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With the rapid development of converters in a variety of industrial fields, the fault
diagnosis of power switching devices has become an important factor in ensuring
the safe and reliable operation of related systems. In recent years, machine learning
has performed well in many fault diagnosis tasks. The success of these advanced
methods depends on sufficient marked samples for each fault type. However, in
most industrial applications, it is expensive and difficult to collect fault samples, and
the fault diagnosis model trained under the limited samples cannot meet the
requirements of fault diagnosis accuracy. In order to solve this problem, this
study proposes a few-shot learning method based on fault sample generation to
realize the open-circuit fault diagnosis of IGBT in a three-phase PWM converter. This
method is the deformation of the auto-encoder called the disturbance auto-
encoder generation model. By designing the model structure and training
algorithm constraints, the encoder learns the nonlinear transferable disturbance
from the normal operating sample pairs. Then, the disturbance is applied to the
decoder to synthesize new fault samples to realize the training of the fault diagnosis
model with limited samples. The biggest advantage of this method is that it can
achieve 95.90% fault diagnosis accuracy by only collecting the samples in the normal
operating conditions of the target system. Finally, the feasibility and advantages of
the proposed method are verified by comparative experiments.
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1 Introduction

The three-phase PWM converters are composed of power switches (such as insulated gate
bipolar transistor IGBT) and related control systems, which have the advantages of high
efficiency, high power density, and low harmonic content. These characteristics make the three-
phase PWM converters widely used in motor drive, wind power generation, photovoltaic (PV)
power generation, and other industrial scenarios. However, due to equipment aging, overload,
or accidents, power switches are prone to failure during operation. According to recent reports,
power switches are the most vulnerable components in converters, especially in these high-
power applications (Liang et al., 2022). The faults of power switches occur in the form of short
or open circuits. Short circuit faults will lead to over current or over temperature, usually using
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the hardware circuit for protection and then converting to open-
circuit faults. Conversely, the implicit fault characteristics of open-
circuit faults are often insufficient to trigger hardware protection and
cannot be discovered in time, resulting in secondary faults. Therefore,
the demands and interests in the development of IGBT open-circuit
fault diagnosis are increasing, which provides the necessary
information for maintenance and fault-tolerant control to make the
system more reliable (Malik et al., 2022).

In general, fault diagnosis methods can be divided into model-based,
signal-based, and knowledge-basedmethods (Gao et al., 2015a). As classic
methods, the model-based methods are used to establish the model of
industrial or system process, which comes from physical principles or
system identification techniques (Zhuo et al., 2020;Wassinger et al., 2018;
Yu et al., 2017; Poon et al., 2016; Xie and Ge, 2018; Hwang and Huh,
2015), such as observer methods (Yu et al., 2017; Wassinger et al., 2018;
Zhuo et al., 2020), state estimation techniques (Poon et al., 2016; Xie and
Ge, 2018), and parity equations (Hwang and Huh, 2015). By calculating
and monitoring the residuals between model generation outputs and
measured outputs, anomalies and faults are detected and located.
However, model-based methods rely heavily on accurate mathematical
models, which may result in model uncertainty and difficulty in
identifying parameters. For difficult-to-model systems, signal-based
methods (Abari et al., 2017; Zhou et al., 2018a; Zhou et al., 2018b;
Huang et al., 2021) (Abari et al., 2017; Zhou et al., 2018a; Zhou et al.,
2018b; Huang et al., 2021) are widely used to detect the characteristic
distortion of sampled signals. Signal-based methods mainly use signal
processing techniques and rely on prior knowledge, which may bring a
heavy computational burden and excessive diagnosis time.

In recent years, with the significant progress of machine learning
technology, knowledge-based methods have attracted considerable
research attention (Gao et al., 2015b; Wang et al., 2015; Cai et al.,
2016a; Cai et al., 2016b; Cai et al., 2016c; Moosavi et al., 2016; Cherif
and Bendiabdellah, 2018; Huang et al., 2018; Ding et al., 2019; Xia
et al., 2019; Ye et al., 2019; Gou et al., 2020) (Gao et al., 2015b; Wang
et al., 2015; Cai et al., 2016a; Cai et al., 2016b; Cai et al., 2016c; Moosavi
et al., 2016; Cherif and Bendiabdellah, 2018; Huang et al., 2018; Ding
et al., 2019; Xia et al., 2019; Ye et al., 2019; Gou et al., 2020). The
principle is to extract the mapping relationship between measurement
data and fault labels. In offline training, the fault database is used to
train the machine learning-based classification model. In online
applications, the classification model generates fault diagnosis
results based on input signals (i.e., sampling current and voltage).
Unlike model-based and signal-based methods, knowledge-based
methods are independent of the system model and signal
processing, making them more robust and generalizable in
changing systems (Gao et al., 2015b). The classical classification
model is generally divided into two steps: feature extraction and
fault classification. Feature extraction methods mainly include fast
Fourier transform (FFT) (Cai et al., 2016a; Cai et al., 2016b; Moosavi
et al., 2016; Xia et al., 2019; Gou et al., 2020) (Cai et al., 2016a; Cai et al.,
2016b; Moosavi et al., 2016; Xia et al., 2019; Gou et al., 2020), discrete
wavelet transform (DWT) (Cherif and Bendiabdellah, 2018; Ye et al.,
2019), principal ingredient analysis (PCA) (Wang et al., 2015), and
linear discriminant analysis (Ding et al., 2019). Fault classification
methods include support vector machine (SVM) (Huang et al., 2018),
Bayesian network (Cai et al., 2016a; Cai et al., 2016b) (Cai et al.,
2016a), and neural network (Wang et al., 2015; Moosavi et al., 2016;
Cherif and Bendiabdellah, 2018; Xia et al., 2019; Ye et al., 2019; Gou
et al., 2020).

