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In order to reduce the peak load on the power grid, various types of demand
response (DR) programs have been developed rapidly, and an increasing number of
residents have participated in the DR. The change in residential electricity
consumption behavior increases the randomness of electricity load power, which
makes residential load forecasting relatively difficult. Aiming at increasing the
accuracy of residential load forecasting, an innovative electricity consumption
pattern clustering is implemented in this paper. Six categories of residential load
are clustered considering the power consumption characteristics of high-energy-
consuming equipment, using the entropy method and criteria importance though
intercrieria correlation (CRITIC) method. Next, based on the clustering results, the
residential load is predicted by the fully-connected deep neural network (FDNN).
Compared with the prediction result without clustering, the method proposed in this
paper improves the accuracy of the prediction by 5.21%, which is demonstrated in
the simulation.
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1 Introduction

Electric load forecasting can facilitate operation planning, revenue projection, electricity
pricing, and energy trading for power systems. With the increase of residential load and the
popularity of smart devices, residents have gradually become a target customer for demand
response (DR) (Qian et al., 2019). Residential electricity consumption behavior, especially
related to the high-energy-consuming equipment, can be changed for participation in DR,
which leads to extra fluctuations in residential load. Except for the influence of DR, different
energy-use habits result in a large difference in residential load power and relatively weak
regularity (Lusis et al., 2017), which makes nowadays residential load forecasting more
challenging (Hou et al., 2021; Liu et al., 2023).

In general, previous researches on residential load forecasting mainly depend on machine
learning. Residential load data have been trained by machine learning to obtain a general load
forecasting model in a recent study (Xie et al., 2020). Multi-layer long-short-term memory
(LSTM) model, general back propagation neural network (Kong et al., 2017), and the hybrid
modeling method combining both recurrent neural networks and Ornstein–Uhlenbeck process
(Hua et al., 2018) have been applied to obtain accurate load prediction model. In recent years,
personalized short-term load prediction for residential load has been achieved by transfer
learning and meta-learning methods (Lee et al., 2021). A short-term load forecasting method
based on deep neural network and iterative ResBlock (Hong et al., 2020) has been proposed to
learn different electricity consumption behavior (Zhang et al., 2017). However, machine
learning used in the majority of the aforementioned work requires a huge amount of data,
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such that a well-trained model can be built. Otherwise, insufficient
data can lead to the problem of over-fitting, which means the
difference between the error on the training set and the error on
the test set is too large. Additionally, the forecasting accuracy of
machine learning drops when the predicting a large fluctuation load.

Recently, the method of clustering first and predicting by machine
learning later has shown an impressive success in overcoming the
problem of over-fitting and enabling forecasting models to learn
fluctuation characteristics among residential load (Zheng et al.,
2019). Considering the similarity of the residential electricity
consumption behavior within a certain area, the clustering
algorithm can be used to aggregate the residents with similar
electricity consumption characteristics, then the residential load is
predicted via graph neural networks (Lin et al., 2021). The K-means
clustering algorithm is introduced to cluster the load and the load is
predicted based on deep learning. Evidence shows that under the
premise of using the same algorithm, the accuracy of the prediction
after clustering is generally higher than that of direct prediction (Liu
et al., 2021). However, since these clustering algorithms manually
select the number of clustering centers, these clustering methods
cannot reflect sufficient information on residential load, which
might lead to inaccurate clustering results. The machine learning
algorithm trained based on these clustering results may be affected,
when the power consumption of residents of one category in the
clustered result data is very different from each other.

To further solve the issue of overfitting and to obtain more
accurate clustering results, different methods have been proposed,
which can be summarized into two main categories: proposing
improved clustering algorithms (Du et al., 2019; Piao et al., 2014;
Rodriguez et al., 2014) and proposing new clustering indicators. New
clustering algorithms, such as distributed clustering method, have
been proposed. A distributed clustering method is used to cluster the
electric load in different regions and solve the dilemma of the high
dimension of the input data (Wang et al., 2019). New clustering
indicators are more capable of extracting the similarity of residential
load effectively. Not only the original data of daily load, but also
relevant indicators that can reflect the characteristics of load power
consumption, such as daily peak-to-valley difference rate and peak
power consumption rate, are considered in (Wang et al., 2020a). The
empirical rank approximation method derived from singular value
decomposition (SVD) is proposed, which extracts new load indicators
of daily load curves for indirect clustering to ensure the efficiency and
accuracy of the clustering process (Lu et al., 2019). According to the
daily load curve, seven load characteristic indicators, e.g., daily load
rate, peak load rate, and valley load rate, are extracted by entropy
method (Cannas et al., 2021). Eight types of characteristic indicators
are put forward by feature extraction of the daily load curve, and four
conventional clustering algorithms are weighted based on the
clustering effectiveness, which achieves an ensemble clustering
method fully combining the advantages of different algorithms
(Fujimoto et al., 2021). However, electricity consumption
characteristics of residential high-energy-consuming equipment are
not considered in the above study, nor is the impact of residents’
participation in DR considered. In addition, when the selection of
indicators is subjective, there is a negative impact on the clustering
effect. Thereby, it is necessary to screen and reasonably empower each
clustering indicator.

