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Multilevel inverters (MLI) are finding widespread in various engineering and

commercial applications owing to their immense performance. The cascaded

H-bridge (CHB) inverter is the most potential MLI topology for renewable

energy applications. The successful operation of the CHB-MLI depends on

the integrity of the semiconductor devices and capacitors. Irrespective of its

benefits the huge number of switches decreases the reliability of the inverter.

Concerning reliability, this article proposes a fault-tolerant (FT) CHB MLI for

solar photovoltaic applications. The proposed CHB MLI can withstand both the

single and multiple open circuit faults in all the H-bridges of the CHB topology.

The diagonally opposite switch pairs of CHB topology have similar fault features

which lead to difficulty in finding the fault switches using the analytical fault

diagnosismethods. Hence an artificial intelligence (AI) based fault diagnosis (FD)

and FT operation of CHB MLI are interpreted. The proposed model offers

complete FD and FT operation within one fundamental cycle which is

advantageous relative to the existing methods. Compared to the existing

methods, the proposed AI-based fault diagnosis strategy achieves a shorter

diagnosis time and provides 96% classification accuracy between various fault

conditions. Further, the simulation and HIL results demonstrated that the

voltage magnitude and THD have been maintained at 8.24% before and

after the fault state. In addition, the suggested FT structure ensures the

constant output power over the post-fault operation for both single and

multiple switch failure instances while improving the MLI resilience. The

feasibility and performance of the proposed method have been investigated

through related case studies using simulation and hardware-in-the-loop (HIL)

tests on a single-phase fifteen-level CHB MLI.
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1 Introduction

1.1 Literature survey

CHB MLI is the most desired MLI topology employed in

diversified applications due to its remarkable features like

modularity, scalability, and controllability. To attain the

staircase voltage waveform, the CHB MLI comprises many

series-connected h-bridge cells that enable low-voltage, fast-

power switches, such as insulated-gate bipolar transistors

(IGBT). The CHB MLI is divided into two topologies based

on the structure: symmetric and asymmetric. When using

symmetric CHB MLI, the input voltage magnitude for each

module is identical; however, when using asymmetric CHB

MLI, the voltage magnitude of the input voltage source is

different. Symmetric CHB (SCHB) has garnered more

attention than asymmetric CHB (ACHB) owing to its

modular construction, low-rating power devices, and

separated dc voltage sources, which make it more appropriate

and efficient for solar PV conversion systems. However, the

increased number of power switches in an SCHB increases the

possibility of switch faults. A recent survey and research on over

200 products from 80 firms state that 34% of faults can occur in

semiconductor switches and solders (Siddique et al., 2019). The

switch faults are classified into open circuit faults (OCF) and

short circuit faults (SCF), the most prevalent fault in inverters.

OCF does not cause an immediate shutdown, but in the long

term causes the linked components to fail, leading to a shutdown.

The switch failure greatly influences the reliability of the MLI,

which is a significant concern in anMLI. Major applications such

as adjustable speed drives, battery management systems, solar

systems, and grid-connected systems demand an uninterrupted,

continuous, and protected mode of operation. For such kinds of

applications, fault-tolerant inverters are extremely crucial to

maintain the reliability and safety of the system. For

uninterrupted service, fault-tolerant control is utilized to keep

the load’s power balanced at all times and restore normal

operation. This substantiates the need to include fault

tolerance in the design process of multilevel inverters. Thus,

MLI fault tolerance has inspired extensive study in recent

research (Siva Priya and Kalaiarasi, 2022).

Consequently, it is necessary to detect any faults that may

exist with the switching parts of the inverter. In addition to FD,

fault-tolerant control (FTC) of the CHB MLI is also required in

the event of a faulty condition to restore the system to its pre-fault

state as quickly as feasible. Thus, an MLI system with FD and

fault tolerance management is paramount for increasing the

reliability of the MLI. In (Kumar et al., 2020), a rapid FD

system focusing on estimating each module’s active and zero

voltage states is presented. However, this approach does not work

with symmetric CHBMLI. The OCF in symmetric CHBMLI can

be identified by collecting fault characteristics from the primary

component, such as total harmonic distortion (THD), mean

value, and RMS value (Sharma et al., 2021). Yet, this

approach requires different measurements, which raises the

system’s cost. However, the FD mentioned above cannot

identify multiple switch faults or even employ a more

significant number of indicators to identify a single switch

(SS) fault. Faulty phases can be identified in (Mehta et al.,

2018), utilizing THD and the normalization factor of output

current. Furthermore, this technique is not suited for single-

phase CHB MLI. However, accurate measurement circuits and

high-speed processors are required instantly to detect and

calculate THD.

