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Wind turbine generator system plays a fundamental role in electricity

generation in industry 4.0, and wind turbines are usually distributed separately

and in poor locations. Unmanned Aerial Vehicles (UAV) which could

overcome the above challenges are deployed to collect photographs of wind

turbines, could be used for predictive maintenance of wind turbines and

energy management. However, identifying meaningful information from huge

amounts of photographs taken by drones is a challenging task due to various

scales, different viewpoints, and tedious manual annotation. Besides, deep

neural networks (DNN) are dominant in object detection, and training DNN

requires large numbers of accurately labeled training data, and manual data

annotation is tedious, inefficient, and error-prone. Considering these issues,

we generate a synthetic UAV-taken dataset of wind turbines, which provides

RGB images, target bounding boxes, and precise pixel annotations as well.

But directly transferring the model trained on the synthetic dataset to the

real dataset may lead to poor performance due to domain shifts (or domain

gaps). The predominant approaches to alleviate the domain discrepancy are

adversarial feature learning strategies, which focus on feature alignment for

style (e.g., color, texture, illumination, etc.) gaps without considering the

content (e.g., densities, backgrounds, and layout scenes) gaps. In this study,

we scrutinize the real UAV-taken imagery of wind turbines and develop a

synthetic generation method trying to simulate the real ones from the aspects

of style and content. Besides, we propose a novel soft-masks guided faster

region-based convolutional neural network (SMG Faster R-CNN) for domain

adaptation in wind turbine detection, where the soft masks help to extract

highly object-related features and suppress domain-specific features. We

evaluate the accuracy of SMG Faster R-CNN on the wind turbine dataset and
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demonstrate the effectiveness of our approach comparedwith someprevalent

object detection models and some adversarial DA models.
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soft-masks, faster region-based convolutional neural network (Faster R-CNN), wind turbine

detection, synthetic data, domain adaptation (DA)

Introduction

Wind turbine generator system generates renewable
and affordable energy worldwide in industry 4.0, which
relieves the energy shortage situation across the world. The
wind turbines are the fundamental infrastructure of wind
farms, and they are widely distributed in space and may be
located in remote mountains or rough sea regions which are
geographically challenged for human surveillance, monitoring,
and maintenance (Ciang et al., 2008). Investigations (Motlagh
et al., 2021) have shown that working in a harsh outdoor
environment for a long time, the surface of wind turbines will
inevitably be damaged, and giant turbine damages will result in
catastrophes, so patrol inspection is highly necessary. Besides,
it’s important for the government management in power grid
integration, and counting the number of wind turbines can be
conducive for surveillance.

The development of Unmanned Aerial Vehicles (UAV) has
presented to be exponential growth (Motlagh et al., 2021). With
the exploration of UAV, abundant photographs from different
viewpoints even in a harsh environment can be obtained. The
detection of the wind turbines from the UAV-taken images is
requested for patrol inspection and surveillance.

Object detection plays a fundamental role in computer
vision, especially for industrial applications, and deep neural
network (DNN) has been one of the research hotspots due to
its excellent learning ability which obtains outstanding detection
performance. TrainingDNNrequires plenty of accurately labeled
imagery, and manually annotating the drone-taken images is
tedious, time-cost, and error-prone.

To address the data annotation problem, the synthetic
method (Xu et al., 2022) is exploited to synthesize pseudo images
by implanting 3 dimensional (3D) object models into real
background imagery. It’s cheap and easy to generate a huge
amount of synthetic images, and the significant advantage
of synthetic imagery is that RGB images, object bounding
boxes, and accurate pixel-level annotations could be obtained
simultaneously without manual labor. With the inspiration of
SIMPL (Xu et al., 2022), we examine the characteristics (e.g.,
size, color, orientation, illumination, densities, etc.) of real wind
turbines in the drone-taken imagery, and expand the SIMPL
approach to generate synthetic UAV-taken imagery.

With large amounts of synthetic UAV-acquired wind turbine
imagery, DNN models could be trained to get promising

performance. Faster region-based convolutional neural network
(Faster R-CNN) (Ren et al., 2016) is a predominant approach
for object detection. However, directly transferring the model
trained on the synthetic dataset to the real one will lead to
significant performance drops due to domain shifts or dataset
bias (Zhao et al., 2022). Domain adaptation (DA), one kind
of transfer learning (Wilson and Cook, 2020), is explored to
learn a model from the source domain (labeled datasets) and
generalize well to the target domain (unlabeled datasets with
different distributions). The DA has been extensively explored
for classification (image-level prediction) (Saito et al., 2018;
Lee et al., 2019), and semantic segmentation (pixel-level
prediction) (Sankaranarayanan et al., 2018; Tsai et al., 2018).
Object detection, which involves bounding-box location and
category prediction, faces more challenges compared with
classification and semantic segmentation in DA.