Aiming at the accurate prediction of resident load and considering
the effect of DR, the daily load curve of residents and the electricity

consumption characteristics of equipment load are analyzed in this
paper. Then, the characteristics are screened and weighted according
to principal component analysis. Finally, a residential load forecasting
method based on the combined weighted clustering method and
FDNN is proposed. Our key contributions are.

1) The electricity consumption characteristics of high-energy-
consuming equipment and the willingness of residents to
participate in DR are considered to select clustering indicators,
which helps to reflect the user’s electricity consumption habits. By
principal component analysis, seven clustering indicators of the
power consumption characteristics of high-energy-consuming
equipment are chosen. These indicators have relatively low
dimensions but can reflect sufficient information, cumulative
contribution rate of which is as high as .980.

2) The clustering indicators are weighted based on the entropy
method and CRITIC method, which can eliminate adverse
effects caused by data level and subjective factors. By
comparison with other methods, it is verified that the proposed
clustering result is more accurate after employing the weighted
clustering indicators by comparing value to the S_Dbw which is
used to assess the effectiveness of clustering.

3) The residential load is predicted based on the clustering result and
FDNN, and six types of resident load data obtained by clustering
are trained separately, improving the prediction accuracy by 5.21%
compared with the case without clustering.

The rest of the paper is organized as follows. In Section 2, cluster
indicators of the daily load curve and power consumption characteristics of
high-energy-consuming equipment are selected. In Section 3, the
clustering model of the residents’ electricity mode based on the entropy
method and CRITIC method is proposed. In Section 4, a residential load
forecasting model based on residential electricity consumption pattern
clustering and FDNN is established. In Section 5, the simulation results are
presented, and conclusions are drawn in Section 6.

2 Cluster indicators selection based on
daily load curve and high-energy-
consuming equipment

Considering the continuous updating of various demand response
projects, the willingness of residential users to participate in demand
response becomes increasingly strong, which leads to changes in
electricity consumption behavior of residents. Additionally, the
electricity consumption of residents can be reflected by the load
characteristics of high-energy-consuming equipment inside.
Clustering based on the total daily load data cannot meet the
accuracy requirements of resident load clustering. Thereby the
power characteristics of high-energy-consuming equipment are
selected as one of the clustering indicators in this paper.

2.1 Clustering indicators of daily load curve

In this paper, it stipulates that peak hours are 8:00–12:00 and 14:
00–21:00, and valley hours are 21:00–24:00 and 0:00–8:00. For the daily
load, the values of five characteristic indicators are determined: load rate,
daily peak-to-valley difference rate, maximum utilization hour rate, peak
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load rate, and valley load rate. Considering the isometry problem of
Euclidean distance, other indicators need to be set, and the specific
concept of equidistance is as follows.

As shown in Figure 1, curves A and B are the daily load curves of
residents A and B, respectively, and curve C is the cluster center of curvesA
and B. Among them, curve A reaches its peak in the first half of the curve.
On the contrary, curve B reaches its peak in the second half of the curve.
Curves A and B do not belong to the same type of residential load.
However, the Euclidean distance between curve A, curve B, and cluster
center C is respectively equal. If only Euclidean distance is used as the
measurement standard for type classification, curves A and B will be
classified into the same category. This is the isometry problem caused by
Euclidean distance. Therefore, based on the above five types of daily load
characteristic indicators, the maximum load occurrence time and
minimum load occurrence time indicators are added to effectively
distinguish the residential load curves in this paper. In summary, the
clustering indicators of the daily load curves of residents selected in this
chapter are shown in Table 1.