Also, the CHB MLI in (Gireesh Kumar et al., 2022),

(Choudhury et al., 2021) utilizes several classifier algorithms,

heuristic approaches, and statistical feature optimization

techniques for FD. However, these approaches have higher

computational complexity and high-speed processors and

need more rigorous classifier training, resulting in a longer

detection time. Simple and highly effective soft computing

techniques, such as "ANN, Machine learning, and Deep

learning,” are now widely utilized to address the

aforementioned constraints. These methods are quick, precise,

and accurate for switch fault detection. Artificial intelligence (AI)

is becoming widespread in power electronic component fault

detection with the advent of powerful and low-cost

microcontrollers. Although several studies have been

conducted on FD in CHB MLI, few studies have concentrated

on reduced switch topologies. In (Raj et al., 2018a), an intelligent

FD approach is deployed to locate single switch gate drive faults

on CHB MLI. The FD using two distinct machine learning (ML)

algorithms, SVM and kNN, is suggested (Ali et al., 2021), with the

PPCA-SVM-based ML algorithms providing the most accurate

and efficient fault detection. Moreover, the approaches presented

in (Raj et al., 2018a), (Ali et al., 2021) give SS fault detection in

CHBMLI and do not address the faults in multiple switches. The

mathematical model for a three-phase inverter employing phase

current-based fault detection technique is described in (Cheng

et al., 2020a) to find OCF in single and various switches.

Although this method takes a long time to implement, it does

not provide an exact location of the fault. In (Kuraku et al., 2019),

a fuzzy-based fault detection approach is presented to identify

single and multiple switch faults in motor drives. The phase

current of the drive is employed as a fault identification

characteristic; nevertheless, the absence of a systematic

methodology and slower reaction are the fundamental

limitations of fuzzy logic-based fault detection. Despite fault
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detection, locating the exact location of the fault in diagonal pairs

of switches in CHB MLI is challenging due to the identical fault

features. Therefore, there is still a lack of studies in determining

the exact location of faulty switches in multiple fault scenarios.

Further, the MLI system with the FTC scheme is inevitable to

provide a complete fault diagnosis approach. The FTC

approaches are divided into two classes, hardware-based and

software-based implementations. In hardware-based solutions,

additional elements are provided to the inverter to mitigate the

faults. In software-based techniques, the regulation and

modulation of the MLI are adjusted to maintain the

maximum voltage of the inverter in the event of a fault. Using

a modified level-shifted pulse width modulation (PWM)

approach with neutral shift (NS) (Kim et al., 2016)

reconfigures the switching strategy of the inverter by

effectively utilizing the remaining healthy switch in a defective

module to keep the three-phase balanced line-to-line voltage

constant under fault. Modifying the amplitude and angle of phase

voltages in the inverter creates proportional line voltages with

balanced stress on all healthy units. However, this method is

confined to the number of voltage levels and types of faults.

Instead of skipping a faulty cell (Ouni et al., 2019), suggests that it

can be utilized to generate voltage using a phase-shifting (PS)

PWM technique with fewer levels. On the other hand, this

technique only works with PS PWM and increases the

switching stress of different devices, making them more prone

to failure. Extensive mathematical calculations, the lower voltage

at the output, voltage fluctuations in the system, restricted to

higher voltage levels, and difficulty using closed-loop

applications are some of the constraints of the software-based

method.

In (Asif et al., 2021), a new 5-level asymmetric inverter

architecture employing the nearest level control (NLC)

technique is presented. Using redundant switching states,

single-switch open circuit fault-tolerant control is achieved. To

enable redundant switching combinations, three auxiliary

switches are added. However, the system is unable to tolerate

faults on themain switches. The voltage control range of the CHB

MLI is widened using a hybridized PWM approach, as described

in (Sarwar et al., 2021), and the system is made fault-tolerant by

adding two unidirectional switches to withstand SS fault. A

hybrid control scheme for CHB MLI employing the half-

bridge recombination method was suggested in (Yang et al.,

2021) and included the reconfiguration of the modulation

method, module reconfiguration, and zero sequence voltage

injection for single and double switch failures. However,

under a fault scenario, the inverter’s voltage magnitude

decreases. Therefore, the topologies presented in (Asif et al.,

2021)– (Yang et al., 2021) cannot mitigate fault in multiple

switches and provide only a reduced output voltage, raising

harmonic distortion and losses under faulty conditions. The

FD and FTC structures outlined above encounter the

following issues and constraints. Inaccuracy in detecting

simultaneous faults in multiple switches, inability to tolerate

faults in multiple switches with sustained output power and

voltage levels, the significant increase in harmonics, and use of

bidirectional switches, which increase the losses and total cost of

the system. Therefore, enhancing the reliability of MLI systems

and lowering possible risks in the power conversion systems

requires efficient fault detection, classification, and fault

tolerance.

1.2 Motivation of the work

The literature study highlights the need for further research

into the development of a robust fault-tolerant control scheme

for the inverter by highlighting the limits and downfalls of

existing fault diagnostic techniques. The motivation for the

proposed research is summarised below.

1) Despite fault detection, identifying the exact location of the

fault in diagonal pairs of switches of CHB MLI is challenging

due to the identical fault features. Therefore, there is still a

lack of studies in determining the exact location of faulty

switches in multiple fault scenarios.

2) The inaccuracy in detecting simultaneous faults in multiple

switches hampers the performance of the fault diagnosis

scheme which may result in the wrong diagnosis and

delayed reconfiguration.

3) The existing FTC scheme finds limitations in tolerating single

and multiple faults with preserved output voltage and current

at post-fault conditions.

4) The severity of the fault varies significantly with the types of

faults, fault location, and operating conditions. Thus, the fault

diagnosis scheme should be able to detect, classify and tolerate

the fault quickly under all possible fault scenarios.

