, so the equivalent annual cost of the converter
should also be included in the primary investment in the wind
turbine system.

CPVCON � PpvUPVCONγ 1 + γ( )LPVCON
1 + γ( )LPVCOM − 1

(7)

where, UPVCON–PV converter unit power cost; LPVCON–PV converter
lifetime.

3) Energy Storage Systems

Consistent with PV and wind turbine systems, the investment cost
of the energy storage systems are mainly the average annual initial
investment cost CB for energy storage systems, the operation and
maintenance cost CBOM for energy storage systems, and the annual
equivalent cost CBCON for converters.

Remaining useful life (RUL) of the battery in energy storage
system is closely related to its own operating conditions and
external ambient temperature. Overcharging and discharging of the
battery, overvoltage, and high temperature of the external
environment will reduce the RUL of the battery, and even require
frequent battery replacement, which will inevitably increase the
expenses and impact on the investment. Battery performance
degradation is a complex multidisciplinary coupled problem of
electrochemistry and electro-physics, and it is difficult to establish
a unified RUL prediction model with universal applicability. In order
to simplify the calculation, multiple overcharging and discharging will
shorten the life of the battery in this paper, so the RUL of the battery is
simplified to the number of times with the battery being charged and
discharged to equivalently describe the life of the battery. At this time,
the average annual investment cost of the battery can be calculated
based on the average number of cycles per year.

CB � NE

NB
UBPPB + UBEEB( ) (8)

where, NE–battery annual average charge and discharge times, UBP

-battery unit power cost, PB -battery rated power, UBE–battery unit
energy cost, EB–battery rated capacity and NB–battery cycle life.

The annual O&M cost of an energy storage system can be
expressed as the product of the capacity of the energy storage
system and the O&M cost per unit of capacity.

CBOM � PBMB (9)
where, MB–unit power battery O&M cost.

The installation of the energy storage device should be configured
with a converter device with the same total power, so the equivalent
annual cost of the converter should also be included in the primary
investment of the energy storage system.
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CBCON � PBUBCONγ 1 + γ( )LBCON
1 + γ( )LBCON − 1

(10)

where, UBCON - battery converter unit power cost; LBCON - battery
converter life.

3.3.2 Capacity optimal allocation model
In this section, the capacity optimization allocation model of the

wind-light-water storage system will be studied, mainly including the
objective function, constraint function and evaluation index of the
system.

1) Objective function

In this section, the objective function is defined as the minimum
total system investment cost and the minimum battery capacity. The
total system investment cost C minimization can be expressed as:

minC � min CA + COM + CCON( ) (11)
where, CA - total annual initial investment cost of wind-light storage
power, COM - annual operation and maintenance cost of wind-light
storage power, and CCON - annual equivalent cost of wind-light storage
converter.

CA � Cw + Cpv + CB (12)
COM � CWOM + CPVOM + CBOM (13)

CCON � CWCON + CPVCON + CBCON (14)
When configuring the system capacity, wind power,

photoelectricity and hydropower should be made to meet the load
power demand as much as possible to avoid repeated charging and
discharging of the battery which affects the battery life and system
investment cost. In the constraint of minimum battery capacity, it is
first necessary to define the power mismatch ratio.

Δ t( ) � γ Ppv t( ) + PW t( ) + Php t( ) − Pbat t( )[ ] − PL t( ) (15)

where, γ - new energy relative load ratio, Ppv(t), PW(t), Php(t), -
photovoltaic, wind power, hydropower output power at each
moment, Pbat - battery charging and discharging power, and PL(t) -
load power.

The energy stored in the battery is not constant, the size of the
energy changes from time to time with the process of storing or
releasing energy, so the size of its energy is a function of time. The
maximum energy that can be stored in the storage system is related to
the size of its own capacity, which can be expressed in the ideal case as
the following.

H−store t( ) � H−store t − 1( ) + ηmiΔ t( )
η−1 ounΔ t( ){ (16)

where, H_store(t)–relation of energy with time in the ideal case.
When wind, light and water power generation meet the

consumption of energy storage devices and load demand, there is
still a surplus will be stored in the battery, and the capacity of the
battery increases with time.

EH � max
T

H store t( ) −minH store t′( )
t′≥ t

( ) (17)

Then the objective function to ensure the minimum capacity of the
battery is the following.

EH � min max (H store(t)−{ minH store(t′))} (18)

2) Constraints

In this section, three constraints including instantaneous power
constraint, state of charge (SOC) constraint and supply reliability
constraint are set.

The instantaneous power constraint defines the daily energy
inequality measure Wi as:

Wi � EB i − 1( )ηin + EW(i) + EPV(i) + EHP i( ) − QL i( )
Wi > 0

(19)

where, EB(i-1) - the previous day’s battery surplus power, ηin - battery
charging efficiency, EW(i), EPV(i), EHP(i) - the total power generation of
wind, light and water power sources on that day, and QL(i) - the total
load on that day.