Although these machine learning-based classifiers can perform
nonlinear learning, traditional feature extraction methods are inductive
biased, leading to the loss of valuable information. Recently, deep learning
models with fault feature extraction capabilities have greatly improved
fault diagnosis capabilities. Si et al. (2022) used a deep LSTMnetworkwith
attention cooperation to extract discriminative features from the original
data. Compared with other methods, it has better diagnostic results under
various conditions. Yuan et al. (2022) used 1-DCNN to extract features
from the original data, and 100% accuracy of fault diagnosis was realized
perfectly in the experiment of the IGBT open-circuit fault diagnosis for
NPC inverters. However, in order to train a reliable classificationmodel, a
large amount of fault data are required that can fully reflect the real
operating conditions of the target system, which is particularly important
for deep learning models. However, in most cases, the fault experiment of
the target system is expensive, and its safety risk is unacceptable, such as
wind power generation and the traction system (Cai et al., 2016b). For
most knowledge-based methods, the classification model is trained from
the source database of a particular system in a simulation or ideal
experiment. Various uncertain disturbances occur between the source
and target systems, such as load characteristics, sensors, and grid
disturbances, resulting in model and feature mismatches, which cause
unacceptable fault misdiagnosis rates (Xia and Xu, 2021).

In recent years, few-shot learning has provided a promising
research direction to solve the above problems (Wang et al., 2020).
The purpose of few-shot learning is to train the models under the
condition of limited marked data or different tasks similar to the
target task (Lai et al., 2020). Generally, it can be divided into sample
generation, model, and algorithm. Compared with the model and
algorithm, the data generation methods only need a simple
classification model, so it is favored by the high real-time fault
diagnosis task (Li et al., 2020; Liu et al., 2021; Pei et al., 2021; Li et al.,
2020; Liu et al., 2021; Pei et al., 2021; Li et al., 2020; Liu et al., 2021;
Pei et al., 2021). Li et al. (2020) proposed five simple signal
deformation techniques to generate samples that train deep
learning models. Under the condition of limited samples, good
fault diagnosis results of rotating machinery were obtained. In
addition, Liu et al. (2021) proposed a sample generation model
named variational auto-encoding generative adversarial networks
(VAGAN) with deep regret analysis to improve the fault diagnosis
ability of the rolling bearing fault. Pei et al. (2021) proposed an
enhanced few-shot Wasserstein auto-encoder (EFWAN) to generate
samples for reliable fault diagnosis of rolling bearing with limited
data. In summary, few-shot learning methods have achieved great
success in image recognition, natural language processing, and fault
diagnosis, among others (Parnami and Lee, 2022; Snell et al., 2017).
However, to the best knowledge of the authors, there are almost no
reports on the few-shot learning for converter fault diagnosis. In the
converter fault diagnosis, it is usually required to make a fault
diagnosis every cycle (0.001–0.025 s). The high real-time
requirements and the complexity of the algorithms bring great
challenges to the limited computing resources. In addition, in
order to ensure the reliable operation of the converter, a false
diagnosis is unacceptable.

In order to solve the above problems, a few-shot learning method
based on sample generation is proposed in this study. In the case of
limited databases, we can synthesize enough samples for each category
to train the classifier in a standard supervised way without increasing
the computational burden on the classifier. Firstly, in order to improve
the performance of sample generation, the key factors are revealed in
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the error decomposition of few-shot learning (Section 2.2). Then,
based on the key factors, a disturbance auto-encoder generation model
is proposed through model design and training algorithm constraints.
The proposed disturbance auto-encoder generation model trains an
encoder and a decoder from the source database (simulation
database). In the generation phase, the encoder extracts the
disturbance from the same class sample pairs, whereas the decoder
uses disturbance and source samples to reconstruct the fault samples
for the target system. Therefore, the generated samples can better fit
the sample distribution of the target system. Themain contributions of
this paper are as follows:

1) An disturbance auto-encoder generation model is proposed in this
study, which can synthesize the fault sample data of the target
system only by collecting the data of the target system under
normal operating conditions. The proposed generation model
effectively solves the problem of collecting IGBT open-circuit
fault data of the converter.

2) The classifier trained by the synthesized samples has high fault
diagnosis accuracy without increasing the computational burden
on the online classification.

3) In the comparative experiments of two databases, the effectiveness
and superiority of the disturbance auto-encoder generation model
are verified.

The rest of this study is organized as follows: Section 2 briefly
introduces the topology of the three-phase converter system and defines
the IGBT open-circuit fault labels. The few-shot learning error analysis
shows that the performance of the generation model depends on
whether the generation samples are identically distributed with the
target system. Section 3 describes in detail the proposed disturbance
auto-encoder generation model. Section 4 gives the experimental results
and discussion. Finally, a general conclusion is given.