1.3 Contribution and manuscript
organization

A survey of the relevant literature finds various

shortcomings in the currently used traditional model-based

approach, signal processing, and metaheuristic method for

MLIs. In addition, there is a lack of robust fault tolerance in

present methods for both single and double switches. Most

fault-tolerant solutions lack thorough performance evaluations

of pre- and post-fault operations with varying fault types.

Additionally, optimization and transformation methods are

needed for fault diagnosis, and the performance of the

current signal processing methodology is diminished in the

presence of noise in the sampled signals. The limitations of

previous research methods and current diagnostic methods are

discussed in this article. The contributions of AI-based fault

detection and diagnosis approach are outlined here.
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1) This article aims to develop the ANN approach for CHBMLI

fault diagnosis that utilizes multilayer perceptron (MLP) to

detect open circuit faults and their classification.

2) The proposed scheme can detect single and multiple OC

faults with an extensive disparity in fault types, locations, and

operating conditions.

3) The proposed MLP-based technique requires only a voltage

signal as a fault diagnostic feature which reduces the

complexity of the fault detection system.

4) The proposed FTC scheme maintains the output voltage and

current at the same level as normal, which is widely needed

for critical load or solar PV-based grid-connected

applications.

5) The proposed hardware-based FTC scheme addresses the

challenges faced by the existing schemes, including reduced

output voltage at post-fault operation, increased harmonics,

low detection rate among multiple faults, and low reliability.

6) The proposed MLP-FD technique has high detection

accuracy of 96% among various single and multiple switch

OC faults. Also, it requires only about 10 ms and 20 ms to

clear the single and multiple OC faults, which is less than one

fundamental cycle.

Furthermore, the structure of this article is as follows: Section

2 presents the system configuration of CHB MLI and analysis of

various OCF conditions; Section 3 explicates the proposed fault

diagnostic strategy based on ANN; Section 4 emphasizes the

simulation and HIL results and discussions to assess the

performances of fault detection and fault tolerant approaches;

Section 5 provides a comparison with existing works, and Section

6 draws the conclusion.

2 System configuration

In CHB MLI, h-bridge and low-voltage dc power sources

work together to provide higher or lowered power levels by

adding or removing h-bridge modules. Each h-bridge unit is

configured to produce three distinct output voltages, +Vdc,

0Vdc, and -Vdc, by connecting the dc supply to the load

through various switch configurations. Figure 1A depicts the

general structure of the CHB MLI as including (2n+1)

h-bridges, where n represents the number of h-bridges. Each

h-bridge unit consists of four semiconductor switching devices

(S1-S4) coupled to antiparallel diodes and separate dc voltage

sources. In this work, a 15-level inverter (n = 7) with a dc

voltage of magnitude Vdc1 = Vdc2 = Vdc = 48 V and an RL load

of 100Ω and 30 mH is examined for fault diagnosis. At standard

conditions, the 15-level output voltage appears across the load

as +7Vdc, 0V, and -7Vdc with a peak voltage of 336 V. The

categories of OCF are classified based on the fault level and

magnitude and are grouped into similar groups as shown in

Figure 1B. The PD PWM technique is used to generate the

switching patterns of the proposed CHB MLI by comparing the

triangular carrier signal with the sinusoidal reference signal, as

illustrated in Figure 2. The general expression for output

voltage is given as

Vo � V1 + V2 + V3 +/+Vn (1)

where V1, V2 . . . Vn is the output voltage of each h-bridge.

2.1 Classification of open circuit fault

In this work, the OCFs are emulated as the breakdown of

the switch, including the freewheeling diode. The repetition of

switching faults that occur at a particular time determines the

different kinds of OCF in an MLI. Accordingly, the OCF is

classified into the single switch (SS) fault and the double

switch (DS) fault. In an instant, the possibilities of switch

breakdown are minimal. Thus, the maximum single and

double-switch OCFs are examined here. The selection of an

appropriate signal for fault detection is essential, which

directly impacts fault diagnosis performance. The inverter

output voltage includes valuable information to diagnose the

fault type and location. The inverter output current signal

depends on load variations, but the voltage signals are

unaffected by these variations. Therefore, this work utilizes

only the inverter output voltage signals for fault diagnosis. For

fault classification, the OCFs of CHB MLI are classified into

four categories, based on the number and location of faulty

switches as shown in Figure 3. The SS fault belongs to fault

class-I, and the DS fault belongs to fault class II-IV, a total of

four classes. Further, this section analyses the various fault

classes and their profound impacts on the CHB MLI output

voltage.

2.2 Analysis and impacts of open circuit
fault

• Fault class-I: Single switch fault: When OCF occurs at

single switch S1 to S28 the peak voltage reduction in

either positive or negative voltage levels with respect to

the switch position. Thus, the average peak voltage gets

reduced to 288 V.

• The DS fault on the CHB MLI affects the load voltage and

leads to variable output voltage waveform with reduced

voltage levels. These faults are considered complicated

faults in this work. The possibilities of double switch

fault cases in the main inverter are classified into three

separate fault classes.