The energy storage system charge state constraint SOC can be
expressed as the following.

SOC � HC t( )
EH

(20)

where, Hc(t) - the actual capacity of the battery storage device can
store.

Clow ≤ SOC≤Cup (21)

The reliability of power supply can be expressed as the following.

LPSP �
∑T
t�0
Time Pout t( )<PL t( )( )

T
(22)

where, Pout(t) - the total output of the wind-light-water system at the
moment t, and PL(t) - the load demand at the moment.

3) Assessment indicators

In this paper, two objective functions are established as the
minimum economic cost and the minimum battery capacity, so the
Pareto optimal solution set is approximated as a curve on a two-
dimensional plane or uniformly distributed around a curve. In order to
select the optimal solution from the optimal solution set as the
solution result of this problem, the evaluation scheme is developed
as following. In the two-dimensional right-angle coordinate system,
the horizontal axis is the economic cost and the vertical axis is the
battery capacity, at this time each solution in the optimal solution set
can correspond to a point on the two-dimensional plane. Then all the
candidate solutions are put on the two-dimensional plane and the
Euclidean distance to the origin is calculated. Finally, the solution with
the smallest distance is the optimal solution. The distance is calculated
by Eq. 23.

di �
��������
f2
1,i + f2

2,i

√
(23)

where, di - the distance of the ith solution from the origin, f1,i - The ith
solution corresponds to the value of objective function one, and f2,i -
The ith solution corresponds to the value of objective function two.
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4 Analysis of algorithms based on multi-
objective evolutionary algorithms

In this section, the capacity of wind-light-water storage units are
configured to make full use of the complementary characteristics of each
power source and weaken the impact of the instability of new energy
output on the grid. Based on the wind-light-water storage mathematical
model established in the previous paper, the most economical storage
units of wind-light are configured for existing hydropower plants based on
an improved multi-objective evolutionary algorithm and compared with
the traditional multi-objective optimization algorithm.

4.1 Improved multi-objective evolutionary
algorithm

In this paper, an improved multi-objective optimization algorithm
is proposed, which mainly consists of non-dominated dynamic weight
aggregation by using a genetic algorithm (NDWA-GA) and PCA-
based Pareto optimal space. The proposed NDWA-GA algorithm is
used to search for a given set of Pareto optimal solutions and learn the
Pareto optimal space from the found Pareto optimal solutions.

1) Non-dominated dynamic weight aggregation by using a genetic
algorithm

Individuals with good suitability in single objective optimization
have difficulty in convergence in the search space of the corresponding
multi-objective optimization problem. The NDWA-GA proposed in
this paper adopts the non-dominated sorting method, which is the
most commonly used method in multi-objective optimization to solve
this problem.

The NDWA-GA uses non-dominated sorting for solution
selection, that is, before the selection operation is executed, the
populations are sorted according to the dominant and non-
dominated relationships, which can be outlined as the following
steps. First, the individuals in the parent and replacement
populations are combined, and all individuals are sorted
according to the Pareto dominance relationship. The non-
dominated solutions are selected with the marker order of 1.
Then, based on the individuals in the first non-dominated front,
the non-dominated solutions are selected among the remaining
individuals with the marker order of 2 (that is the second non-
dominated front), and so on until every individual is marked to
form multiple dominance front arrays. The individuals in each
non-dominated front after sorting are considered to be non-
dominated by each other. The individuals on the first non-
dominated front are considered to be the best, and the former
non-dominated front dominate the latter non-dominated frontier.

The NDWA-GA algorithm search process can be summarized as
follows. Given the objective function f(x) to be optimized and initialize the
maximum number of iterations T and the population size L.
Subsequently, the weight vector is randomly generated and the
population is initialized. After the iteration, the non-dominated
solution is selected from the file as the result of the algorithm search.
Each iteration of the NDWA-GA algorithm consists of four parts.

Step 1, periodically transform f(x) into a single-objective
optimization problem using the weight vector ind and encode it.

Step 2, calculate individual fitness based on the encoding results and
classify individuals according to their dominance relationships. Then
generate offspring using the genetic operator.

Step 3, count the non-dominated solutions into the file.

Step 4, perform iterations and select individuals with good
convergence performance from the population as parents to
participate in the next iteration.

2) Pareto optimal space based on the PCA

Unlike traditional PCA which uses the mean to populate the
non-dominant components, the median value is used to populate
the non-dominant components in this paper. The reason is that
non-all non-dominated solutions happen to lie in the Pareto
optimal front surface. In dimensionality reduction, these non-
dominated solutions that do not lie in the Pareto optimal front
plane are called outliers. Removing outliers from the entire dataset
is not an easy task, and outliers usually affect the results. In
summary, using the median will generate a more accurate
Pareto optimal space than using the mean.

