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The start-up and power-up processes of the heat pipe cooled reactor are essential
parts of the autonomous operations. The rapid power fluctuation in the processes
can affect the safety of the heat pipe reactor. The fast and accurate prediction of the
peak power is significant for the safe operation of the heat pipe cooled reactor. This
paper generates the peak power datasets of heat pipe cooled reactor start-up and
power-up processes by coupling Monte Carlo sampling, and system analysis
program with heat pipe cooled reactor MegaPoweras the research object. A fast
predictionmodel of peak powerwas developed based on the artificial neural network
and evaluated in terms of cost, accuracy, and interpretability. The results show that
the artificial neural network model has high prediction accuracy and is suitable for
large datasets with complex non-linear relations. However, the training cost is high,
and the interpretability is weak. The above characteristics are explained by theoretical
analysis, and the ability of ensemble algorithms to improve the accuracy of the
artificial neural networks is discussed.
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1 Introduction

The heat pipe cooled reactor is an advanced solid-state reactor whose core consists of a
hexagonal stainless-steel monolith structure containing uranium-oxide (UO2) fuel pins and
heat pipes. As the core heat transfer component, the heat pipes carry away the core heat to the
second loop or the thermoelectric conversion device in a non-energetic manner, eliminating
pumps, valves, and auxiliary support systems. Hence, unlike traditional light water reactors,
heat pipe cooled reactors are characterized by high inherent safety, compact structure, low
operation pressure, long core life, and sound economy, and can be applied to particular
scenarios such as deep-sea, space, and star surface. However, due to the small delayed neutron
fraction, low matrix heat capacity, weak fuel, and matrix Doppler effects in heat pipe cooled
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reactor, it faces rapid variation in power with reactivity perturbations
and temperature fluctuations.

The peak power is an essential factor affecting reactor safety, and
reactors are generally designed with over-power protection devices to
protect the reactor from over-power. Once the over-power protection
signal is triggered, the reactor will shut down urgently. In most
application scenarios, heat pipe cooled reactors must operate
unattended for an extended period. In the face of load changes, the
operating system needs to startup or mediate power to match the
reactor power to the load while keeping the peak power in a reasonable
range. Considering the rapid power variation of heat pipe cooled
reactor, the implementation of this function relies on the accurate and
fast prediction of the core power.

The reactor core power is generally obtained by the physical
model based on the nuclear reaction mechanism or the analytical
method of the experimental model. Dias and Silva (2016) used the
neutron flux density method to infer the reactor power. However,
the neutron flux density is not only related to the power level but
also affected by the degree of fuel consumption. Song (2002)
sensors outside the core to measure the power, but it is
challenging to arrange sensors in some scenarios. The
sensitivities of the sensors will also affect the accuracy of power
estimation. Simple mathematical or physical models cannot
accurately describe or estimate the nuclear reaction process due
to a large number of non-linearities and uncertainties involved.

Numerical simulation of the phenomena in the reactor by
coupling the thermohydraulic and neutronics models is another
means. Xi et al. (2013) analyzed the axial power distribution of the
European supercritical water-cooled reactor SCWR FA by coupling
the thermohydraulic code CFX and the neutronics code MCNP.
Although the best estimation procedure provides accurate results, it
does not meet the requirements for autonomous operation in remote
due to a large amount of computation time.

With the development of machine learning techniques, the use of
data-driven models to predict the trends of critical parameters in real-
time based on the feature parameters plays an increasingly active role
in the safe operation of nuclear power plants. Bae et al. (2021)
proposed a data-driven model consisting of a multi-step prediction
strategy and an artificial neural network, which can help the operators
estimate the trend of parameters under emergencies to respond
quickly to the current situation.

Given the data-driven model’s excellent performance, this study
try to apply it to the field of power prediction. This paper takes
MegaPower, a heat pipe cooled reactor designed by Los Alamos
National Lab for strategic power supply in remote as the subject
(Sterbentz et al., 2017). Firstly, a model based on an artificial neural
network to predict the peak power of heat pipe cooled reactor start-up
and power-up processes is built. Then ensemble approaches are used
to optimize the prediction performance further. After that, the
applicability of this model is analyzed. Figure 1 shows the entire
analysis flowchart of this article.

2 Problem introduction and dataset

2.1 Problem introduction

MegaPower is a heat pipe cooled reactor designed by Los Alamos
National Lab for strategic power supply in remote (Mcclure et al.,
2015; Sterbentz et al., 2017). Figure 2 shows some of the major reactor
structures.

The core consists of a hexagonal stainless-steel monolith structure
containing 5.22 Mt of uranium-oxide (UO2) fuel pins and liquid metal
potassium (K) heat pipes operating at 675°C. By vaporizing the
potassium liquid in the heat pipes, the heat pipes remove heat
from the monolith; no pumps or valves are needed. Heat is then

FIGURE 1
The flowchart of the whole analysis process of the neural network prediction model.
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deposited in the condenser region of the heat pipe. Condenser regions
can accommodate multiple heat exchangers. Reaction control is
achieved using alumina (Al2O3) neutron side reflectors with
12 embedded control drums containing boron-carbide (B4C)
poison arcs.