• Fault class-II: Failure of diagonal switches: Consider the

switches S1 and S4 or S2 and S3 are open-circuited, the peak

voltage is reduced to 240 V. The DS fault causes un-

symmetry in the output voltage waveform.
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• Fault class-III: Failure of upper/lower switches: When the

switches S1 and S3 or S2 and S4 are open-circuited, the peak

voltage is reduced to 288 V in both the half cycle. Even

though the two voltage levels are missing, the voltage

waveform is still symmetrical.

• Fault class-IV: Failure of leg: Compared with the other

types of OCF, the failure of switches in the same leg

nullifies the output voltage. Thus, it can be inferred

from the analysis that the output voltage waveform of

diagonal switches, upper and lower switches, and leg

switches exhibit similar fault characteristics. Hence, they

are categorized into three groups.

Further, these fault states and their implications hold for

other h-bridges in the main inverter and the output voltage

follows the same pattern as S11, S12, S13, and S14. Hence, these

FIGURE 1
(A) Schematic structure of single-phase 15-level CHB MLI, (B) Categories of faulty switch pairs.

FIGURE 2
PD-PWM implementation Figure.
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voltage patterns can be utilized to identify a faulty switch.

Therefore, the fault diagnosis system has extracted the static

fault features such as RMS voltage, h-bridge voltage, and the

voltage across switch pairs under normal and faulty conditions.

Equations 2 to 4 have been used to calculate the deviations in the

output voltage, bridge voltage, and voltage across switch pairs.

The deviation in the output voltage of MLI is given by

ΔVo � Vo,ref − Vo,act (2)

Similarly, the deviations in the output voltage of the h-bridge

are expressed by

ΔVhbn � Vhbn,ref − Vhbn,act ∀n � 1, 2 . . . 7 (3)

The voltage reduction in switch pairs’ is calculated as

ΔVnm � Vnm,ref − Vnm,act (4)

m = voltage across switch pairs

Based on the rate of changing these quantities, the faulty

h-bridge unit and its faulty switch pairs are precisely detected and

classified.

3 Proposed methodology

ANN simulates the human brain conceptually and is

widely utilized in several decision-making applications. The

ANN has three layers and each layer has several neurons

interconnected through appropriate weights and bias. Figure 4

depicts the overall block diagram of the proposed FD and

fault-tolerant control of CHB MLI. First, the fault features

such as output voltage, individual h-bridge voltage, and the

voltage across switch pairs are collected from the simulation

results and provided as input to the fault diagnostic system.

The proposed fault diagnostic method employs a fully

connected feedforward NN called multilayer perceptron to

identify and classify the normal and faulty conditions of CHB

MLI. Multilayer Perceptron comprises an input layer, one or

more hidden layers, and an output layer, as shown in Figure 5.

The input layer transmits the input signals in a forward

direction, distributed to each neuron in the hidden layer.

The architecture of the proposed feedforward MLP has two

hidden layers and is trained using the provided database.

Based on the complexity of the fault, the hidden layers are

selected. However, using too many hidden layers results in an

overfitting issue since they work well for the training dataset

but adversely for the validation dataset.

Thus, the maximum of two hidden layers is chosen;

adding more than two hidden layers has no noticeable

influence on network accuracy (Maher et al., 2021). The

proposed MLP structure has 22 input neurons, two hidden

layers with 30 and 20 neurons where the 22 input neurons

correspond to the 22 input features extracted from h-bridge

output voltage at normal and different OCF cases. The

datasets are collected for both normal and fault conditions,

and in the total available dataset, 70% of data are used for

training and 30% for testing and validation. The Levenberg-

Marquardt backpropagation algorithm trains the neural

network. Backpropagation is a supervised learning method

used by MLP. Using conjugate gradient algorithms, the MLP

is trained by backpropagating errors between desired values

known as targets and the network’s output. The MLP with

sigmoid hidden neurons and softmax output neurons are

used to train the network model. First, the NN assumes the

initial weight values Wij, calculates the error between the

output and targets, and updates the weight values until

minimum MSE reaches. The performance indices of the

developed NN are assessed by correlation coefficient R)

and mean squared error (MSE).

3.1 Algorithmic design

The flowchart of the proposed MLP-based fault detection

and tolerance system has shown in Figure 6. Initially, the MLP

is trained with the normal and faulty dataset, and then the

trained NN is used for fault detection. The datasets are derived

from simulation results under several OCF conditions,

including diagonal switch fault, upper/lower switch fault,

and leg fault. Four different combinations of OCF are

considered for fault detection, classification, and fault-

tolerant operations. Nearly 656 datasets are extracted of

which 459 are chosen for training, and the rest 197 are used

FIGURE 3
Classification of open circuit faults.
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for testing and validation. The dotted line in Figure 6 indicates

the operation performed by NN. Initially, the overall output

voltage, output voltages of the individual h-bridge unit, and

voltage across switch pairs are measured. The controller

performs a normal operation if the actual value equals the

reference value. If the measured value differs from the reference

value indicates the fault mode. In this mode, the controller will

calculate the change in the h-bridge voltage (ΔVhbn) and detects

the faulty h-bridge. Moreover, after detecting the faulty

h-bridge unit, the proposed fault classifier algorithm

determines the fault classes based on the number and

location of faulty switches as described in Figure 5. Once the

FIGURE 4
Block diagram of the fault diagnostic system.