The basic process of the PCA-based Pareto optimal space
algorithm can be outlined as follows.

First, the matrix representation of the Pareto optimal solution
takes the form ofM ∈ R|P|×n, where each row represents a solution and
each column represents the same component of all solutions. The
mean of M is calculated and made to save M minus its own mean as
the new M.

Second, the eigenvalues of the covariance matrix of M are
calculated, and the principal components are found according to
the given threshold.

Third, the median of each column of M is calculated, and then the
lower and upper limits of x are set to the corresponding medians.
Finally the Pareto optimal subspace is generated by sampling all points
in the updated M.

The overall flow chart of the algorithm is shown in Figure 2.
The Pareto optimal solution set can be found based on the

NDWA-GA. The convergence of the solution set can be promoted
by dimensionality reduction of the optimal space. Then, the diversity
problem of the solution set is dealt with by solving a set of single-
objective optimization problems in the optimal Pareto subspace.
Finally, the stability of the optimal solution is guaranteed not to be
eliminated in the iterative process.

4.2 Capacity configurations

The load data of the region in recent years show that the monthly
average load curve in a year has certain fluctuations, with the peak
value of monthly average load being about 1084021 MW and the
lowest value of daily average load being 518037.8 MW. The electricity
load mainly includes industrial electricity, urban transportation,
agriculture/forestry/pastoralism/fishery/water conservancy, lighting,
and household appliances. The load change curves of two
consecutive typical years is shown in Figure 3.

In this paper, the parameters related to each power source of wind-
light-water storage in the complementary power generation system are
set as summarized in Table 1.
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According to the capacity optimization configuration model, the
output power of wind power and photovoltaic is solved by using
monthly climate data, and the capacity configuration of four power

sources of wind, light, water and storage is optimized according to the
load demand in each time period based on the multi-objective
evolutionary algorithm proposed in the previous paper. Considering
the energy consumption characteristics of the battery device when
charging and discharging, it is assumed that the charging and
discharging efficiency of the battery ηin = ηout = .93. In the
algorithm, the initial number of individuals is set to 100, the
reference mapping line is set to 6,000, the non-dominated dynamic
weight aggregation is set to 20000, the maximum number of iterations is
set to 20000, and the crossover rate and variation rate are set to 1.0 and
1/3, respectively. The simulated binary crossover (SBX) and polynomial
mutation (PM) are used as the crossover and mutation operators,
respectively.

Setting the new energy relative load generation ratio γ = 1.1 in the
region, the optimal configuration of the capacity of the four power
sources in the complementary power generation system in the current
time scale is shown in Table 2, and the corresponding specific capacity
and investment cost values of the wind-light storage are shown in
Table 3.

The loss of power supply probability (LPSP) is an important index
to evaluate the reliability of distributed complementary power
generation system. To improve the reliability of power supply of
the system means reducing the rate of load outages.

FIGURE 2
Flow chart of independent two-stage multi-objective evolutionary algorithm.

FIGURE 3
Annual load change curve.
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4.3 Algorithm comparison

Unlike single-objective optimization problems, solving multi-
objective optimization problems often yields a set of approximate

Pareto optimal solution sets rather than individual solutions.
Therefore, it is not possible to determine the performance of the
algorithms directly by comparing the magnitude of the function values
of the solutions obtained by the algorithms. In order to compare

TABLE 1 The cost of each power supply and related parameters.

Symbol Name Unit Value

UW Unit price of wind turbine purchase yuan/kW 4,800

UPV Unit price of photovoltaic purchase yuan/kW 6,000

UBP Unit price of energy storage power yuan/kW 1550

MW Unit price of wind turbine operation and maintenance yuan/kW 100

MPV Unit price of photovoltaic O&M yuan/kW 40

MHP Unit price of hydropower O&M yuan/kW 80

UWCON Unit price of wind turbine converter yuan/kW 500

UPVCON Unit price of photovoltaic converter yuan/kW 450

UBCON Unit price of battery converter yuan/kW 160

γ Interest rate — .12

LW/LPV Life year 25

Cci Cut-in wind speed m/s 3

Vr Rated wind speed m/s 11

Uco Cut-out wind speed m/s 25

H Hub height m/s 80

ISC(nom) Short circuit current A 8.33

ηin/ηout Charge/discharge efficiency — .93

TABLE 2 Optimal allocation of unit quantity.

LPSP Wind power configuration/
unit

Photovoltaic configuration/thousand
pieces

Battery configuration/
block

Total cost/million
yuan

0 349 300 7,490 1,017

.01 365 337 6,581 1,058

.02 332 383 8,132 910

.03 390 225 5,634 1,045

.04 300 214 10365 1,016

.05 348 369 7,358 1,031

TABLE 3 Optimal allocation of unit capacity.