2.2 Clustering indicators of high-energy-
consuming equipment

Air conditioners and electric water heaters are two types of high-
power household adjustable loads. Based on these two types of

electricity load curves, the analysis of clustering indicators is
important for optimizing the clustering results of residential
electricity consumption patterns. The relevant power consumption
characteristics of high-energy-consuming equipment preliminarily
selected are shown in Table 2. Among them, considering that the
air conditioning load and the electric water heater load are both
temperature-sensitive loads (Nanda et al., 2011), this paper refers to
(Huang et al., 2012), and sets three indicators of daily load rate, weekly
imbalance rate, and quarterly load rate, respectively, which
intuitively reflects the short-term and long-term load volatility
of these two types of loads. The price elasticity of average air-
conditioning electricity demand during valley-to-peak hours and
the price elasticity of average air-conditioning electricity demand
during peak-to-valley reflect the enthusiasm of residents to
participate in demand response projects under the premise of
the implementation of the time-of-use electricity price policy.
The specific definition and physical significance of relevant
indicators are shown in Table 2.

2.3 Selection of clustering indicators

Among the indicators selected in Section 2.1, the daily load
characteristic indicator is a common setting in the current clustering
research, while there are two problems in the clustering indicators of the

FIGURE 1
Three types of residential load curve.

TABLE 1 Characteristic indicators based on daily load curve.

Name of indicators Definition Physically significant

Load rate The ratio of the daily average load to the maximum daily load Change of load throughout
the day

Peak valley difference rate The ratio of total daily power to the maximum load The efficiency of time utilization

Maximum utilization hour rate The ratio of the difference between the maximum daily load and the minimum load to the maximum load Residents’ peak adjustment ability

Peak load rate The ratio of the average load during the peak period to the daily average load Change of load during peak

Valley load rate The ratio of the average load during the valley period to the daily average load Change of load during valley

Maximum load appear time The time point when the daily load is the maximum Avoid isometric problem

Minimum load appear time The time point when the daily load is the minimum Avoid isometric problem
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power consumption characteristics of high-energy-equipment. On the
one hand, the indicators do not necessarily collect enough information.
On the other hand, the current indicator dimension is too high, resulting
in redundant data information. Given the above problems, this section
will calculate the contribution rate of each load power consumption
characteristic indicator by principal component analysis (PCA)method,
determine the first several indicators whose cumulative contribution
rate reaches 90% as main components, and complete the elimination of
redundant indicators while selecting indicators with complete
information.

The variance interpretation rate is used to calculate the weight
of each component based on the principle of information
concentration of the data by PCA (Nie et al., 2009). The specific
implementation steps of the PCA algorithm are as follows.

1) Based on the air conditioning load and electric water heater load
data of 600 residents in a certain community, 20 refined load
electricity characteristic indicators for each resident are calculated,
forming a matrix of residential load characteristics indicators with
a number of 600 × 20 rows:-

X � xn,j( ) �
x1,1 x1,2 / x1,20

x2,1 x2,2 / x2,20

..

. ..
.

1 ..
.

x600,1 x600,2 / x600,20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, n � 1, 2, . . . , 600,

j � 1, 2, . . . , 20 (1)

2) Calculate the correlation coefficient matrix of the clustering
characteristic index factors R � [R1, R2,/, R20]T;

3) Solve the eigenvalues of eigenequation λ1 ≥ λ2 ≥/≥ λ20 ≥ 0
(arranged from the largest to the smallest), and calculate the
eigenvectors aj(j � 1, 2,/, 20) corresponding to each eigenvalue
λj. Then, the original characteristic variable X1, X2,/, X20 can be
updated to Z � αX by linear transformation where Z is the new
feature variable after feature dimensionality reduction, that is, the
extracted principal components m;

4) The contribution rate of the principal component i and the
cumulative contribution rate of the top components m are
calculated separately.

Cattell Lithotripsy is used to determine the principal indicator
number. The contribution rate of each indicator is shown in
Figure 2.

The corresponding indicators of the top five contribution rates
are daily load rate of air conditioning, daily load rate of electric
water heater, price elasticity of electric water heater electricity
demand in valley-to-peak, price elasticity of air conditioning
electricity demand in valley-to-peak, and the price elasticity of
air conditioning electricity demand in peak-to-valley. The
contribution degrees are: [.321, .258, .218, .140, and .043] and
the cumulative contribution rate is as high as .980, which can
ensure that the selected characteristic indicators can reflect the
complete information.

TABLE 2 Preliminary set of power consumption characteristics of high-energy-consuming equipment.