FIGURE 5
Typical MLP structure for fault classification.
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fault is detected and classified, the fault-tolerant control mode is

initiated by the MLP-NN. The intelligent controller directs the

control signal to turn on the redundant unit through A1 and

A2 to compensate for the missing voltage level.

3.2 Proposed fault detection and
classification methodology

For the proposed fault detection and classification process,

22 input parameters (14 voltage across switch pairs (Vnm), seven

individual bridge voltage output (Vhbn), and overall output

voltage (Vo)) are extracted as fault features and are fed as

input to the neural network for various modulation index

respectively. All four categories of OCF cases and no-fault

conditions have been considered in developing the data set.

The target label for the fault diagnosis is presented as a binary

classification using the values 0 and 1, which indicate whether the

fault has occurred or not. During the fault classification process,

the processed fault data are labelled for their respective faults and

trained using the fault detection and classification algorithm. The

four output neurons represent the SS fault and DS fault, as

illustrated in Figure 5. The proposed fault classifier algorithm

accurately classifies the four possible categories of OCF.

FIGURE 6
Flowchart of the ANN-based fault detection, classification, and fault tolerant control scheme.
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3.3 Proposed fault tolerant control
scheme

The analysis of CHB MLI under faulty conditions shows that

the function of CHB MLI is unstable, and specific output levels

are discarded depending on the fault type, location, and intensity.

To address this issue, a revolutionary architecture has been

developed in this work to compensate for different sorts of

failures while preserving output power ratings and inverter

levels at the same time. Figure 7 depicts the circuit

configuration for the proposed FT CHB architecture. The

proposed design has two major sections the main inverter

unit and the redundant h-bridge (R-HB) unit. The redundant

h-bridge (R-HB) unit is coupled to the main inverter to

compensate for the different forms of OCFs in the CHB MLI.

The control of the R-HB unit is provided by the control switches

FIGURE 7
Schematic diagram of the proposed fault tolerant control scheme.
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A1 and A2 through the NN controller. The utilization of the

R-HB unit creates several additional pathways for generating

fifteen-level output voltage. During a fault, the NN controller

detects the change in the output voltage, and the FD block

displays the present fault status. The fault state is indicated by

1, which represents the faulty switch and associated fault classes.

The remaining states are indicated as 0. During normal

operation, the control switches [1,0] logic generates the

standard output voltage waveform. When fault occurs, the

controller initiates the R-HB unit to operate for compensating

voltage reduction andmissing voltage levels by setting the control

logic to [0,1].

4 Results and discussion

To verify the effectiveness of the proposed fault detection and

fault tolerant control scheme for single phase fifteen level CHB

MLI through simulation and hardware-in-loop (HIL) results are

provided for different case studies. The simulation parameters

are listed in Table 1. To validate the proposed FD and FTC

scheme, the system is tested with four different OCF conditions

including SS fault, DS fault in diagonal switches, DS fault in

upper and lower switches, and DS fault in the same leg. The

simulation and HIL results elucidate the performance of the

proposed fault-tolerant inverter in normal, fault, and fault-

tolerant modes.

4.1 Simulation results

To investigate the three modes of operation, ten cycles of the

output voltage for each state are acquired from t = 0–0.2 s.

Figures 8–11 illustrate the simulation results regarding fault

detection and fault tolerant operation of the inverter in the

OCF condition case switch S11 to S14. The simulation

waveform includes the output voltage Vo, bridge voltage V1,

fault signal, fault detection signal, and R-HB voltage signal.

TABLE 1 Simulation parameters.

Reference frequency 50 Hz

Switching frequency 2 kHz

Input voltage for each h-bridge 48 V

PWM technique PD PWM

RL load 100Ω,30 mH

Tested faults Four categories of OCFs

FIGURE 8
Simulation results of single phase fifteen-level CHB MLI under SS OCF at (A) S11, and (B) S12.

Frontiers in Energy Research frontiersin.org10

Sivapriya et al. 10.3389/fenrg.2022.1083662

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1083662


4.1.1 Simulation results for open circuit fault
Before applying the fault, the system operates normally and

the fault signal equals 0. After the occurrence of a fault, the faulty

switch is indicated by raising the edge of the fault detection signal

from 0 to 1 as shown in Figure 8. When SS occurs at .06 s, the

fault detection signal rises to 1, confirming that the fault has

occurred at switches. Since the diagonal switches exhibit the same

fault characteristics, the fault detection time for switch faults S11

FIGURE 9
Simulation results of single phase fifteen level CHB MLI under DS OCF at (A) S11,S14 (B) S12,S13 (C) S11,S13 (D) S11,S12.
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and S14 remains the same at 8 ms and for diagonal switches S12
and S13 at 12 ms, as shown in Figures 8A, B. Only data pertaining

to inverter performance under an OCF event for selective

switches are provided to avoid similar and repetitive results.

When a double switch fault occurs at diagonal pair of switches,

the fault signal gives rise to 1 at eight and 12 ms, as illustrated in

Figures 9A, B. For all other DS fault conditions, the fault signal is

detected within 16 ms to clear the fault, as shown in Figures 9C,

D. Similarly, the fault detection results were obtained for all other

switches in the CHB MLI. Also, we can see that the time taken to

identify all the single switch faults is around only 8 ms and

double switch faults at 16 ms. Thus, the variation in fault

detection time is based on the corresponding switching states.