LPSP Wind capacity/MW Photovoltaic capacity/MW Battery capacity/MW

0 698 90 749

.01 730 102 658

.02 664 115 813

.03 780 68 563

.04 600 65 1,036

.05 696 111 736
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different algorithms, the Inverted Generational Distance (IGD)
evaluation metric is introduced. The convergence performance and
distribution performance of the algorithm are evaluated by calculating
the minimum distance sum between each point on the real Pareto
front surface and the set of individuals obtained by the algorithm. The
smaller the value, the better the overall performance of the algorithm,
including convergence and distribution performance. IGD can be
expressed as the following.

IGD P,Q( ) �
∑
v∈P

d v, Q( )
P| | (24)

where, P is the set of points uniformly distributed on the real Pareto
surface, |P| is the number of individuals in the set of points distributed
on the real Pareto surface, Q is the optimal Pareto optimal solution set
obtained by the algorithm. d (v,Q) is the minimum Euclidean distance
from the individuals v in P to the populationQ. Therefore, IGD is used
to evaluate the comprehensive performance of the algorithm by
calculating the average of the minimum distances from the real
Pareto surface set to the obtained population. Meanwhile, it can be
seen that if the convergence performance of the algorithm is relatively
good, the d (v,Q) is relatively small, so that the convergence
performance of the algorithm can be evaluated. However, when the
distribution performance of the algorithm is poor and most of the
individuals in the population are concentrated in a narrow area, the d
(v,Q) of many individuals will be large.

In order to better demonstrate the accuracy and applicability of the
methods used in this paper, the reference-point based non-dominated
sorting approach (NSGA-III) (Deb and Jain, 2014), adaptive reference
vector-guided evolutionary algorithm using growing neural gas
(RVEA-iGNG) (Liu et al., 2022), multiple single objective Pareto
sampling (MSOPSII) (Hughes, 2007) are compared, and the
parameters of each algorithm are selected as shown in Table 4.

The convergence of the newmulti-objective algorithm proposed is
compared with other algorithms though the mean and standard
deviation values of IGD of different multi-objective algorithms for
solving wind-light-water storage capacity allocation optimization
problems. The IGD indicators of each multi-objective algorithm are
shown in Figure 4.

From the characteristics of IGD indicator, it can be concluded that
the smaller the IGD value, the better the convergence of the algorithm
for the problem. As shown in Figure 4, the IGD value of MSOPSII is
higher than other algorithms in the current iteration interval, so it is
considered to have the worst performance in solving the wind-light-
water storage capacity configuration model proposed in this paper.
The IGD value of NSGA-III is higher than that of RvEA-iGNG when
the number of iterations are 2,400 and 4,600. However, when the
number of iterations is 6,800, it is lower than that of RvEA-iGNG.
When the number of iterations is higher than 9,000, the IGD values of

NSGA-III and RvEA-iGNG are consistent. The IGD value of the
improved multi-objective evolutionary algorithm proposed in this
paper is always the minimum in the current iteration interval, which is
the best comprehensive performance compared with other algorithms.
Therefore, the proposed algorithm has a greater advantage in dealing
with the wind-light storage capacity allocation problem, which
provides algorithmic support for the solution of the wind-light-
water storage capacity allocation problem. Usage of this algorithm
for solving such planning problems can effectively speed up the bi-
objective solution speed as well as the accuracy requirements and
avoid the phenomenon of premature convergence of the algorithm.

4.4 Multi-energy complementary model
comparison

In order to verify the feasibility of the wind-light-water storage
model in practical application, this section constructs the light-water
storage model and the wind-water storage model, and compares the
economy of their capacity configuration and the capacity of the
battery. Based on the improved multi-objective optimization
algorithm proposed in this paper, the optimal capacity of the light-
water storage model and the wind-water storage model are configured.

This paper selects LPSP = .02 to analyze the capacity configuration
of each system. The comparison results are shown in Table 5: wind-
water storage model is model I, light-water storage model is model II,
and wind-light-water storage model is model III.

As shown in Table 5, the part of the hydropower station with
insufficient output in the wind-water storage model is provided by
wind turbines and batteries, so the number of wind turbines are higher
than that of the wind-light-water storage system. In the light-water

TABLE 4 Hyper parameters selected by different algorithms.

Algorithm Parameter settings

NSGA-III The number of populations n = 100, polynomial variation factor pm = 1/n, crossover probability ηc = 30, and variation probability ηm = 20.

RvEA-iGNG The number of populations n = 100, neuron movement learning rate εb = .2, adjacent neuron movement learning rate εn = .006, maximum neuron
age amax = 50, crossover distribution index nc = 20, variation distribution index nm = 20.

MSOPSII The number of populations n = 100, differential evolution operator DE = .6, and crossover rate C = .8.

FIGURE 4
Comparison of IGD of different algorithms.
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storage model, the insufficient output of the hydropower station is
provided by photovoltaic panels and batteries, so the number of
photovoltaic systems are higher than that of the wind-light-water
storage system.