Most DA detection models aim to measure the
feature distribution distance of different domains and then
minimize the discrepancy, therefore adversarial manner
is exploited between the feature extractor and domain
discriminator (Chen et al., 2018; Saito et al., 2019; Li et al., 2020;
Chen et al., 2021). Adversarial feature learning aims to decrease
style gaps (e.g., color, texture, illumination) between domains
for improving the generalization ability, however, for the
challenges of content gaps such as various locations, densities,
and distributions, the adversarial feature learning may lead to
feature misalignment, which decreases the discriminability of
the detector (Jiang et al., 2022; Yu et al., 2022).

With scrutiny of characteristics of real UAV-taken wind
turbine images, we develop SIMPL to synthesize the images with
carefully designed wind turbines, backgrounds, distributions,
illuminations, and so on, which could decrease the style gaps
and content gaps to some extent. Besides, We propose a novel
SMG Faster R-CNN without traditional domain adaptation
components, where soft masks could help the detector focus
on highly object-related areas (both discriminative and domain-
invariant). What’s more, large-scale variation (various scales of
the same class objects) of targets impairs the performance of
detection models, and the SMG Faster R-CNN could alleviate
this problem by integrating soft masks with large-scale feature
maps to enhance accuracy for small targets.

This study addresses these issues: 1) Difficulties in training
data annotation: synthetic dataset in this study is generated
with both RGB images and corresponding annotations.
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2) Performance drop in domain adaptation: with soft masks,
the feature extractor could suppress some domain-specific
information and obtain discriminative regions highly related
to the target objects, which plays a positive role in detection.
3)Large-scale variation of targets: soft masks are resized to
combine with different scale feature maps, which contributes
to the detection performance on multiscale objects. The
contributions of this article are as follows.

1) Synthetic UAV-acquired dataset is generated to simulate
authentic UAV-taken wind turbine imagery, which makes the
acquisition of training data cheap and effective. And carefully
designed scenarios and 3D wind turbine models could make
realistic rendering characteristics of the synthetic imagery.

2) Soft masks are designed to guide Faster R-CNN for DA
detection, and soft masks ensure that more weights are
assigned to foreground targets and lower weights to the
background, tending to extract more discriminative features
and suppress the domain-specific information in DA
detection.

3) The combination of soft masks and different scale feature
maps positively impact the detection of targets with large-scale
variations.

4) Our proposed detection model outweighs not only the
representative object detection models but also some popular
adversarial DA models in accuracy.

The rest of the article is organized as follows. A series of
related works are briefly described in Section 2. The proposed
method is detailed in Section 3. Experiments, performance
comparisons, and analysis are shown in Section 4. Section 5 is
the conclusion.

Related work

This section explainswhywind turbine detection is necessary
and describes existing object detection approaches, synthetic
data for object detection, DA in object detection as well as mask
contributions for object detection.

Necessary of wind turbine detection

There are various situations such as acid rain, turbulent
wind, and sand storm that may lead to surface damages or
defects on wind turbines (Du et al., 2020). These damage may
cause a catastrophe, therefore it’s of great significance to detect
the defects to wind turbines in time. Machine learning has
already been used for the identification of wind turbines as
it’s cost-effective. UAV-taken images have been used to detect
damage to wind turbines (Stokkeland et al., 2015; Wang and
Zhang, 2017), where traditional image processing methods (e.g.,

Hough transform (Dalal andTriggs, 2005) andHaar-like features
(Lienhart and Maydt, 2002)) are exploited to obtain meaningful
features. In Moreno et al. (2018), a deep learning vision-based
approach for defect detections was proposed, and convolution
neural network (CNN) was exploited for feature extraction.
However, drone-taken images contain not only wind turbines
but also various backgrounds, the first step is to locate the wind
turbines and then apply defect detection algorithms. In this
study, we explore a deep learning model (DNN) to identify wind
turbines from UAV-captured imagery.