4.1.2 Simulation results for open circuit fault
tolerant operation

The fault-tolerant operation of the CHBMLI begins once the

faulty switch is identified. The proposed fault-tolerant control

has been implemented by adding the redundant HB (R-HB) unit

to the main inverter unit at the time of fault occurrence. The

activation of the R-HB unit is controlled by the two control

switches A1 and A2. The R-HB unit employs the same gate driver

circuit to restore the normal condition. Consequently, the

suggested work does not need an extra gate driver circuit. The

suggested fault diagnosis approach utilizes just (N+1)/2 sensors

instead of 2(N-1) sensors needed for a single-phase N-level CHB

MLI. A detailed simulation analysis was carried out under

different OCF situations to confirm the feasibility of the

envisioned fault tolerant operation as depicted in Figures 10,

11. In normal operating conditions, the inverter produces

15 levels of output voltage from the period 0 to .06 (Normal

mode). When SS fault occurs at S11, the inverter output voltage

will get reduced in the positive half cycle, and the R- HB unit will

get turned on to compensate for the missing voltage level (Fault

tolerant mode) as depicted in Figure 10A. Similarly, when an

OCF fault occurs at switch S12, the inverter output voltage will get

reduced in the negative half cycle, and the controller operates in

fault-tolerant mode, as seen in Figure 10B. This condition is valid

for all the other SS fault conditions in the CHB MLI. The switch

pair S11, S14, and S12, S13 is one of the main switches to create both

positive and negative voltage levels; if it fails, both the positive

and negative voltage levels generated by HB-1 are eradicated.

When these switches fail, the NN controller initiates the

command signal to the R-HB unit to compensate for the

missing voltage levels, as deployed in Figures 11A, B.

Figure 11C displays the simulation results for the fault-

tolerant operation of upper switch OCF, S11, and S13. Once

the upper switch fault is detected, the NN controller sends the

command signal to the R-HB unit to tolerate the missing voltage

levels. When leg fault occurs at switches S11 and S12, only zero

output voltage is generated, which is unacceptable. Once the leg

fault is detected, the controller sends the command signal to turn

FIGURE 10
Simulation results of fifteen-level CHB MLI under normal, fault, and fault-tolerant mode of SS fault at (A) S11, (B) S12.
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on the R-HB unit via control switches A1 and A2 to tolerate the

fault condition. Figure 11D illustrates the fault-tolerant operation

for the faulty inverter leg.

Therefore, in all the SS and DS fault conditions, the post-

fault output voltage and current are maintained at the pre-fault

level, showing the feasibility of the proposed fault-tolerant

MLI. It is noteworthy that the presented fault-tolerant

technique, based on the proposed structure, is applicable for

n-level configuration. For the fault mentioned above, the

controller can detect and tolerate the single and double

switch faults in a single h-bridge at a time. Multiple

h-bridge faults and variations in load were not investigated.

The pre-fault output voltage for fifteen-level FT CHB MLI is

336 V peak to peak (237Vrms) at the frequency of 50 Hz with

FIGURE 11
Simulation results of fifteen-level CHB MLI under normal, fault, and fault-tolerant mode of DS fault at (A) S11,S14 (B) S12,S13 (C) S11,S13 (D) S11,S12.
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voltage THD and current THD of 8.24% and 5.84%

respectively. Table 2 shows the results of THD calculations

utilizing FFT analysis performed during fault and post-

operations. Figures 12A, B further demonstrates that the

suggested intelligence controller greatly reduces harmonics

at the post-fault output voltage. Furthermore, it is clear

from the simulation results that the fault occurrence at .06 s

and the fault tolerant control operation takes place at .08 s

without any compromise with the performance of the inverter.

The simulation results show that the time between fault

occurrence and fault tolerant control is only about 8 ms for

SS fault and 16 ms for DS fault cases. i.e., it takes less than one

fundamental cycle to clear both single and DS faults. Also, the

THD maintains the same level before and after the occurrence

of SS and DS faults. Thus, the inference that can be drawn

about the proposed design is that it is possible to achieve

TABLE 2 Harmonic analysis of output voltage at various fault conditions.

SS and DS OC fault THD (%)

During fault After fault

Voltage harmonics Current harmonics Voltage harmonics Current harmonics

S1 8.77 6.47 8.28 5.85

S2 8.42 6.12 8.32 5.86

S3 8.42 6.12 8.32 5.85

S4 8.77 6.47 8.28 5.85

S1S4 9.89 7.70 8.28 5.85

S2S3 9.54 7.44 8.31 5.85

S1S3 9.54 7.44 8.31 5.85

S2S4 8.71 6.47 8.32 5.85

FIGURE 12
Illustration of the output voltage waveform and the corresponding FFT analysis during fault and post-fault condition (A) S1 and S4 fault (B)
S2 and S3 fault.
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perfect fault tolerance for both SS and DS-OCF cases in less

than 16 milliseconds. The suggested ANN-based FTC method

is easier to implement and requires less time to diagnose faults.

Thus, the proposed fault diagnosis method is applicable to

generalized inverter structures. The effectiveness of the output

voltage, current, and THD maintains the same level before and

after the fault, as portrayed in Figures 10–12.