By comparing the total cost of different energy structures, the
wind-light-water storage system is the lowest, the wind-water
storage system is the second, and the light-water storage system
is the highest. The comparison of storage battery capacity
configuration under different energy structures show that wind-
water storage is the lowest, wind-light-water storage is the second,
and light-water storage is the highest. In conclusion, the wind-
light-water storage system established in this paper has the lowest
total cost by compared with wind-water storage system and light-
water storage system.

4.5 Analysis of monthly outputs

Wind, photoelectric power station output fluctuates frequently, in
different seasons and time presents randomness, fluctuation,
intermittent and other characteristics, and different areas by wind
speed, light and other meteorological factors also have a large
difference. The output size of wind and solar power plants is
related to numerous factors, including wind speed, wind direction,
air pressure, temperature, light intensity, light duration, topography,

unit parameters, transmission channels, and grid regulation
requirements.

To better illustrate the configuration results and guide production,
the output of the wind-light-water load is calculated for a load shortage
rate of .02, as shown in Figure 5.

As can be seen from the Figure 5, PV is more out between April
and August. According to the local illumination data, the illumination
time during the period is about 140 h per month, and the total daily
radiation curve is 17000 kJ/m2/d for the whole year, which is higher
than other months year-on-year. At the same time, considering the
influence of temperature on photovoltaic power generation devices,
the local area is in spring and summer season, with little temperature
change, which has less influence on photovoltaic power generation
devices and can generate power at a higher level. Wind power
generation in the following January and June to December has less
power output and fluctuates sharply. From the data, it can be seen that
the wind speed is low and the air density is lower than the rest of the
months in the same period, so the wind power generation plant
produces less power. The hydroelectric power generation fluctuates
throughout the year, and the maximum output is from September to
October, because the reservoir level increases in the early rainy season,
resulting in an increase in water storage and the output capacity
fluctuating greatly. Considering the normal operation of reservoirs
and downstream safety issues, reservoirs have to be released to reduce
risks, and reservoirs will only be released when a certain amount of
water is accumulated. Local power generation water consumption
increases, and reservoir output increases, but the season brings a high
fluctuation of reservoir output due to abundant and dry seasons. The
load shows cyclical fluctuations, with low in spring and autumn and
high in summer and winter. Considering the increase in electricity
consumption of general users by the seasons, industries such as
agriculture and industry also face high electricity consumption for
irrigation and equipment maintenance. The load is higher than wind
and water output in the same period for a long time existing in the
form of power shortage.

Considering the demand of wind-light-water and load, in
February-March every year, wind power generation meets the load
demand and light and water will be stored in the form of energy in the
battery. In the rest months, the output of wind-light-water is lower
than the load demand, and the accumulated sum is also lower than the
load end demand. At this time the battery output is enough to make up
for the load demand, to make up for the shortage caused by the lack of
local wind-light-water output. Through the battery discharge to meet
the shortage, the utilization rate of wind-light-water can be improved,
effectively avoiding the waste of resources caused by the volatility of
wind-light-water.

TABLE 5 Optimal allocation of different energy system.

Configuration
type

Number of
wind turbine/

unit

Number of
photovoltaic/

thousand pieces

Number of
battery/
block

Wind
capacity/

MW

Photovoltaic
capacity/MW

Battery
capacity/

MW

Total cost/
million
yuan

I 441 — 4,044 882 — 292 1,299

II — 4,559 18339 — 1367.7 1,321 1,466

III 332 383 8,132 664 115 813 910

FIGURE 5
Monthly output of wind/PV/hydropower/storage system.
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5 Conclusion

In this paper, a multi-objective evolutionary algorithm based on
the NDWA-GA and the PCA with Pareto optimal space is proposed
for the optimal capacity allocation of the multi-energy complementary
system. The wind-light-water storage complementary power
generation system is constructed, which mainly includes wind
turbine, photovoltaic battery array, hydroelectric power station and
energy storage part. Then the wind-light-water storage power supply is
added to the current hydropower station, and the wind-light-water
storage capacity optimization configuration model satisfying various
constraints is established with the objective of minimizing the total
investment cost and battery capacity of the system. Finally, the
proposed novel multi-objective evolutionary algorithm is used to
optimize the capacity configuration of each power supply in the
complementary power generation system with the load shortage
rate as the evaluation index. The configuration results show that
the value of LPSP has a direct impact on the number of individual
units to be configured. When the load shortage rate is .02, the optimal
capacity configurations of wind, light, and storage are 664 MW,
115 MW, and 813 MW, respectively. Moreover, compared with the
traditional multi-objective evolutionary algorithm, the results show
that the proposed algorithm has better convergence, which verifies the
effectiveness and accuracy. At the same time, compared with the light-
water storage model and the wind-water storage model, it is proved
that the wind-light-water storage model proposed in this paper has the
lowest economic cost under the premise of accurate prediction of
hydropower station output. The proposed model improves the
application rate of clean energy, typically represented by wind-
light, on the premise of achieving accurate prediction of hydro
power plant output, which helps to improve the energy pattern of
Chinese mainly thermal power plants and is of great significance for
energy conservation and emission reduction.