Power consumption
characteristics of air

conditioning

Power consumption
characteristics of electric water

heater

Definition Physical ignificance

Accumulated operating time ratio of air-
conditioning load

Accumulated running time ratio of electric
water heater load

The ratio of the total operating time of air
conditioning/electric water heater to the

total number of sampling points

Frequency of using air/conditioning/
electric water heater

Peak period load rate Peak period load rate The ratio of average load during peak
period to average daily load

Reflect the peak period load changes

Vale load rate Vale load rate The ratio of valley period average load to
daily average load

Reflects the load change during the valley
period

Maximum air conditioning load occurrence
time

Maximum electric water heater load
occurrence time

Time point of the maximum load of the
air conditioning/electric water heater

—

Air conditioning first start time First start time of the electric water heater — Responses by changing the electricity
time

Daily load rate of air conditioning Daily load rate of electric water heater The ratio of the daily hourly load average
to the maximum value

Reflect the whole-day load change of air
conditioning/electric water heater

Price elasticity of air conditioning electricity
demand in valley-to-peak

Price elasticity of electric water heater
electricity demand in valley-to-peak

Based on the demand price elasticity
between the average load of the previous
valley period and the average load of the

adjacent next peak period

Reflects the response capacity of air
conditioning/electric water heater load

for tOU electricity price

Price elasticity of air conditioning electricity
demand in peak-to-valley

Price elasticity of electric water heater
electricity demand in peak-to-valley

Based on the demand price elasticity
between the average load of the last peak

period and the average load of the
adjacent next valley period

Reflects the response capacity of air
conditioning/electric water heater load

for tOU electricity price

Weekly load imbalance ratio of air
conditioning

Weekly load imbalance rate of electric water
heater

The ratio of the average value of the week
to the maximum load of the week

Reflect the long-term fluctuation of air
conditioning/electric water heater load

Air conditioning load seasonal load rate Electric water heater load season load rate The ratio of average load to maximum
value of air conditioning
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3 Electricity consumption pattern
clustering based on combinedweighting

3.1 Weighting of clustering indicator based on
the combination of entropy method and
CRITIC method

In most of the studies, the entropy method is used to calculate the
weight of the selected principal components, which provides an
objective basis for the comprehensive analysis of multiple
indicators and enhances the rigor of analysis. The entropy method
is an enabling method based on the principle of entropy value in
physics (Han et al., 2020). The smaller difference between different
objects of the same indicator means a smaller amount of information
and a greater entropy value. The entropy value of a certain
characteristic indicator determines the size of its weight. The
specific calculation steps of the entropy method are as follows.

1) Identify the negative elements in the characteristic indicator matrix

X � xi,j( ) �
x1,1 x1,2 / x1,12

x2,1 x2,2 / x2,12

..

. ..
.

1 ..
.

x600,1 x600,2 / x600,12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ which is composed of

12 kinds of load electricity characteristic indicators. If there is a
negative number, the matrix is re-normalized to a non-negative
interval to obtain matrix Y, and all elements are always non-

negative in the subsequent probability calculation process. The
standardization of each element is calculated as follows:

yi,j �
xi,j −min x1,j, x2,j,/, xn,j{ }

max x1,j, x2,j,/, xn,j{ } −min x1,j, x2,j,/, xn,j{ } (2)

2) The proportion of the jth indicator of the ith analysis object is
calculated according to the standardized non-negative matrix Y �

yi,j( ) �
y1,1 y1,2 / y1,12

y2,1 y2,2 / y2,12

..

. ..
.

1 ..
.

y600,1 y600,2 / y600,12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ obtained in step 1) and the

probability pi,j corresponding to each element in the matrix Y is:

pi,j � yi,j∑n
i�1yi,j

(3)

Ensure that the sum of the probabilities of each indicator is one
and pi,j forms the probability matrix P.
3) Calculate the information entropy and information utility value
of each indicator according to the probability matrix P, and finally
obtain the entropy weight of each indicator through
normalization. The information entropy of indicator j is:

ej � − 1
ln n

∑n

i�1pi,j ln pi,j( ) j � 1, 2,/, 12( ) (4)

where the purpose of dividing by ln n is to ensure that the entropy
value of the information is always within the range [0, 1]. The
greater the information entropy, the less information indicator J
contains. According to the value of the information entropy (4),
the information utility value of indicator j is calculated. The size of
the utility value is positively correlated with the size of the
information corresponding to indicator j.
According to the above calculation steps, the 12 types of clustering

indicators are normalized and weighted. The corresponding weight of
each indicator is shown in Table 3.