2 System and critical problem
descriptions

2.1 System description

A widely used three-phase PWM converter topology is shown
in Figure 1, which consists of six IGBT modules (T1—T6) and their

auxiliary control units. ia, ib, and ic are the three-phase output
currents of the converter. This study discusses the most common
single and double IGBT open-circuit faults in practical
applications. A total of 22 fault labels, including normal
conditions, are shown in Table 1, and each label represents a
specific fault type. The proposed fault diagnosis method uses the
machine learning method as the fault classifier. The inputs are ia, ib,
and ic, and the outputs are the fault labels. The fault location is
realized in Table 1.

2.2 Error decomposition of few-shot learning

In any classification tasks of machine learning, perfect
classification cannot be obtained, and there are usually
classification errors. This section illustrates the core issues of
few-shot learning through error decomposition based on
supervised machine learning (Bottou and Bousquet, 2008;
Bottou et al., 20182018). The analysis shows that the
performance of the sample generation model depends on
whether the generated samples are identically distributed with
the target system samples.

Generalization error: Given a classification task, p(x, y) represents
the joint probability distribution of the feature vector x and the
classification label y, and there is an optimal assumption �h that
minimizes the generalization error e, where a and b are arbitrary
variables and I(a,b) is a function:

e �h( ) � ∫ I �h xi( ), yi( )dp xi, yi( ),
I a, b( ) � 1, a ≠ b

0, a � b
{ . (1)

Model error: For a given hypothesis space H, when the training
sets of Nl samples are sufficient to estimate p(x,y), there exists a
function h* ∈ H that minimizes the model error em:

em � 1
Nl

∑Nl

i�1I h* xi( ), yi( )p xi, yi( ). (2)

FIGURE 1
Three-phase PWM converter topology.

TABLE 1 Labels of IGBT open-circuit fault.

Fault IGBT/IGBTs Label Fault IGBT/IGBTs Label

Normal 1 T1 and T6 12

T1 2 T2 and T3 13

T2 3 T2 and T4 14

T3 4 T2 and T5 15

T4 5 T2 and T6 16

T5 6 T3 and T4 17

T6 7 T3 and T5 18

T1 and T2 8 T3 and T6 19

T1 and T3 9 T4 and T5 20

T1 and T4 10 T4 and T6 21

T1 and T5 11 T5 and T6 22
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Empirical error: When the datasetsDtrain ofNs samples are small, p(x,
y) is unknown. Exist hs ∈ H minimizing the empirical error es as fellows:

es � 1
Ns

∑Ns

i�1I hs xi( ), yi( ). (3)

Therefore, the error of few-shot learning can be decomposed into

Ε e hs( ) − e �h( )( ) � Ε e h*( ) − e �h( )( )︸������︷︷������︸
emg H( )

+Ε e hs( ) − e h*( )( )︸�������︷︷�������︸
esm H,Ns( )

. (4)

E represents expectation. As shown in Eq. 4, the error of few-shot
learning is affected by the sample Ns in the Dtrain and hypothesis space
H. In other words, reducing the error of few-shot learning can be
attempted from the perspective of enhancing data, providing a Dtrain

sufficient to estimate p(x, y). In addition, from Eqs 2–4, in order to
reduce esm(H,Ns), the key is to keep identical distribution p(x,y)
between generated samples and target samples.

3 Proposed disturbance auto-encoder
generation model

3.1 Main ideas

Thepremise ofmachine learning fault diagnosismethods is that there are
enough fault samples.However, the collectionof target system fault samples is
usually expensive anddifficult due to the risk of fault experiments (Liang et al.,
2022). On the contrary, it is easier to construct a fault database through the
source system (simulation, ideal experiment, and existing samples of similar
systems) (Cai et al., 2016b). However, the models trained by the source
system are often notwell applied to the target system. Themain reason is that
the target system has a variety of uncertain disturbances, such as load
disturbance, sensor noise, and grid disturbance (Xia andXu, 2021). It isworth
noting that the above disturbance will not change with the occurrence of the

open-circuit fault of IGBT. Therefore, it has the transferable ability from
normal to fault conditions. In addition, if sufficient normal operation samples
are used to extract the above disturbance, the disturbance implicitly contains
the information of the p(x, y).

In order to accurately extract the above disturbance, our method is
inspired byHariharan andGirshick (2017) andEli Schwartz (2017), where a
relative offset between a pair of the same class conveys valid deformation
information, and the same offset is applied to other examples to synthesize
new samples. In our technique, we do not limit disturbance to relative offset.
In principle, a model can be constructed to learn the nonlinear transferable
disturbance of the target system under different operating conditions.

The proposedmodel comprises encoder E and decoderD, which is the
deformation of the auto-encoder. The schematic diagram of the proposed
method is shown in Figure 2. The encoder E extracts the nonlinear
transferable disturbance Z from the normal operating current data of the
source and target domain. The decoder D uses the fault samples of the
source domain and Z to generate the fault samples of the target domain.