The wind-light power output characteristics are closely related to
the climatic conditions, with frequent fluctuations in power output,
showing random, fluctuating and intermittent characteristics in
different seasons and diurnal time sequences. There are also large
differences in different regions affected by wind speed, light and other
meteorological factors. However, there is no accurate description of
the spatial and temporal output law of the wind-light power plant yet,

and the capacity allocation of the multi-energy complementary model
can only be done by historical data, which has certain limitations, and
this will be further studied in our future work.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

YW: Data curation, Methodology, Resources, Software,
Writing—original draft, Writing—review and editing. JL:
Methodology, Project administration, Resources, Software,
Writing—review and editing.

Acknowledgments

Special thanks to colleagues who provided help and guidance on
this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdin, Z., and Merida, W. (2019). Hybrid energy systems for off-grid power supply and
hydrogen production based on renewable energy: A techno-economic analysis. Energy
Convers. Manag. 196, 1068–1079. doi:10.1016/j.enconman.2019.06.068

Alghussain, L., Samu, R., Taylan, O., and Fahrioglu, M. (2020). Sizing renewable energy
systems with energy storage systems in microgrids for maximum cost-efficient utilization
of renewable energy resources. Sustain. Cities Soc. 55, 102059. doi:10.1016/j.scs.2020.
102059

Bekele, G., and Tadesse, G. (2012). Feasibility study of small hydro/PV/wind hybrid
system for off-grid rural electrification in Ethiopia. Appl. Energy 97, 5–15. doi:10.1016/j.
apenergy.2011.11.059

Chang, R. L. (2020). Research on optimal allocation of capacity for wind-solar-water-
storage complementary power generation system. Xi’an, China: Xi’an University of
Technology. [master’s thesis]. [Xi’an].

Chen, W. R., Fu, W. Q., Han, Y., Li, Q., Huang, L. J., and Xu, C. P. (2021). Optimal
configuration of wind-solar-hydrogen multi-energy complementary microgrid with
demand side. J. Southwest Jiaot. Univ. 56 (03), 640–649. doi:10.3969/j.issn.0258-2724.
20200163

Corne, D. W., Jerram, N. R., Knowles, J. D., and Oates, M. J. (2001). PESA-II: Region-
based selection in evolutionary multi-objective optimization proceedings of the genetic and

evolutionary computation conference. San Francisco: Morgan Kaufmann Publishers,
283–290.

Deb, K., and Jain, H. (2014). An evolutionary many-objective optimization algorithm using
reference-point based non-dominated sorting approach, part I: Solving problems with box
constraints. IEEE Trans. Evol. Comput. 18 (4), 577–601. doi:10.1109/tevc.2013.2281535

Deetjen, T. A., Martin, H., Rhodes, J. D., and Webber, M. E. (2018). Modeling the
optimal mix and location of wind and solar with transmission and carbon pricing
considerations. Renew. Energy 120, 35–50. doi:10.1016/j.renene.2017.12.059

Dou, X. B., Yuan, J., Wu, Z. J., Ni, Y. M., Fan, C., and Xiao, Y. (2016). Improved
configuration optimization of PV-wind-storage capacities for grid-connected microgrid.
Electr. Power Autom. Equip. 36 (3), 26–32. doi:10.16081/j.issn.1006-6047.2016.03.005

He, Z. N., Yen, G. G., and Zhang, J. (2014). Fuzzy-based Pareto optimality for many-
objective evolutionary algorithms. IEEE Trans. Evol. Comput. 18 (2), 269–285. doi:10.
1109/tevc.2013.2258025

Heide, D., Von, B. L., Greiner, M., Hoffmann, C., Speckmann, M., and Bofinger, S.
(2010). Seasonal optimal mix of wind and solar power in a future, highly renewable
Europe. Renew. Energy 35 (11), 2483–2489. doi:10.1016/j.renene.2010.03.012

Hu, L. X., Gu, Y. Y., and Yao, Y. S. (2016). Optimal capacity configuration method for grid-
connectedwind-solar complementary power system.Power Syst. Clean Energy 32 (03), 120–126.