Deep neural networks for object
detection

Recently, object detection has drawn dramatically increasing
amounts of attention, due to its outstanding performance on a
wide range of academic and commercial applications, such as
remote monitoring, security surveillance, autonomous driving,
and so on. Besides, the impressive GPU computing ability
makes a positive contribution to the great performance of object
detection. In general, object detectionmodels broadly fit into two
categories: one-stage object detector [e.g., SSD (Liu et al., 2016),
RetinaNet (Lin et al., 2020)], and two-stage object detector [e.g.,
Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2016)].
One-stage detector considers every grid of the feature map as
a potential proposal, while two-stage detectors obtain potential
proposals by region proposal network (RPN), then the proposals
are used for further predictions.Thus, the two-stage detectors are
more accurate than one-stage detectors at the cost of speed. In
this study, we prefer a two-stage detector.

As wind turbine imagery is taken at eye level, wind turbines
vary in scale due to different distances to the camera. The
closer the distance, the larger the wind turbines (shown in
Figure 1). Multi-layer detection can effectively handle various
scale problems (Luo et al., 2020). Similarly, the feature Pyramid
Network (FPN) (Lin et al., 2017), built upon feature pyramids,
has shown an impressive ability dealing objects with different
scales.With the addition of literal connections, FPN-based Faster
R-CNN could make full use of both lower-level and higher-
level features and obtain outstanding detection performance.
Our work is based on the FPN-based Faster R-CNN.

Synthetic data for object detection

Synthetic data has been increasingly exploited in
computer vision for various problems (Hattori et al., 2015;
Peng et al., 2015; Ros et al., 2016; Kong et al., 2020;
Liu et al., 2022; Xu et al., 2022). Specifically, inHattori et al. (2015),
a synthetic pedestrian dataset was designed by using geometric
scenes and a customizable database of virtual pedestrian motion
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FIGURE 1
Examples of real wind turbine images.

simulations for scene-specific pedestrian detection. In the study
by Peng et al. (2015), a synthetic 2D dataset was generated
by exploiting publicly available synthetic 3D computer-aided
design (CAD) models, textures, and category-related scene
images, to train object detectors. In Liu et al. (2022) and
Xu et al. (2022), synthetic aircraft datasets were generated by
implanting 3D airplane models onto real background images for
remote sensing detection. In Ros et al. (2016), a large synthetic
dataset was created for segmentation in urban scenes. In
Kong et al. (2020) synthetic overhead imagery was exploited
for building segmentation.

Inspired by the work of Xu et al. (2022), we design specific-
geometric scenes similar to real ones, and randomly place 3D
wind turbine models in the scene, then set the virtual camera at
a certain height to take photos, both RGB images and pixel-wise
ground truth annotations will be obtained easily.

Domain adaptation in object detection

Domain adaptation (DA) is one type of transfer learning,
and it learns a model from a well-annotated source domain and
generalizes well to an unlabeled target domain (Li et al., 2022).
The prevalent idea in addressing the DA problem of object
detection is based on an adversarial learning manner to
align feature distributions across domains, which helps the
detector to produce domain-invariant features. For example,
the adversarial manner with gradient reversal layers (GRL)
(Ganin and Lempitsky, 2015) was exploited for both image-
level and instance-level feature alignments (Chen et al., 2018),
where image-level alignment included not only object categories
but also scene layouts, backgrounds, etc. In the study by
Saito et al. (2019), they argued that image-level alignment
worked well for small domain shifts but may hurt performance
for large domain shifts, to address this issue, they proposed

Strong-Weak DA (SWDA) model which utilized strong local
alignment to match colors or textures across domains and
used weak global alignment to match layouts or backgrounds.
In Zhu et al. (2019), the authors argued that conventional
DA methods focus on bridging the whole-image gaps while
neglecting local characteristics of object detection, they,
therefore, proposed a region-level alignment framework, which
focused on the region proposals pertinent to object detection.
In Chen et al. (2021), the authors observed that object scales are
crucial challenges forDAobject detection, they proposed a scale-
aware DA Faster R-CNN (SA-DA-Faster) model to incorporate
the object scales into the adversarial learning for better feature
alignment. Although the domain-invariant features obtained
by feature alignments are favorable to the transferability, they
may also impair the discriminability of detectors, which harms
the detection performance. Our method leverages soft masks
instead of adversarial learning to extract domain-invariant and
discriminative features.