Specifically, the standard auto-encoder (Kingma and Welling, 2013)
reconstructs the signal Xs by minimizing ‖Xs −Xs‖, where Xs �
D(E(Xs)) represents the signal reconstructed by the encoder. Usually,
the dimension of Zs � E(Xs) is much smaller than Xs, representing the
minimumdimension of feature vector required to reconstructXs, indicating
that the encoder can extract features. We use structural design and training
method constraints to enable E to extract the disturbance Zs from the same
class sample pairs and letZs represent the necessary information required to
synthesize Xsn from Xsp to ensure the fault characteristics of the generation
samples. Xsp and Xsn represent the same class samples.

3.2 Model structure and training method

Model structure: The structure of the proposed disturbance auto-
encoder generation model is shown in Figure 3, which is divided into two

FIGURE 2
Schematic diagram of the proposed method.

Frontiers in Energy Research frontiersin.org04

Wu et al. 10.3389/fenrg.2022.1077519

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1077519


stages: training and generation. In the training phase, the inputs are the
same class of fault sample pairs (Xsn,Xsp) from the two source databases (s
and p), and Zs is obtained by the encoder E. Then, Zs and Xsn are used as
the inputs of the decoder D to obtain the synthetic sample of Xsp. Finally,
the forward propagation of the training phase is expressed as

Xsp � D ΘD, E ΘE ,Xsn,Xsp( ),Xsn( ). (5)
ΘD and ΘE are parameters that need to be solved for the auto-

encoder. In order to ensure the complexity of Zs, E, andD are fit by the
similar n-layer 1-dimension convolution neural network (1-DCNN).
The details of 1-DCNN can be found in Yuan et al. (2022).

In the generation phase, sufficient samples are collected from the
normal operational target system to implicitly include p(x, y). The
sample pairs (XsN, XtN), formed by the normal operational target and
source system, are used as the inputs of the encoder E to obtain Zt.
Then, Zt and Xs are used as inputs to decoder D to get the generation
samples. XtN represents the sample mean of the normal operational
target and source system, and Xs represents the sample mean of a
certain fault class in the source system. Finally, the forward
propagation of the generation phase is expressed as

Xt � D ΘD,E ΘE,XsN ,XtN( ),Xs( ). (6)
Model training: In order to solve the parameters ΘD and ΘE and

make Zs represent the nonlinear transferable disturbance, we constrain
Zs by Gaussian distribution injection. This is based on the fact that the
output disturbance is caused by a variety of random factors. Therefore,
Zs can be approximated to Gaussian noise by the central limit theorem.
To this end, the training of the model is conducted in two stages. In the
first stage, Zs is replaced by Gaussian distribution noise d ~ N(0, σ).
Then, d and Xsp are used as input to train decoderDwith the following
training objective:

D ΘD, d,Xsp,( ) ~ΘD � argmin
ΘD

D ΘD, d,Xsn( ) − Xsp

���� ����2. (7)

It can be proved that the training results of the above models are as
follows (see Appendix A for details):

D ΘD, d,Xsn,i( ) � Ε Xsp ,i( ). (8)

Among them, Xsn,i represents the i-class fault samples in Xsn and
Xsp,i represents the sample mean of the i-class fault in Xsp. The above
trainingmakes the decoderD encoded by d, and its generation samples
retain the fault feature as the i-class fault sample mean Ε(Xsp,i).

In the second stage, training the encoder E and fine-tuning the
decoder D, Xsn and Xsp are used as inputs. The generation model has
the following training objectives:

D Θ̂D, E ΘE ,Xsp,Xsn( ),Xsp( ) ~Θ̂D,ΘE

� argmin
ΘD ,ΘE

D ΘD, E ΘE ,Xsp( )( ) − Xsn

���� ����2...
+λD ΘD − ΘD

���� ����2
(9)

The first term is to minimize the synthesis error, and the second
term is the decoder fine-tuning term. Under the premise of ensuring
the synthesis sample error, the closer ΘD is to ΘD, the closer Zs is to d,
so that Zs can represent the nonlinearity transferable disturbance.

The training process is shown in Algorithm 1.

Input: source dataset Xs = {(xsn(n),xsp(n))}h
n=1

, Gaussian

disturbance dataset

Td � {d(n) ~ Ν(0, σ)}hn�1, training dataset Ttrain = (Xs, Td)

Step 1: Training Model D

Repeat until convergence:

Randomly select M samples from Ttrain TtrainM = {(xsn(n),

xsp(n), d(n))}M
n =

1

Calculate ΘD gradient in D:

∇ΘD∑M
n�1(D(ΘD ,dn ,xsp) − xsn)2

Update ΘD by Adm

Step 2: Fine-tuning model D, training model E

Repeat until convergence:

Randomly extract M sample pairs from Xs, XSM = {(xsn(n),

xsp(n))}M
n = 1

Calculate the gradient of ΘD and ΘE

∇ΘD ,ΘE(‖D(ΘD ,E(ΘE ,Xsp)) − Xsn‖2... + λD‖ΘD − ΘD‖2)
Update ΘD and ΘE through Adm

END

Algorithm 1. Adm training of disturbance auto-encoder generation
model, fine-tuned weights λD, batch sizeM, Gaussian noise variance σ.