Different objective empowerment methods have different pros
and cons due to their research principles. The CRITICmethod is based
on the correlation of indicators, and its performance is better than the
entropy method for indicators with strong volatility. The calculation
principle of the CRITICmethod is based on two aspects: The degree of
difference between indicators and the degree of positive correlation
between indicators. The former uses standard deviation for
characterization, the larger the standard deviation, the greater the
fluctuation, the more sufficient the amount of information, and the
greater the weight. The latter is expressed by the correlation

FIGURE 2
Gravel distribution map.

TABLE 3 Indicators weighted results based on entropy value method.

Indicators Load
rate

Peak valley
difference rate

Maximum
utilization hour rate

Peak load
rate

Valley load
rate

Maximum load
appear time

Minimum load
appear time

Weighted
results

.0707 .0707 .0243 .0106 .0483 .0081 .0092

Indicators Daily load rate of
air conditioning

Daily load rate
of electric

water heater

Price elasticity of electric
water heater electricity
demand in valley-to-

peak

Price elasticity of air
conditioning electricity

demand in valley-to-peak

Price elasticity of air
conditioning electricity
demand in peak-to-valley

weighted
results

.2685 .1746 .124 .0973 .0938
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coefficient, the larger the value of the correlation coefficient, the less
conflict between indicators and the smaller the weight. The specific
calculation steps of the CRITIC weight method are (Xu et al., 2020).

1) By calculating the standard deviation of different indicator vectors
to measure the difference and volatility of different indicators, the
standard deviation calculation formula of the jth indicator is:

Sj �
�����������������∑n

i�1 xij − 1
n∑n

i�1xij( )2
n − 1

√
(5)

where xij is the jth indicator value of the ith resident and 1
n∑n

i�1xij

is the average value of the jth indicator. The number of indicators
j � 1, 2, ..., 12, and the total number of households with a load
n = 600.

2) Use the correlation coefficient of the jth indicator to measure the
degree of positive correlation between indicators:

Rj � ∑m

i�1 1 − rij( ) (6)

wherem � 12 is the correlation coefficient between indicator i and
indicator j. If the correlation between an indicator and other
indicators is strong, it means that the data redundancy of the
indicator is high and the amount of duplicate information is large,
and the evaluation role of the indicator in clustering should be
weakened, that is, its weight size should be reduced.

3) Calculate the amount of information Cj and weight of the j-th
indicator Wj:

Cj � Sj × Rj (7)
Wj � Cj∑m

i�1Cj
(8)

Comparing the principles of entropy method and CRITIC
method, it can be found that compared with the entropy
method, the CRITIC method pays more attention to the
original properties of the indicator, so the combination of the
two empowerment methods can give full play to the advantages
of the two. The CRITIC algorithm is weighted for 12 types of
load characteristic indicators, and the results are shown in
Table 4.
Compared with the weight values based on the entropy method in
Table 3, the weight distribution calculated based on the CRITIC
method is very different. In Table 3, the first three indicators with
the largest weight are the daily load rate, the highest utilization
hour rate, and the minimum load occurrence time, which are all
indicators extracted based on the daily load characteristics.
According to the principle of CRITIC algorithm, the daily load
of residents has strong volatility, and the characteristic indicators
extracted based on daily load themselves have strong randomness
and conflict. Therefore, the daily load characteristic indicator will
obtain a greater CRITIC weight than the refined load power
consumption characteristic indicator. Then, multiply the
entropy weight of each indicator shown in Table 3 with the
CRITIC weight shown in Table 4 one by one and do
normalization, and obtain the composite weight calculated
according to the above steps to obtain the final weight of all
indicators as shown in Table 5.

TABLE 4 Indicators weighted results based on CRITIC method.

Indicators Load
rate

Peak valley
difference rate

Maximum
utilization hour rate

Peak load
rate

Valley load
rate

Maximum load
appear time

Minimum load
appear time

Weighted
results

.2353 .2353 .0762 .0789 .0815 .0901 .0727

Indicators Daily load rate of
air conditioning

Daily load rate
of electric

water heater

Price elasticity of electric
water heater electricity
demand in valley-to-

peak

Price elasticity of air
conditioning electricity

demand in valley-to-peak

Price elasticity of air
conditioning electricity
demand in peak-to-valley

Wighted
results

.0254 .0356 .0241 .0322 .0127

TABLE 5 Final indicators weighted results.