Mask contributions for object detection

As mentioned above, objects in UAV-acquired imagery
vary in scale, and large-scale objects coexist with small-scale
objects (shown in Figure 1), which is a challenging problem.
To address these issues, a pixel attention-aided detection model
was proposed by Yang et al. (2019), where the pixel attention
branch was exploited to suppress the noise and highlight the
target features, and the pixel-level saliency masks were obtained
by fulfilling object-bounding boxes. In Pang et al. (2019), mask-
guided attention (MGA) network was integrated into a standard
pedestrian detection model, where MGA was used to generate
pixel masks supervised by object bounding boxes. In Sharma
and Mir (2022), a saliency-guided Faster R-CNN was proposed
for camouflaged object detection, where the saliency map
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was obtained by a convolutional neural network to identify
important regions of the input images. In the study by
Zhou et al. (2019), they introduced a semantic attentionCNN for
pedestrian detection, which considered the segmentation results
as self-attention cues to identify target regions and suppress
backgrounds. In Yang et al. (2019), fulfilling the bounding box
to obtain pixel-level masks was inaccurate and unsuitable for
large objects. In Pang et al. (2019); Sharma and Mir (2022),
the approaches to get pixel masks would introduce additional
computing costs and be inaccurate. In Zhou et al. (2019),
segmentation brancheswere required, and thewhole architecture
was complex.

Inspired by all the above, we explore DA for wind turbine
detection with a synthetic UAV-acquired dataset, and a novel
SMG Faster R-CNN is developed, where softmasks are exploited
to extract regions highly related to target objects, which is
consistent with the DA approaches trying to find the domain-
invariant features. Besides, we consider the object scales by
incorporating the soft masks with multi-scale feature maps to
extract discriminative features.

The proposed method

Generation of synthetic datasets of wind
turbines

Although Xu et al. (2022) provided insight for generating
synthetic datasets and released an implementation of the
generation process, the work was for remote sensing overhead

FIGURE 3
Examples of original masks and soft masks. The left column is
original masks, and the right column is soft masks.

imagery and didn’t consider scene terrains. In our study,
synthetic images are captured by a visual camera at eye level
rather than overhead view. To make the scenarios more realistic,
we carefully examine the real UAV-taken imagery and download
similar 3D wind turbine models from open-source websites, find

FIGURE 2
The process of generating synthetic wind turbine datasets. The three blue boxes in the upper left are the basic materials to simulate real scenes
of wind farms. Randomly place the public available 3D wind turbine models in the synthetic wind farms, and set height and moving step of the
virtual camera, synthetic RGB images are captured. For pixel annotations, ignore the environment scene, then repeat the steps for capturing
RGB images.
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FIGURE 4
The architecture of SMG Faster R-CNN.

similar sky images, and design terrains with similar vegetation.
To increase the sample diversity, we designed 3D wind turbine
models with various scales, orientations, illumination, dense
distributions, etc.

Figure 2 presents a pictorial illustration of synthetic dataset
generation. Materials of sky types, vegetation, terrain types,
and 3D wind turbines are basic components to create virtual
reality scenes of wind farms, and all these components could
be easily obtained from open-source websites. Randomly
distribute 3D wind turbines in the scene, and set the virtual
camera height close to that of wind turbines, then move
the virtual camera by fixed step to capture images. Remove
all colorful backgrounds, and paint wind turbines white, the
corresponding annotations are obtained similarly.The bounding
boxes are obtained by enclosing the connected white pixels with
rectangles.

It needs about 0.8s for rendering and capturing one synthetic
RGB image (608× 608) and less for an annotation image on
a Windows 10 operating system with an Intel(R) Core(TM)
i9-7920X CPU@2.90 GHz.

Soft-masks guided faster region-based
convolutional neural network

As the sizes of wind turbines in UAV-taken imagery
vary (shown in Figure 1), the large variety of sizes hampers
the detection of wind turbines. Faster R-CNN is the most
representative model of two-stage detectors, which balances
accuracy and speed very well. However, the original Faster R-
CNN handles features from one scale, which makes it inferior
to multiscale detectors (Lin et al., 2017).

Feature pyramids (Lin et al., 2017) building hierarchical
feature maps of multi scales, contain plentiful semantic
information. The key components of feature pyramids (bottom-
up route, top-down route, and lateral connections) help to
capture coarse information of low-level and strong semantic
information of high-level at multi scales. To handle the large-size
variation problem of wind turbines, we prefer a variant of Faster
R-CNNwith a backbone of ResNet50 and feature pyramids as the
baseline, which is considered the default architecture of Faster
R-CNN in this article.
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FIGURE 5
Soft-masks guided block.