FIGURE 3
Structure of the proposed disturbance auto-encoder generation model.
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3.3 Implementation details

In all experiments, the sample feature vector X is handled from the
outputs ia, ib, ic of the converter by period normalization, frequency
normalization, and amplitude normalization. Period normalization:
Separate current by one period, and the first feature in the feature
vector corresponds to the forward crossing zero of ia. Frequency
normalization: The number of sample points of a periodic signal is
fixed, and 224 sample points are used for the feature vector in this
study. Amplitude normalization: Each sample point is divided by a
maximum value in a period. E and D are based on the same structure
as the 1-DCNN, with model parameters shown in Table 2.

These models are trained with the Adam optimizer, and the learning
rate was set to 10−5. When the number of training sample pairs is 2,000 ×
22, the sample generation model training takes about 20 cycles to achieve
convergence. Each epoch runs for approximately 184 s on the Nvidia
Tesla K40m GPU (88K training samples, batch size 128). It takes
approximately 16.8 s to generate data per 1,024 samples.

4 Experimental verification and
discussion

4.1 Database and experimental settings

This study constructs two kinds of source-target databases to
verify the performance of the proposed generation model.

Database 1 is from the PV grid-connected converter, and
database 2 is from the three-phase permanent magnet
synchronous motor drive converter. The source databases are
obtained by simulation (MATLAB-Simulink) with the consistent
experiment parameters of the target system. The target databases
are obtained by fault experiment, considering the DC voltage
ripple, power, load, sensor bias, sensor noise, and other
disturbance factors. All databases are handled from the outputs
ia, ib, ic of the converters by period normalization, frequency
normalization, and amplitude normalization. The data
acquisition process is set as shown in Tables 3, 4. Because the
fault experiment of the target system is difficult, the number of
target fault databases is relatively small.

In order to train the proposed disturbance auto-encoder
generation model, we group source database 1 and source database
2 according to the operating conditions (from large to small) to obtain
88,000 training sample pairs of (Xsn, Xsp). During sample generation,
4,000 sets of normal operating sample pairs (XsN, XtN) of the source
and target systems are formed as inputs according to operating
conditions (from large to small). Then, samples are generated
based on few-shot test requirements.

In the comparative analysis, the proposed method is compared
with two types of sample generation models (Liu et al., 2021; Pei et al.,
2021) by constructing few-shot test episodes. In each test episode of
N-way-k-shot fault diagnosis tasks, we randomly select N invisible
fault categories and extract k random samples from each category of
the target dataset. During sample generation, the trained disturbance
auto-encoder generation model is used to synthesize 1,024 samples for
each category. The inputs of the disturbance auto-encoder generation
model are from the normal condition sample pairs (XsN, XtN) and the k
fault condition sample pairs (XsF, XtF), respectively. In particular,
when k = 0 is a zero-shot-learning task, only (XsN, XtN) is used to
generate samples.

After the sample generation is completed, train the popular
classifiers, including the Bayesian network, support vector machine
(SVM), and 1-DCNN. Finally, GAN-test calculates the classification
accuracy of M test samples of N categories from the target database.

4.2 The quality analysis of generation samples

In order to evaluate the performance of the proposed disturbance
auto-encoder generation model, the generation samples are verified in
two datasets. Firstly, the time domain waveforms of the generation
samples are qualitatively compared. Secondly, two commonly used
evaluation indicators for the sample generation model, MMD and KL
divergence, are used for quantitative evaluation (Liu et al., 2021).

In qualitative analysis, the time domain waveform of source,
target, and generation samples are compared under the same
operating conditions. Meanwhile, the difference degree of samples
is evaluated by the average variance. The IGBT T1 open-circuit faults
are shown in Figure 4A; Figure 5A, and the T3 and T5 faults are shown
in Figure 4B; Figure 5B. The figures show high similarity between the
generation and target sample under the same operating condition. In
contrast, the similarity is low between the source and the target
sample.

In addition, the extracted disturbance exhibits Gaussian
distribution characteristics. Comparing Figures 4A, B and Figures

TABLE 2 Model parameters of 1-DCNN for decoder and encoder.

Input Arithmetic unit Output Step size

448 × 1 × 3 Conv1d 1 × 3–16, BN 16 2

224 × 1 × 16 Conv1d 1 × 3–16, BN 16 2

112 × 1 × 16 Conv1d 1 × 3–24, BN 24 1

112 × 1 × 24 Conv1d 1 × 3–24, BN 24 2

56 × 1 × 24 Conv1d 1 × 5–40, BN 40 1

56 × 1 × 40 Conv1d 1 × 5–40, BN 40 1

56 × 1 × 40 Conv1d 1 × 5–40, BN 40 2

28 × 1 × 40 Conv1d 1 × 3–80, BN 80 1

28 × 1 × 80 Conv1d 1 × 3–80, BN 80 1

28 × 1 × 80 Conv1d 1 × 3–80, BN 80 2

14 × 1 × 80 Conv1d 1 × 3–160, BN 160 1

14 × 1 × 160 Conv1d 1 × 3–160, BN 160 1

14 × 1 × 160 Conv1d 1 × 3–160, BN 160 2

7 × 1 × 160 Conv1d 1 × 5–320, BN 320 1

7 × 1 × 320 Conv1d 1 × 5–320, BN 320 1

7 × 1 × 320 Conv1d 1 × 5–320, BN 320 1

7 × 1 × 320 Conv1d 1 × 1–640, BN 640 1

7 × 1 × 640 Maxpool 1 × 7 — 1

1 × 1 × 640 FC-320 320 1

1 × 1 × 320 FC-224 224 1

Annotation: BN, batch normalization; FC, full connection; Conv1d, 1D convolution.
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5A, B, the disturbances extracted from different faults are similar,
proving its fault transferable ability.

