AUTHOR=Xu Yang , Luo Xiong , Yuan Manman , Huang Bohao , Malof Jordan M. TITLE=Soft-masks guided faster region-based convolutional neural network for domain adaptation in wind turbine detection JOURNAL=Frontiers in Energy Research VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2022.1083005 DOI=10.3389/fenrg.2022.1083005 ISSN=2296-598X ABSTRACT=
Wind turbine generator system plays a fundamental role in electricity generation in industry 4.0, and wind turbines are usually distributed separately and in poor locations. Unmanned Aerial Vehicles (UAV) which could overcome the above challenges are deployed to collect photographs of wind turbines, could be used for predictive maintenance of wind turbines and energy management. However, identifying meaningful information from huge amounts of photographs taken by drones is a challenging task due to various scales, different viewpoints, and tedious manual annotation. Besides, deep neural networks (DNN) are dominant in object detection, and training DNN requires large numbers of accurately labeled training data, and manual data annotation is tedious, inefficient, and error-prone. Considering these issues, we generate a synthetic UAV-taken dataset of wind turbines, which provides RGB images, target bounding boxes, and precise pixel annotations as well. But directly transferring the model trained on the synthetic dataset to the real dataset may lead to poor performance due to domain shifts (or domain gaps). The predominant approaches to alleviate the domain discrepancy are adversarial feature learning strategies, which focus on feature alignment for style (e.g., color, texture, illumination,