4.2 Hardware-in-the-loop results

The HIL configuration for real-time simulation is shown in

Figure 13. The single phase 15-level CHB MLI utilizing the

PDPWM technique with ANN controller is built into the RT

lab simulation and dumped into the OP4510 real-time HIL

simulator to test the system’s performance. Figures 14, 15

FIGURE 13
Real-time HIL test setup.

FIGURE 14
HIL results of fifteen-level CHB MLI under SS fault at (A) S11, and (B) S12.
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show the real-time HIL results of the proposed fault tolerant

control scheme under various OCF conditions.

Waveforms under normal, fault, and fault-tolerant operation

are shown in Figure 14A. The fault is initiated at 2 s during the

normal operation in HIL testing. When OCF occurs at switch S11
or S14, the fifteen-level load voltage has been reduced by one level

representing the fault mode. The fault-tolerant operation begins

once the fault signal has been detected, which is indicated by the

rising edge of the fault detection signal. During the FT mode, the

faulty H-bridge unit gets disconnected from the main inverter,

and a redundant unit gets added. Once the fault is cleared, the

load voltage, and current have been recovered to their normal

state to ensure stability. Likewise, the OCF occurs at S12 or S13,

the fifteen-level load voltage has been reduced by one negative

level. The fault detection signal gives rise to one where the fault-

tolerant mode begins. The reduced voltage level gets

compensated by R-HB unit voltage as depicted in Figure 14B.

The load voltage and current follow the same as normal and FT

modes.

The OCF occurs at diagonal switches S11 and S14 or S12 and

S13 are shown in Figures 15A, B. When these faults occur, the

voltage level gets reduced abruptly, which causes serious damage

to the load connected to it. Similarly, when the OCF occurs at

switches S11 and S13, or S12 and S14, the load voltage is distorted

in both the positive and negative half cycles, resulting in uneven

voltage in the output, as shown in Figures 15C, D.When the OCF

occurs at switches S11 and S12, or S13 and S14, no voltage

appears across the load throughout the fault period. The fault-

tolerant operation of the leg fault is shown in Figures 15E, F. The

fault-tolerant operation begins immediately once the fault

detection signal raises to 1. It can observe from the results,

the load voltage and current maintain the same as the pre-

fault voltage level in FT mode.

Using a spectrum analyzer and monitoring harmonics with

respect to the amplitude of the fundamental signal, the harmonic

distortion of the output voltage is measured. Figure 16 depicts the

harmonic spectrum of the output voltage. Thus, it can be seen

that the maximum double switch fault in a single bridge can be

tolerated without any voltage level reduction or magnitude

reduction. The feasibility of the proposed control has been

further validated by the HIL findings displayed in Figures 14,

15 are in satisfactory correlation with the simulated results shown

in Figures 10, 11.

4.3 Performance metrics

This section outlines the various parameters used to assess

the competence of the proposed method. The performance of the

proposed NN is assessed by the errors on the validation and test

dataset using R and MSE. MSE, correlation coefficient R, and

confusion matrix are the metrics used to evaluate the fault

detection and classification problem. The correlation

coefficient R indicates the accuracy of the trained NN that

relates the target to the outputs. The perfect training shows

that the R-value is close to 1, and the y-intercept is zero.

Figure 17 shows that the correlation coefficient equals 1,

which means the proposed MLP-NN gives satisfactory training

results. TheMSE curve shows that testing and validation have the

same values which gives the efficient training of the NN. The best

validation performance at 1.2507e-24 at epoch 12, as shown in

Figure 18. The confusion matrix identifies the fault classification

FIGURE 15
HIL results of fifteen-level CHB MLI under normal, fault, and
fault-tolerant mode of DS fault at (A) S11, S14, (B) S12, S13, (C) S11, S13,
(D) S12, S14, (E) S11, S12, (F) S13, S14.

Frontiers in Energy Research frontiersin.org16

Sivapriya et al. 10.3389/fenrg.2022.1083662

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1083662


accuracy of the proposed system. It gives the percentage accuracy

about the correct and wrong classified fault data as shown in

Figure 19. The row represents the output/true classes, the column

represents the target/predicted classes, and the marginal cell

shows the percentage errors between the output and target

classes. The diagonal green cell indicates the correctly

FIGURE 16
Harmonic spectrum of the output voltage of fifteen-level CHB MLI.

FIGURE 17
Linear regression curve

Frontiers in Energy Research frontiersin.org17

Sivapriya et al. 10.3389/fenrg.2022.1083662

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1083662


classified output and target classes while the cells above and

below show the incorrectly classified data.

True positive rate (TPR) and false negative rate (FNR) are

shown in the last column, which shows the percentage of data

properly classified as belonging to a true class and the percentage

of data incorrectly classified as belonging to another class. The

bottom row shows the positive predictive value (PPV) and false

detection rate (FDR), the proportion of data properly classified

for a given true value, and the percentage of data that are wrongly

categorized for a given true value, respectively. The observation

shows that the average classification accuracy is around 96%, and

very few data are incorrectly categorized into other classes.