The average variance is calculated in Table 5, indicating that the
difference between the generation-target data is much smaller than the
difference between the source-target data. Therefore, the sample
generation model proposed in this study has excellent performance.
In addition, the small difference degree of disturbance further proves
its fault transferable ability.

In order to quantitatively evaluate the performance of
generation samples, MMD and KL divergences are introduced.
MMD maps each sample into Hilbert space and calculates its
average value, which is used to measure the similarity between
the distribution of the generation and the target database. The
smaller the value, the closer the two distributions are. KL
divergence is an asymmetric measure of the difference between
the distributions of two datasets and is used to express the distance
between any two distributions. The comparison evaluation results
of different sample generation methods are shown in Table 6. All
methods produce the same number of generation samples for each
type of fault.

Table 6 shows that the KL divergence and MMD values of the
proposed method are the smallest among the three sample
generation methods, indicating that the generation sample
distribution by the proposed method is the closest to the target
sample, so the sample quality is the best (Vinyals et al., 2016)
because the proposed method considers the feature distribution of
the target system.

4.3 Few-shot fault diagnosis comparison test

In order to further verify the few-shot diagnosis effect of the
proposed generation model, a comparative experiment with sample
generation methods (Liu et al., 2021; Pei et al., 2021) is performed in
N-way-K-shot tasks. All methods have the same number of generation
samples. After sample generation, the average performance of fault
diagnosis accuracy on 10 such experiments is evaluated in several
classification algorithms. The comparison results of fault diagnosis
accuracy are shown in Figure 6.

Figure 6 shows that the proposed method is superior to those
of Liu et al. (2021) and Pei et al. (2021) in all few-shot tasks.
Among them, the proposed method + 1DCNN has the best
performance, with a fault diagnosis accuracy of 95.90% in a
zero-shot task and with fault diagnosis accuracy of 99.87% in a
50-shot task. In addition, compared with Hariharan and Girshick
(2017) and Eli Schwartz (2017), with the increase of N (N-shot),
the fault diagnosis accuracy of the proposed method does not
improve significantly because this method can extract the feature
distribution from normal operating conditions, whereas
Hariharan and Girshick (2017) and Eli Schwartz (2017) need
to extract the feature distribution of fault samples from N. Another
phenomenon is that when the sample quality is higher, the fault accuracy
of 1-DCNN is higher, which indicates that the deep learning model has
superior feature extraction ability, but data dependence is the most
serious. Although the SVM and Bayesian network are simple, the
performance exceeds 1-DCNN when the sample quality is poor,

TABLE 3 Database 1 acquisition process.

Experiment parameters Values

DC-link voltage Udc 700 V

Rated voltage on the grid side 220 V (50 Hz)

Rated power 10 kW

Switching/sampling frequency 10 kHz

Acquisition process Source system (all types) Target system (fault conditions)

DC voltage 400:800/20 V 400:800/200 V

Output current (RMS) 1:20/1 A 1:20/10 A

Open-circuit fault type 22 21

Grid side voltage 198:244/2 V 198:244/20 V

Grid side voltage frequency 49:51/0.2 Hz 49:51/1 Hz

Unbalance of three-phase voltage 0:20/1 V 0:20/5 V

Dc-link voltage ripple 0:10/1 V 0:10/5 V

Bias error of the current sensor 0:10/0.5 A 0:10/2 A

Signal-to-noise ratio of the current sensor 40:80/2 dB 40:80/20 dB

Data acquisition results Number of samples

Source database 88,000

Target database (fault conditions) 2,100

Target database (normal conditions) 4,000
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TABLE 4 Database 2 acquisition process.

Experiment parameters Values

DC-link voltage Udc 700 V

Stator resistance 0.3276 Ω

Stator leakage inductance 4 mH

Rotor resistance 0.763 Ω

Rotor leakage inductance 3 mH

Mutual inductance 54 mH

Rated power 10 kW

Switching/sampling frequency 5/10 kHz

Database acquisition process Source system (all types) Target system

DC ripple voltage 0:30/3 V 0:30/10 V

References speed 1,800:2,300/20 r·min−1 1,800:2,300/100 r·min−1

Open-circuit fault type 22 21

References torque 1:20/2 N.m 1:20/10 N.m

Base bias of current sensor 0:10/0.5 A 0:10/0.5 A

Signal-to-noise ratio of the current sensor 40:80/2 dB 40:80/20 dB

Base deviation of speed sensor 0:20/1 r·min−1 0:20/5 r·min−1

Signal-to-noise ratio of speed sensor 40:80/2 dB 40:80/20 dB

Data acquisition results Number of samples

Source database 88,000

Target database (fault conditions) 2,100

Target database (normal conditions) 4,000

FIGURE 4
Comparison of generation samples in database 1: (A) IGBT T1 open-circuit fault, (B) IGBT T3 and T5 open-circuit fault.
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which reflects that both sample quality and classifier performance are
important factors in determining fault diagnosis accuracy of IGBT open-
circuit fault. Finally, a comparison of Figures 6A, B shows that the
performance is consistent in different databases, which proves the
universality of the above rules. Detailed data are shown in Table 7.