Frontiers in Energy Research frontiersin.org13

Wang and Liu 10.3389/fenrg.2022.1115769

https://doi.org/10.1016/j.enconman.2019.06.068
https://doi.org/10.1016/j.scs.2020.102059
https://doi.org/10.1016/j.scs.2020.102059
https://doi.org/10.1016/j.apenergy.2011.11.059
https://doi.org/10.1016/j.apenergy.2011.11.059
https://doi.org/10.3969/j.issn.0258-2724.20200163
https://doi.org/10.3969/j.issn.0258-2724.20200163
https://doi.org/10.1109/tevc.2013.2281535
https://doi.org/10.1016/j.renene.2017.12.059
https://doi.org/10.16081/j.issn.1006-6047.2016.03.005
https://doi.org/10.1109/tevc.2013.2258025
https://doi.org/10.1109/tevc.2013.2258025
https://doi.org/10.1016/j.renene.2010.03.012
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1115769


Hughes, E. J. (2007). “MSOPS-II: A general-purpose many-objective optimiser,” in Proceedings
of the IEEE Congress on Evolutionary Computation, Singapore, 25-28 September 2007.

Li, G. F., Bie, Z. H., Wang, R. H., Jiang, J. F., and Kou, Y. (2017). Research status and
prospects on reliability evaluation of integrated energy system. High. Volt. Eng. 43 (1),
114–121. doi:10.13336/j.1003-6520.hve.20161227016

Li, Y. Z., Guo, X. J., Dong, H. Y., and Gao, Z. (2020). Optimal capacity configuration of
wind/PV/storage hybrid energy storage system in microgrid. Proc. CSU-EPSA 32 (06),
123–128. doi:10.19635/j.cnki.csu-epsa.000322

Liu, Q. Q., Jin, Y. C., Heiderich, M., Rodemann, T., and Yu, G. (2022). “An adaptive
reference vector-guided evolutionary algorithm using growing neural gas for Many-
Objective optimization of irregular problems,” in IEEE Transactions on Cybernetics
52 (5), 2698–2711.

Liu, Q., Wei, M. K., Zhou, Q., Cai, S. R., Jiang, L., Zhou, H., et al. (2020). Research on
capacity optimization configuration of the Southwestern China microgrid considering
electricity cost and system self-power supply reliability. Power Syst. Prot. Control 48 (10),
139–145. doi:10.19783/j.cnki.pspc.190782

Liu, Y., Tan, S., and Jiang, C. (2017). Interval optimal scheduling of hydro-PV-wind
hybrid system considering firm generation coordination. Iet Renew. Power Gener. 11 (1),
63–72. doi:10.1049/iet-rpg.2016.0152

Mahmoudimehr, J., and Shabani, M. (2018). Optimal design of hybrid photovoltaic-
hydroelectric standalone energy system for north and south of Iran. Renew. energy 115,
238–251. doi:10.1016/j.renene.2017.08.054

Ming, B., Liu, P., Guo, S. L., Zhang, X. Q., Feng, M. Y., and Wang, X. X. (2017).
Optimizing utility-scale photovoltaic power generation for integration into a hydropower
reservoir by incorporating long-and short-term operational decisions. Appl. Energy 204,
432–445. doi:10.1016/j.apenergy.2017.07.046

National Development, Reform Commission, National Energy Board (2021). Guidelines
on promoting the integration of charge and storage of power sources and networks and the
complementary development of multiple energies. Beijing: National Development and
Reform Commission of China ,National Energy Board of China.

National Development, Reform Commission, National Energy Board (2016). The 13th
five-year plan for. Beijing: Hydropower Development.

Parastegari, P., Hooshm, R. A., Khodabakhshian, A., and Zare, A. H. (2015). Joint operation of
wind, farm, photovoltaic, pump-storage and energy storage devices in energy and reserve
markets. Electr. Power & Energy Syst. 64, 275–284. doi:10.1016/j.ijepes.2014.06.074

Portero, U., Velázquez, S., and Carta, J. A. (2015). Sizing of a wind-hydro system using a
reversible hydraulic facility with seawater: A case study in the canary islands. Energy
Convers. Manag. 106, 1251–1263. doi:10.1016/j.enconman.2015.10.054

Qin, S. F., Sun, C. L., Zhang, G. C., He, X. J., and Tan, Y. (2020). A modified particle swarm
optimization based on decomposition with different ideal points for many-objective optimization
problems. Complex Intelligent Syst. 6 (6), 263–274. doi:10.1007/s40747-020-00134-7

Sanajaoba, S., and Fernander, E. (2016). Maiden application of cuckoo search algorithm
for optimal sizing of a remote hybrid renewable energy system. Renew. Energy 96, 1–10.
doi:10.1016/j.renene.2016.04.069

Sheng, S., and Zhang, J. (2017). Capacity configuration optimisation for stand-alone
micro-grid based on an improved binary bat algorithm. J. Eng. 13, 2083–2087. doi:10.1049/
joe.2017.0696

State Council of the People’s Republic of China (2021). The 14th five-year plan for
national economic and social development of the People’s Republic of China and the
outline of the long-range goals to 2035. Beijing: State Council of the People’s Republic
of China.