Indicators Indicators Load
rate

Peak valley
difference rate

Maximum utilization
hour rate

Peak load
rate

Valley load
rate

Maximum load
appears time

Weighted
results

.2699 .2699 .03000 .0136 .0639 .0118 .0109

Indicators Daily load rate of
air conditioning

Daily load rate
of electric

water heater

Price elasticity of electric
water heater electricity
demand in valley-to-

peak

Price elasticity of air
conditioning electricity

demand in valley-to-peak

Price elasticity of air
conditioning electricity
demand in peak-to-valley

weighted
results

.1106 .1008 .0485 .0508 .0193
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3.2 Electricity consumption pattern clustering
based on weighted clustering indicators

The weighted clustering indicator matrix is used as the input of the
K-means algorithm to complete the clustering study of the electricity
consumption patterns of all residential load. However, the cluster
number K of the K-means algorithm needs to be set in advance, and
this chapter uses the elbow method and the contour coefficient
method to jointly determine the optimal number of clusters. The
basic principle of the elbow method is that as the number of divided
categories increases, the sum of the squared errors (SSE) of each
element in each category will continue to decrease, and the decline will
decrease sharply; When a certain inflection point is reached, the
polyline will flatten as the K value continues to increase, and the
corresponding value of that inflection point is selected as the final
cluster number. The calculation formula of SSE is:

SSE � ∑k

i�1∑Yj ∈ Sk
Yj − Ci

∣∣∣∣ ∣∣∣∣2 (9)

where SSE represents the clustering error of all samples and
reflects the clustering effect. When the total number of selected
clusters K is less than the actual number of clusters, increasing the
set K value can significantly improve the degree of intra-cluster
aggregation of each cluster, which is manifested as a large decrease
in SSE. When K gradually increases to close to the true number of
clusters, the improvement of the clustering effect is no longer obvious,
and the trend of the SSE curve will also flatten.

The contour coefficient for a sample is calculated as follows:

S j( ) � b i( ) − a i( )
max a i( ), b i( ){ } (10)

wherea(i) representsthedifferencebetweensamples ineachcategory
cluster; b(i) represents the difference between samples in different
categories of clusters. The average value of the contour coefficient of all
samples is the contour coefficient of the clustering result, and its value is
between [−1, 1], the larger the valuemeans the higher the similarity of the
samples divided in the category, the lower similarity of the samples
between different classes, and the better clustering effect.

In order to select effective evaluation indicators to judge the
clustering effect of improved clustering methods, this chapter

introduces S_Dbw evaluation indicators based on literature
(Naware et al., 2022). S_Dbw is an indicator for evaluating cluster
quality based on the sum of the average intra-cluster compactness and
inter-cluster density (ID) of each cluster. Smaller values for the
evaluation metric mean better clustering.

4 Residential load forecasting based on
residential electricity consumption
pattern clustering and fully connected
deep neural network

Since the key influencing factors of the electricity consumption
characteristics of each residential load may have a non-linear
relationship with the residential load, deep learning training
modeling for the combination of variables with a non-linear
relationship can obtain a load forecasting model with stronger
generalization ability (Wang et al., 2020a; Wang et al., 2020b;
Ismail et al., 2020). As a branch of machine learning, deep learning
has been widely used since its proposal in 2006, which upgrades
traditional neural network models (Cao et al., 2019; Kong et al.,
2017a), has strong learning ability and adaptability, often used to
solve many complex problems (Wang et al., 2019; Lu et al., 2019).
Based on the basic principle of backpropagation, the fully connected
deep neural network uses the gradient descent method to reduce the
value of the loss function calculated in the process of forward
propagation data, to complete the adaptive optimal parameter update.

The “full connection” of FDNN is reflected in the fact that all
nodes in each layer will be connected to all nodes in the next layer, that
is, there is a one-to-one correspondence mathematical
relationship. “Depth” is reflected in the high number of layers in
the model, which is usually set with multiple hidden layers. A neural
network with a reasonable “depth”may fit better for model inputs with
a larger amount of data (Lu et al., 2019; Qian et al., 2019; Wang et al.,
2021). Considering that the neural network has too many hidden
layers, it also leads to the overfitting of model training and the decrease
of training rate, especially for the short-term load prediction problem
(Hu et al., 2018; Dubey et al., 2021). Therefore, the FDNN model in
this paper chooses to use a single-layer hidden layer, which can also
obtain better generalization ability.