In order to reduce the risk and cost of fault collection in the target
system, the research objective of this study is to collect only the normal
operation samples in the target system to form a reliable fault diagnosis
model. Therefore, it is necessary to visually evaluate the performance of
the proposed method + 1-DCNN in the 0-way-10-shot task. The
confusion matrix and S-TNE, which is a dimensionality reduction
method, are adopted.

The confusion matrix in Figure 7 shows that in the 0-shot task, the
proposed method does not diagnose the fault sample as a normal sample,
nor does it diagnose the normal sample as a fault sample. Therefore, there
is no risk of false diagnosis, and it has reliable engineering application
value. The dimensionality reduction results of S-TNE of the last layer
feature of 1-DCNN are shown in Figure 8. Different types of samples are
separated from each other, indicating that the proposedmethod has better
fault diagnosis capabilities, and the generation samples are close to the
target samples, further proving that the proposed generation model can
better fit the fault sample distribution of the target system.

4.4 Online fault diagnosis experiment

In order to verify the application effect of the proposed method in
practical engineering, an online fault diagnosis experiment is performed
on the three-phase PV grid-connected converter. The experiment
system, as shown in Figure 9, consists of a three-phase grid-
connected converter and a fault diagnosis system. The three-phase
grid-connected converter is composed of PV analog power supply
(CHROMA 62024), grid analog power supply (CHROMA 61702),
main power circuit (IGBT and filter), and a control system. The

FIGURE 5
Comparison of generation samples in database 2: (A) IGBT T1 open-circuit fault, (B) IGBT T3 and T5 open-circuit fault.

TABLE 5 Difference degree of generation under the same operating conditions.

Type Database 1 difference degree Database 2 difference degree

T1 fault source vs. target sample 0.12372 0.10372

T1 and T3 fault source vs. target sample 0.13225 0.09661

T1 fault generation vs. target sample 0.00813 0.01119

T1 and T3 fault generation vs. target sample 0.00978 0.01062

Disturbance T1 vs. T3 and T5 0.00621 0.00817

The bold values represent the effect of the proposed method.

TABLE 6 Evaluation results of quantitative indexes of generated samples.

Databases 1/2 MMD KL

Proposed method 0.0922/0.1071 0.0069/0.0072

VAGAN (Liu et al., 2021) 0.5725/0.5476 0.0158/0.0169

EFWAN (Pei et al., 2021) 0.5927/0.6176 0.0211/0.0228

The bold values represent the effect of the proposed method.
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FIGURE 6
(A) Comparison results of fault diagnosis accuracy in database 1. (B) Comparison results of fault diagnosis accuracy in database 2.

TABLE 7 Diagnosis accuracy evaluation results.

Dataset 1/dataset 2 Zero-shot 5-shot 10-shot 50-shot

Proposed method + 1DCNN 95.82%/95.90 95.88%/95.92 97.16%/97.10 99.76%/99.87

Proposed method + SVM + FFT 93.67%/94.71% 93.53%/94.26% 95.72%/94.96% 97.24%/98.26%

Proposed method 90.17%/93.55% 90.24%/93.62% 91.62%/93.98% 95.83%/96.11%

Liu et al. (2021) + 1DCNN 60.11%/63.27% 65.45%/71.36% 75.11%/79.99% 86.29%/87.86%

Liu et al. (2021) + SVM + FFT 66.27%/69.13% 70.17%/72.64% 76.32%/80.16 84.76%/85.63%

Liu et al. (2021) + Bayesian network + FFT 63.17%/64.26% 71.27%/74.55% 75.98%/81.34 85.11%/86.89%

Pei et al. (2021) +1DCNN 60.78%/63.27% 69.24%/75.16% 78.62%/83.21% 90.19%/92.16%

Pei et al. (2021) + SVM + FFT 67.35%/68.55% 72.25%/73.92% 78.16%/82.37% 86.86%/87.11%

Δ-encoder (2017) + Bayesian network + FFT 64.59%/65.66% 72.27%/75.91% 78.37%/84.62% 88.01%/89.30%

The bold values represent the effect of the proposed method.
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controller is DSP28377S, with a sampling frequency of 20 kHz and a
control frequency of 10 kHz. The output current data in the controller
are transmitted to the fault diagnosis system through DMA after
downsampling processing. The fault diagnosis system comprises
FPGA (Speedster7t) and its auxiliary unit, which is used to realize
fast parallel computing of 1D-CNN.When the fault is detected, the fault
diagnosis result is sent to the control unit to realize the rapid protection
and control of the PV grid-connected system.

In this study, the T1 open-circuit fault and T1 and T3 open-circuit
faults are taken as examples to illustrate the effectiveness of the proposed
method. Once the open-circuit fault is detected, the controller will
immediately shut down all IGBTs to protect the system and then start
the fault-tolerant control units according to the fault diagnosis result. The
experimental results are shown in Figure 10.