5 Comparative analysis

Exemplary fault detection and tolerant approach must have

the following characteristics: reliability, ideal fault detection time,

single and multiple switch fault-tolerant ability, sustained output

voltage during fault and post-fault operation, flexibility, and

minimal computational effort. The FD approach presented in

(Cheng et al., 2020b), (Anand et al., 2020) cannot locate the DS

fault and requires more than one cycle to identify the OCF. To

locate and classify the faulty switch pair and h-bridge, the mean

value-based fault detection is presented in the literature (Raj

et al., 2018b), which requires almost 40 ms to detect the faulty

switch. However, the accuracy of FD for all the switch pairs is not

discussed. The fault diagnostic procedures described in the

literature rely on (Hu et al., 2020), (Parimalasundar and

Suthanthira Vanitha, 2015) heuristic algorithms to determine

the locations of faults and require a lot of training, testing data,

and time to get properly trained. The architecture proposed in

(Choupan et al., 2018) exploits the two bidirectional switches to

tolerate the SS failure in the MLI. It takes about 60 ms to tolerate

the SS fault and fails to tolerate the double switch fault.

FIGURE 18
Mean squared error.

FIGURE 19
Confusion matrix for fault classification.
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TABLE 3 Comparison of the proposed method with recent literature.

Ref Fault type
considered

Sampling
time

FTC
methods

Additional component
requirement

Output voltage level Control
complexity

Possibility of
extension

Before
fault

After
faultH/

W
S/
W

Sarwar et al. (2021) *, ** 20 ms √ X 2 IGBT 9 3 Medium No

Cheng et al. (2020b) * 30 ms # # # # # Complex No

Anand et al. (2020) * 16 ms # # # # # Complex No

Raj et al. (2018b) ** 40 ms # # # # # Medium No

(Choupan et al., 2018) * 60 ms √ X 2 IGBT 7 5 Medium Yes

Aly et al. (2018) ** # √ X 6 IGBT 5 5 Complex No

Mehta and PavanSahoo,
(2020)

* 40 ms X √ X 5 3 Low Yes

Sadanala et al. (2020) *, ** 50 ms √ X 6 IGBT 5 5 Complex No

Proposed *, ** 8 ms √ X 4 IGBT 15 15 Low Yes

Note: #- Not considered, X- not applicable, *-Single switch OCF, **- Double switch OCF.
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The topology presented in (Madhukar Rao. and Sivakumar,

2015) requires a bulky transformer and bidirectional switches

to tolerate the SS fault. However, the topology delivers only the

reduced output voltage even under post-fault conditions. The

structure presented in (Mhiesan et al., 2020) utilizes the

additional cross-coupled CHB unit to tolerate the single and

multiple switch faults. Even with the inclusion of components,

the topologies discussed in the literature cannot maintain the

output voltage and current after a failure. Therefore, only with

the addition of a single redundant HB unit, the suggested

topology can provide the full rated output power in the case

of a failure without increasing the size of the remaining healthy

switches. In addition, it is obvious from the analysis that the

presented topology employs the same number of switches in both

normal and fault-tolerant operating modes. One of the primary

benefits of the suggested topology is the removal of bidirectional

switches, which were commonly employed in previously

discussed topologies.

A comparison chart for the FD and FT MLI with other

recently reported literature has been developed in Table 3 using

the enlisted comparison. The proposed ANN-based fault

detection and tolerant control are superior in terms of

reduced computational complexity, fault detection time,

component count, and increased reliability. Comparatively,

the fault detection and tolerant time are less than the value

given in (Mehta and PavanSahoo, 2020)-[29]. Furthermore, the

proposed method has a 100% detection rate among switch no-

fault and fault conditions and a classification accuracy of 96%

between distinct SS and DS OCFs. The benefits of the proposed

FTC structure include reduced harmonics, the absence of

bidirectional switches, and the ability to handle multiple

OCFs. Therefore, the presented fault-tolerant MLI is ideal for

applications with high-reliability requirements. Renewable

energy installations in remote and rural locations may benefit

from this technology since repairs andmaintenance may be time-

consuming or expensive.

6 Conclusion

This article verifies the fault detection and tolerance of single-

phase CHB inverters for various OCF conditions. The proposed

approach evaluates the various single and multiple switch faults

in different combinations. Based on the analysis, the MLP- ANN

model has been created to test the viability of the proposed

system under various OCF circumstances. The trained neural

network accurately detects the faulty h-bridge and switch pairs

within 8 ms and 16 ms for all the SS and DS faults with 96%

classification accuracy. Also, developed the necessary fault

tolerant control approach using the redundant h-bridge unit

to provide the complete solution to OCFs. The fault-tolerant

operation of single and multiple switches takes only about 20 ms

(one fundamental cycle) to clear the fault. The main feature of the

proposed system is maintaining the pre-fault voltage level during

both the single-switch andmultiple-switch fault conditions. Also,

the voltage THD of output voltage has been maintained at the

same level as 8.24% before and after fault conditions. The

simulation and HIL results elucidate that the proposed

topology was strong enough to tolerate OCF in single and

multiple switches with preserved output voltage levels. The

proposed fault diagnosis method can easily be generalized and

applied to any number of voltage levels. In the future, a more

advanced fault-tolerant control approach incorporating AImight

more accurately detect the fault location with a better

interpretation achieved by experimental hardware verification.

Another approach is to incorporate various other faults and the

impact of load fluctuations on the performance of the proposed

system.
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