As mentioned above, the FDNNmulti-task load forecasting model
aims to minimize the loss function generated by forward propagation,
and iteratively optimizes the parameters and b of each layer of the
model. Considering that the adaptive moment estimation (ADAM)
learning algorithm has fast calculation speed and less memory
occupation (Kingma et al., 2014), it can obtain a more efficient
deep learning model, and this chapter uses the ADAM algorithm
as the optimization method of model parameters to complete the
parameter adjustment work. The parameter update formula of ADAM
algorithm is as follows:

t ← t + 1
gt ← θft θt−1( )
mt ← β1 ·mt−1 + 1 − β1( ) · gt

vt ← β2 · vt−1 + 1 − β2( ) · g2
t

mt
~ ← mt/ 1 − β1

t( )
ṽt← vt/ 1 − β2

t( )
θt ← θt−1 − a · ~mt/ ��̃

vt
√ + ε( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

FIGURE 3
SSE line chart.
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where the left side of ← is the output result, and the right side is the
input result θt represents the parameters of the network; gt represents
the gradient; mt and mt

~ represent the first-order moment estimates of
the gradient gt before and after correction, respectively. vt and ṽt
represent the second-order moment estimates of the gradient before
and after correction, respectively. The default settings for the
remaining parameters are: a � 0.001, β1 � 0.9, β2 � 0.999, ε � 10−8.
It can be seen that the Adam algorithm calculates the adaptive learning
rate of different parameters by calculating the mean of the first and
second order moments of the gradient, making the update process of
each parameter more independent (11). In addition, this chapter
selects the Rectified Linear Unit (ReLU) function as the activation
function of FDNN to further increase the model non-linearity.
Compared with other types of activation functions, the advantage
of the ReLU function is that it can effectively overcome the problem of
vanishing gradients and speed up model training.

In order to improve the prediction effect of the FDNN model, all
input data of the model should be standardized, and the convergence
speed of the normalized neural network will be greater than that of the
unstandardized (Cui et al., 2015). In this paper, the min-max
standardization method is used to make linear changes to the
original input data:

x* � x −min

max −min
(12)

where min and max represent the minimum and maximum values
of the sample feature set, respectively.

5 Simulation results

5.1 Experiment setup

According to the SSE line chart shown in Figure 3 and the
calculation result of the contour coefficient, K = 6 is selected as the

number of clusters of the K-means algorithm in this paper, when the
contour coefficient is the largest, and its value was .649.

In load forecasting, in addition to considering the temperature
factor, the historical data of air conditioning load is also used as the
input of the forecasting model. According to the data of a community
in Jiangsu Province from 1 June 2019, to 31 May 2020, the residential
load forecasting method proposed in this paper is used for different
research. The specific settings are as follows:

Training set: 1 June 2018 to 31 May 2019.
Verification set: Summer (1 June 2019 to 31 July 2019), Autumn

(1 September 2019 to 31 October 2019), Winter (1 December 2019 to
31 January 2020), Spring (1 March 2020 to 30 April 2020).

Test Set: Summer (1 August 2019 to 31 August 2019), autumn
(1 November 2019 to 30 November 2019), Winter (1 February 2019 to
29 February 2020), Spring (1 May 2020 to 31 May 2020).

This paper forecasts load on a certain day in June and simulates it
on a computer with Intel Core i5 1.4 GHz CPU and 8 GB memory.

5.2 Comparison of the clustering effect

Considering the volatility and diversity of resident load data, the
following methods are set as the comparison methods of the improved
clustering algorithm proposed in this chapter.

1) Direct K-means clustering of 96-dimensional daily load data;
2) The 96-dimensional data of the daily load curve of residents were

weighted by the CRITIC algorithm and clustered by K-means;
3) Only the entropy method is used to weight the 12 types of

clustering indicators, and then K-means is used for clustering;
4) K-means clustering based on 12 types of unweighted clustering

indicators;
5) The entropy method and the CRITIC method are used to combine

and weigh the seven types of daily load characteristic indicators,
and then K-means are used for clustering.

TABLE 6 Assessment of cluster results.

Different method Method 1 Method 2 Method 3 Method 4 Method 5 Method of the paper

S_Dbw .738 .729 .732 .743 .709 .681

FIGURE 4
Category 1 of residential electricity mode and the clustering center of it.
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FIGURE 5
Category 1 of residential electricity mode and the clustering center of it.

FIGURE 6
Category 1 of residential electricity mode and the clustering center of it.

FIGURE 7
Category 1 of residential electricity mode and the clustering center of it.
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The clustering result of the above five methods and the methods
proposed in this chapter is evaluated using S_Dbw evaluation
indicators. As shown in Table 6, the clustering results obtained by

the proposed method correspond to the smallest value of the S_Dbw
indicator, which proves that when selecting and analyzing the
clustering indicator, considering the relevant indicators of refined

FIGURE 8
Category 1 of residential electricity mode and the clustering center of it.