In Figure 10A, IGBT T1 has an open-circuit fault at 0.1 s, whereas the
fault diagnosis system locates the fault (label = 1) at 0.1201 s and issues

FIGURE 7
Confusion matrix of + 1-DCNN in the 0-shot task.

FIGURE 8
S-TNE results of + 1-DCNN in the 0-shot task.
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protection instructions to the controller. The controller shuts down the
system at 0.1204, so the current drops rapidly to avoid secondary failures.
After that, the standby IGBT is started at 0.1215 s to realize fault-tolerant
control and resume operation. The same experimental effect for T1 and T3
open-circuit faults appears similarly in Figure 10B. The proposed method
only takes about 0.0215 from failure occurrence to recovery control.
Therefore, it meets the real-time requirement of converter fault
diagnosis. It is proved that the few-shot learning method proposed in
this study will not increase the computational burden of the fault classifier.

In more detail, Figures 10A, B show that using the proposed method,
the IGBT open-circuit fault can be identified in around one current cycle
(20.1–20.2 m). The online calculation time is minor, around 0.1–.2 m.
Once IGBT open-circuit failure occurs, the proposed method can quickly
turn off the system within about 0.4 m to avoid more serious secondary
accidents. Then, the fault tolerant control system is quickly started
according to the fault diagnosis results (approximately 1.4–1.5 m). The
above experiments demonstrate the engineering feasibility of the

proposed method. When the IGBT open-circuit fault occurs, the
proposed method can ensure the continuous operation of the system
and greatly improve its reliability. In addition, the fault diagnosis results
can guide the maintenance and greatly reduce its cost.

5 Conclusion

In order to solve the problem of data collection in the IGBT
open-circuit fault diagnosis of a three-phase PWN converter,
achieving reliable data-driven fault diagnosis model training
under limited samples, this study presents a few-shot learning
method based on data generation. The method, which is called the
disturbance auto-encoder generation model, consists of an encoder
and a decoder. Through model design and training algorithm
constraints, the decoder extracts nonlinear transferable
disturbance from the normal operating conditions of the target

FIGURE 9
Experimental platform.

FIGURE 10
Fault diagnosis results, (A) T1 open-circuit faults, (B) T1 and T3 open-circuit faults.
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system, and the decoder synthesizes the target system samples by
combining the disturbance and source samples. As the extracted
disturbance considers the feature distribution of the target system
and has fault feature transferable capability, the generation samples
can well fit the feature distribution of the target system. Using the
generated samples to train the 1-DCNN fault model, it does not
need to collect the target system fault samples and achieves 95.90%
fault diagnosis accuracy in 0-shot and 99.87% fault diagnosis
accuracy in the 50-shot task, which is a new breakthrough in
the research field of few-shot learning-based fault diagnosis
method. Finally, the online fault diagnosis performance of the
method is verified in PV grid-connected converter experimental
prototype, showing that the proposed method has excellent real-
time and fault-tolerant control ability. In future work, a more
complex engineering environment to verify the performance of the
method is worth trying.
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Appendix A: Theory 1

d ~ N(μd, σd) represents a random disturbance,Xsp,i ~ N(μp, σp)
represents the i type fault sample in the source database p, and
Xsn,i ~ N(μn, σn) represents the i type fault sample in the source
database n. Combining d and the same type sample pairs (Xsn,Xsp)
as inputs training decoder D has the following training objectives:

D ΘD, d, Xsp( ) ~ΘD � argmin
ΘD

D ΘD, d, Xsn( ) −Xsp

���� ����2. (A1)

The optimal results are

D ΘD, d,Xsn,i,( ) � E Xsp,i( ). (A2)

E represents expectation.
Proof: The objective function Eq. A1 is equivalent to

D ΘD, d, Xsn( ) −Xsp

���� ����2
� ∑

i

∫∫∫ (D(ΘD, di, xsn,i) − xsp,i)2p di, yi( )p xsn,i, yi( )p xsp,i , yi( )dxsn,idxsp,iddi

� ∑
i

∫ (D(ΘD, di, xsn,i) − xsp,i)2dxsp,i ∫∫p di, yi( )p xsn,i , yi( )dxsn,iddi . (A3)

p (,) represents a joint probability distribution and yi represents the
fault category. When di and Xsn,i are fixed, from the nature of the
Gaussian distribution, it can be obtained that

min ∫ (D(ΘD, di, xsn,i) − xsp,i)2p(xsp,i, yi)dxsp,i

� ∫ up,i − xsp,i( )2p xsp,i, yi( )dxsp,i

� σp,i
2 . (A4)

This is true if and only if D(ΘD, di, xsn,i) � up,i. Therefore,

min D ΘD, d,Xsn( ) −Xsp

���� ����2
� min∑

i

∫ (D(ΘD, di, xsn,i) − xsp,i)2p(xsp,i, yi)dxsp,i ∫∫p di, yi( )p xsn,i , yi( )dxsn,iddi

� ∑
i

σp,i
2 ∫∫p di, yi( )p xsn,i, yi( )dxsn,iddi

� ∑
i

σp,i
2

.

(A5)

This is true if and only if D(ΘD, d, Xsn,i, ) � E(Xsp,i), quod erat
demonstrandum.
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