Figure 2 shows that the synthetic dataset contains not only
bounding boxes but also pixel-level masks. The pixel masks are
grayscale images that contain only black and white colors, where
black represents the background while white represents target
objects (shown in the left columnofFigure 3).We assign random
values from [0,255) to background pixels, called soft masks,
shown in the right column of Figure 3.

To further improve the model detection performance in the
target domain, we combine softmasks of the source domain with
featuremaps at different scale levels to guide the detector to focus
on areas that highly are related to target objects and suppress
the domain-specific object-less features, which contributes to
extracting discriminative regions.

Moreover, as feature pyramids output feature maps at each
layer block with different scales, the larger the output scale,
the smaller the size of detected objects. To alleviate large-
scale variation problems, the soft masks will be multiplied
to larger outputs of the last two blocks of feature pyramids
(illustrated in Figure 4), which means highlighting the targets
while suppressing the background. Note that, it’s suppressing
rather than ignoring the background.

Figure 4 depicts the whole architecture of our proposed
approach. The backbone, composed of ResNet50 and feature
pyramids, is used to extract feature maps from multi scales.
Input the RGB images and annotations into the backbone
(no details here, we refer readers to (He et al., 2016) for the
details of ResNet50), and output different scale feature maps.
Before feeding to the region proposal network (RPN) module,
we input the feature maps into the soft-masks guided block
(shown in Figure 5), where soft-masks are multiplied to the two
larger-scale feature maps of backbone separately with Hadmard
product (Aguiar and Mahajan, 2020), which is profit to focus
on discriminative regions. Then the proposals are flattened and
concatenated for the region of interest (ROI) pooling, and the

results are fed to the ROI head for final prediction (shown in
Figure 4). The loss of SMG Faster R-CNN, Ldet, is the same as
that of baseline Faster R-CNN:

Ldet = Lrpn
cls +L

rpn
reg +Lroi

reg +Lroi
reg, (1)

where Lrpn
cls and Lrpn

reg indicate the RPN classification loss and
regression loss respectively, Lroi

reg and Lroi
reg mean the classification

loss and regression loss of the ROI head.

Experiments and analysis

Datasets

Real UAV-taken dataset: We use one UAV of DJI MAVIC
PRO of Platinum version, and take images in Xilin Gol
League, Inner Mongolia, China, named Xilin dataset. We
manually labeled 96 images (608× 608), which contain about
992 instances of wind turbines.

Note that, the adversarial DA methods in the following
experiments, need both unlabeled target-domain data and
labeled source-domain data for training, we randomly split the
real dataset into a training set (42 images, 512 instances) and
a test set (54 images, 480 instances), where the training set is
for the adversarial DA methods, and all models in following
experiments evaluate on the test set for comparison.

Synthetic dataset: We use CityEngine to simulate realistic
scenes and take photographs by a virtual camera, and set camera
height close to the height of wind turbines in the virtual scenes,
then take photos at eye-level. The total number of synthetic
images is 12087, 70% for training, and 30% for validation.

Training environment and settings

For all experiments, we run on the Linux platform
with NVIDIA GPU of GeForce RTX 2080 Ti. We compare
our proposed approach with some dominant DNN-based
object detection models [e.g., SSD (Liu et al., 2016), RetinaNet

TABLE 1 Results comparison on real xilin dataset.

Model AP@IoU0.5 on Xilin

SSD Liu et al. (2016) 0.281
RetinaNet Lin et al. (2020) 0.222
Faster R-CNN Ren et al. (2016) 0.361
DA Faster R-CNN Chen et al. (2018) 0.131
SWDA Saito et al. (2019) 0.126
SA-DA-Faster Chen et al. (2021) 0.420
SMG Faster R-CNN 0.409

The bold value means the best performance in terms of AP@IoU0.5.
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FIGURE 6
The mismatch of real wind turbine and synthetic 3D model. (A) Synthetic 3D wind turbine with 3 blades (B) Real wind turbine with 2 blades.

(Lin et al., 2020), Faster R-CNN (Ren et al., 2016)], and some
adversarial DA object detection models [e.g., DA Faster R-
CNN (Chen et al., 2018), SWDA (Saito et al., 2019) and SA-DA-
Faster (Chen et al., 2021)]. All DNN-based models are trained
on a synthetic dataset for 20 epochs and the batch size of each
model is 8, the optimizer of each model is stochastic gradient
descent (SGD) solver. The adversarial DA models are trained
on a synthetic dataset and an unlabeled real dataset for 70000
iterations with batch size one. The result is an average of three
trials for each model.