FIGURE 9
Category 1 of residential electricity mode and the clustering center of it.

FIGURE 10
Forecasting result of Category 1.

FIGURE 11
Forecasting result of Category 2.
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load power consumption characteristics is also beneficial to improve
the robustness of the clustering algorithm.

5.3 Analysis of the result

A load of residents in a certain community is clustered, and the
results are shown in Figures 4–9. It can be seen from the figure that
even if all resident samples belong to the same community, the living
conditions and economic conditions are roughly the same, and there
will be obvious differences between different residential load curves.
Combined with Figures 4–9, the curve morphological characteristics
of various residential cluster centers were analyzed, and different types
of residents were qualitatively described. Category 1 residents still
consume electricity above the average daily load during the period
from 10:00 p.m. to 1:00 a.m. and belong to night owl families. The load
curves of Category 2 and Category 6 residents have obvious morning,

FIGURE 12
Forecasting result of Category 3.

FIGURE 13
Forecasting result of Category 4.

FIGURE 14
Forecasting result of Category 5.

FIGURE 15
Forecasting result of Category 6.

FIGURE 16
Comparison of total load between mothod in this paper and
forecasting without clustering.
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middle, and evening peaks, and the electricity consumption is low in
other periods, which should be normal office worker families. The
difference between the two is that the electricity consumption of
Category 6 residents is low during lunch and dinner, and it can be
inferred that their lunch and dinner are solved outside, while it can be
seen from the load curve of Type 2 residents that the three meals of this
type of residents are solved at home. The electricity consumption
behavior of Category 3 residents is significantly weakened after 8:
00 p.m., and the average electricity consumption of Category
3 residents is less than that of other categories, which should
belong to elderly households or electricity-saving households. The
load curve of Category 4 residents does not have very significant peak-
to-valley characteristics, and the frequency of electricity consumption
is high, which should belong to freelance families. Category 5 residents
are other households.

In this paper, a 1-day load of the summer is taken as an example,
and the prediction results are shown in Figures 10–15. This paper uses
the Mean Absolute Percentage Error (MAPE) to evaluate the accuracy
of the prediction. The MAPE values for the six categories of loads
forecast in this paper are [3.21%, 2.84%, 3.17%, 3.15%, 3.15%, 2.65%,
and 2.87%]. Compared with the MAPE values for total load forecast
without clustering, the MAPE value in this paper is 2.44%, 5.21%
lower, which is shown in Figure 16. Prediction accuracy under
different clustering methods is similar with prediction accuracy
without different clustering methods, which shows that poor
clustering methods cannot improve the accuracy of predictions.

6 Conclusion

This paper studies the problem of resident load forecasting and
extracts seven commonly used daily load clustering indicators based
on the daily load curve. At the same time, 20 types of clustering
indicators are extracted based on the characteristics of the air
conditioning load and electric water heater load. In order to avoid
the overfitting problem caused by excessive indicator dimensions, the
PCA method is used to process the characteristic indicators of high
energy consumption, and 12 types of residential load clustering
indicators are determined. To reduce the influence of subjectivity
in indicator setting on the clustering results, the objective weighting
method is used to empower 12 types of clustering indicators, and the
K-means clustering of residential electricity consumption mode is
completed based on the weighted indicator matrix. Among them, to
give full play to the advantages of different objective weighting
methods, the entropy method, which reflects the degree of
dispersion between indicators, is combined with the CRITIC
method, which comprehensively reflects the correlation within the
indicator and the conflict between indicators, to obtain the weight
calculation results with a higher degree of objectivity.

The results show that the proposed method can obtain the
clustering results with the smallest S_Dbw value, and the clustering
effect is the best. Finally, multi-task learning is carried out based on the
load historical data of different types of residents, and the load
prediction results of six types of residents are obtained through
FDNN. The comparison shows that the accuracy of the prediction
method proposed in this paper is improved.

With the development of science and technology, the structure of
the power grid will be more complex than before, and the balance
between supply and demand of power load will also face new
challenges. The load forecasting model built in this paper has good
forecasting performance, but there are still some problems to be
studied and improved.

1) Because new energy power generation is affected by many factors,
such as light, wind speed, wind direction, etc., the relationship
between short-term power load and influencing factors may also
change, and new hidden influencing factors and related
relationships need to be explored.

2) The data used in this paper are partly from 2019. Affected by
COVID-19 in 2020, the global economic pattern and energy
consumption structure have been greatly affected, which also
poses new challenges to load forecasting.
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