Wang, K. F., Xie, L. R., Qiao, Y., Wang, X. F., and Bao, H. Y. (2020). Curtailed
wind consumption mode based on threshold setting and hierarchical control of
retired batteries. Electr. Power Autom. Equip. 40 (10), 92–98. doi:10.16081/j.epae.
202008033

Wang, X. P., Tian, D. D., Meng, M., Liu, J., and Jiang, L. (2013). Total-factor energy
efficiency of coal-fired power plants considering environmental constraints. East China
Electr. Power 41 (6), 1317–1323.

Xiang, Y., Zhou, Y. R., Li, M. Q., and Chen, Z. F. (2017). A vector angle-based
evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans.
Evol. Comput. 21 (1), 131–152. doi:10.1109/tevc.2016.2587808

Xu, F. Q., Liu, J. C., Lin, S. S., Dai, Q. J., and Li, C. B. (2018). A multi-objective
optimization model of hybrid energy storage system for non-grid-connected wind power:
A case study in China. Energy 163, 585–603. doi:10.1016/j.energy.2018.08.152

Yahyaoui, I., Atieh, A., Serna, A., and Tadeo, F. (2017). Sensitivity analysis for
photovoltaic water pumping systems: Energetic and economic studies. Energy Convers.
Manag. 135, 402–415. doi:10.1016/j.enconman.2016.12.096

Yu, D. X., Zhang, J. H., Wang, X. Y., and Gao, Y. (2019). Optimal capacity configuration
of grid-connected wind-PV-storage hybrid power generation system. Proc. CSU-EPSA 31
(10), 59–65. doi:10.19635/j.cnki.csu-epsa.000127

Zhang, L. P. (2012). Multiple energy complementations-An effective approach to
promote renewable energy development. Northwest Hydropower (1), 7–12.

Zhang, Z. W., Fan, W., Liu, T., Zhou, J., and Shi, J. K. (2018). Optimal capacity
configuration of wind-solar-water-battery complementary power generation system in
remote mountainous areas. J. Power Supply 16 (05), 138–146. doi:10.13234/j.issn.2095-
2805.2018.5.138

Zhao, T. J., Meng, Q., Wang, J., Ren, M. M., and Zhang, M. C. (2021). Optimal allocation
strategy for photovoltaic and electric heating thermal storage capacities in interactive
mode. Proc. CSU-EPSA. 33 (05), 9–15. doi:10.19635/j.cnki.csu-epsa.000514

Zou, J., Fu, L. W., Zheng, J. H., Yang, S. X., Yu, G., and Hu, Y. R. (2018). A many-
objective evolutionary algorithm based on rotated grid. Appl. Soft Comput. 67 (7),
596–609. doi:10.1016/j.asoc.2018.02.031

Frontiers in Energy Research frontiersin.org14

Wang and Liu 10.3389/fenrg.2022.1115769

https://doi.org/10.13336/j.1003-6520.hve.20161227016
https://doi.org/10.19635/j.cnki.csu-epsa.000322
https://doi.org/10.19783/j.cnki.pspc.190782
https://doi.org/10.1049/iet-rpg.2016.0152
https://doi.org/10.1016/j.renene.2017.08.054
https://doi.org/10.1016/j.apenergy.2017.07.046
https://doi.org/10.1016/j.ijepes.2014.06.074
https://doi.org/10.1016/j.enconman.2015.10.054
https://doi.org/10.1007/s40747-020-00134-7
https://doi.org/10.1016/j.renene.2016.04.069
https://doi.org/10.1049/joe.2017.0696
https://doi.org/10.1049/joe.2017.0696
https://doi.org/10.16081/j.epae.202008033
https://doi.org/10.16081/j.epae.202008033
https://doi.org/10.1109/tevc.2016.2587808
https://doi.org/10.1016/j.energy.2018.08.152
https://doi.org/10.1016/j.enconman.2016.12.096
https://doi.org/10.19635/j.cnki.csu-epsa.000127
https://doi.org/10.13234/j.issn.2095-2805.2018.5.138
https://doi.org/10.13234/j.issn.2095-2805.2018.5.138
https://doi.org/10.19635/j.cnki.csu-epsa.000514
https://doi.org/10.1016/j.asoc.2018.02.031
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1115769

	Optimal capacity allocation of wind-light-water multi-energy complementary capacity based on improved multi-objective optim ...
	1 Introduction
	2 Literature review
	3 Wind, light, water and storage multi-energy complementary model
	3.1 Multi-energy complementary system topology design
	3.2 Water-wind-light complementarity analysis
	3.3 Mathematical model of multi-energy complementary system
	3.3.1 Systematic investment model
	3.3.2 Capacity optimal allocation model


	4 Analysis of algorithms based on multi-objective evolutionary algorithms
	4.1 Improved multi-objective evolutionary algorithm
	4.2 Capacity configurations
	4.3 Algorithm comparison
	4.4 Multi-energy complementary model comparison
	4.5 Analysis of monthly outputs

	5 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