Evaluation metric and results analysis

The Intersection over Union (IoU) ratios of model
predictions and ground truth bounding boxes determine
whether ground truth labels should be assigned to the
predictions. The standard metric is average precision (AP) with
50% overlaps, AP@IoU0.5, for single-class object detection.

Testing on the real wind turbine dataset, Xilin, the detection
results are shown in Table 1, and the optimal result is in bold.
None of these results is over 0.5, for one reason is that the
domain gap between the synthetic dataset and the real dataset, for
another reason is the shapemismatch of 3Dmodels and real wind
turbines, specifically, most 3Dwind turbinemodels have 3 blades
(shown in Figure 6A), but the real ones may have two blades
(shown in Figure 6B). Compared to the traditional DNN-based
object detection models (SSD, RetinaNet, and Faster R-CNN),
our approach outperforms all of them, which demonstrates the
advantage of ourmethod in extracting discriminative features for
detection. Further, compared with two predominant adversarial
DA models (DA Faster R-CNN, SWDA), our approach wins
by a large margin, and the two adversarial DA methods show
poor performances, which may be caused by the large-scale
variation. SA-DA Faster takes not only image-level and instance-
level feature alignment but also object size alignment, which
dramatically improves the DA object detection performance.

Similarly, our method takes object scale into consideration,
although our method is mildly lower than the SA-DA Faster
in accuracy, the difference is small, which demonstrates the
comparable ability in DA object detection and the advantage
in handling large-scale variation detection problems. Besides,
the training process of our method doesn’t need adversarial
components and complex computation, which makes it more
efficient.

Figure 7 shows the predicted bounding boxes of Faster R-
CNN and SMG Faster R-CNN, and the confidence scores are
attached. Most large-scale wind turbines are detected by both of
them, and our approach could detect more small wind turbines
than Faster R-CNN,which corroborates the ability of SMGFaster
R-CNN in handling large-scale variation problems.

Effect of soft values

To probe the effect of soft mask values, we design two
schemas to generate soft values.The purpose is to help the object
detector focus on the target area and suppress the background.
One schema is filling the background with fixed values. The
easiest way is to use the original masks, which means the
background is black with pixel values of 0, and another way is
to set the background area with fixed non-zero values, such as
125. The other schema is to use dynamic values. We sample soft
values from [0,125) and [0,255) separately. Table 2 shows the
performances of SMG Faster R-CNN with different soft values,
the first two rows are the results of fixed value schema, which
indicates the larger the value, the better the performance.The last
two rows indicate the performance of dynamic value schemas,
and the larger the range, the better the results. The soft values
control the weights of the corresponding area in feature maps
by multiplying soft masks with feature maps. The larger the soft
values, the higher weights will be assigned to the corresponding
feature area. The results of this experiment demonstrate that
background information is also important for target detection.
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FIGURE 7
Predictions of SMG Faster R-CNN and Faster R-CNN. The cyan boxes are ground truth, yellow boxes mean predictions of SMG Faster R-CNN,
and salmon boxes are predictions of Faster R-CNN. The “conf” in orange means the confidence score of the detected instance. (A) Predictions
of SMG Faster R-CNN (B) Predictions of Faster R-CNN (C) Predictions of SMG Faster R-CNN (D) Predictions of Faster R-CNN.

TABLE 2 Performances of our approach with different soft values.

soft pixel value AP@IoU0.5 on Xilin

0 0.303
125 0.332
[0,125) 0.345
[0,255) 0.409

Conclusion

With exponentially increasing amounts of data in industry
4.0 applications, deep-learning-basedmethods have been applied
for data analysis. In this article, we proposed SMG Faster R-CNN
for DA in wind turbine detection. With a low-cost, easy-to-get,
and accurately labeled synthetic dataset, we propose SMG Faster

R-CNN for wind turbine detection, which is a fundamental
step for further surveillance and management in industrial
applications. Besides, to handle the DA detection problem, we
make full use of synthetic annotations (pixel masks) to guide
Faster R-CNN to extract discriminative regions and suppress
the domain-specific features. Furthermore, the masks multiplied
to different scale feature maps alleviate the large-scale variation
problem of wind turbines in the UAV-acquired imagery. We
evaluate the effectiveness of our approach by comparing it with
other representative models on the real dataset.
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