The heat pipe cooled reactor increases reactivity by rotating the
control drum. Zhong et al. (2021) have proposed a “frog-hopping”
power control strategy to improve the safety of the heat pipe cooled
reactor in the power mediation process. As shown in Figure 3, the
system is as follows.

During the start-up process, when the reactor is critical, after
each rotation of the control drum, if the change of the reactor
power and the average fuel temperature is within limits during the
subsequent observation time, the reactor is considered to be in a
controllable state, and the control drum is continued to be rotated.
Otherwise, the control drum is stopped until the conditions are
satisfied again. In the power-up process, it is necessary to wait some
time to perform the following operation after reaching the current
power.

Therefore, the main operation parameters affecting the target
parameters and their value ranges and distributions were identified,
as shown in Table 1. During the process of reaching the target value of
the core power, there is an urgent need to know the effect of the
parameters on the power, as the different rotation patterns of the
control drum may lead to a huge variation of the transient power.
Model-based, knowledge-based, and data-driven methods are
commonly used for prediction. However, the model-based method
has a longer calculation time, the knowledge-based method has little
empirical knowledge, and only the data-driven method can overcome
the problems in peak power prediction.

2.2 Dataset

Although the data-driven method has shown promising
applications, its performance is influenced by the quality of the

FIGURE 2
Concept schematicof heat pipe cooled reactor MegaPower (Sterbentz et al., 2017).

FIGURE 3
Control logic of the control drum.
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data. In practice, obtaining reliable training data is difficult, which
relies on effective procedures. The HPRTRAN is a heat pipe cooled
reactor system analysis code developed by the Nuclear Power Institute
of China, consisting of a point reactor kinetics model, a reactivity
feedback model, a core heat transfer and mechanical model, and a heat
pipe model (Ma et al., 2021a).

Figure 4 shows the flowchart of themodels in the HPRTRAN code.
The neutronic kinetics model determines the total power with the
neutron transport simulation to obtain the relative power distribution.
Thermal-mechanical calculations are carried out with the transferred
power. There are three components to the core multi-channel
thermal-mechanical model: a heat pipe model, a single channel
coupled thermal-mechanical model, and a radial heat transfer
model. Using the heat pipe model, the evaporator outwall
temperature and the monolith’s inner wall temperature are
determined. By transferring the thermal expansion and temperature

distribution from the core thermal-mechanical model to the neutron
kinetics model, the reactivity feedback can be considered.

The reasonability and feasibility of the models were verified by
comparing the computational results of the HPRTRAN code with the
ANSYS code and experimental results (Ma et al., 2021b; Ma et al.,
2022).

HPRTRAN can well simulate the heat pipe reactor in the start-up
and power-up processes. Taking the start-up process as an example,
the system parameters, including core geometry parameters, power
distribution, reactivity feedback, etc., are initialized, followed by
transient calculations, where the point kinetic equations, core
multi-channel heat transfer model, and heat pipe model are solved
explicitly; The core internal reactivity is determined from the fuel,
monolith, heat pipe, and reflector operating temperatures, and
summed with the external reactivity introduced by the control
drum as the total reactivity. Update the temperature field and the

TABLE 1 The range and distribution of the input parameters in start-up and power-up processes.

Parameter Acronym Range PDF Process applied to

The angle of a single rotation ASR [0.5,5.5]°/0.5 Discrete Start-up and power-up

The speed of rotation SR (10,60)°/min Uniform Start-up and power-up

The minimum observation time MOT (1,20)s Uniform Start-up and power-up

The power stability criteria PSC (1,30)K Uniform Start-up and power-up

The temperature stability criteria TSC (0.003,0.1) Uniform Start-up and power-up

Initial power factor IPF (0.0,1.0) Uniform Power-up

Target power factor TPF (0.0,1.0) Uniform Power-up

Delay time DT (11,000)s Uniform Power-up

Note: “Initial power factor” donates the relative power before the power-up process, “Target power factor” donates the relative power after the power-up process, “the relative power” donates the ratio

of power to full power.

FIGURE 4
Flowchart of the models developed for the transient core analysis in the heat pipe cooled reactor (Ma et al., 2021b).
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heat transfer between channels. Multiple iterations are performed
until the preset calculation time is reached. Figure 5 shows the power
variation during the start-up process (Ma et al., 2021a).

As shown in Figure 6, a Monte Carlo simulation is performed for
the input parameters of the process of start-up and power-up,
respectively. The influence of the input parameters on the target

parameters is calculated using HPRTRAN to obtain the dataset
containing the input features and the target values. The dataset size
for both the start-up and power-up processes is 2000.

The dataset is divided into a training set, validation set, and test set
according to the ratio of 3:1:1. The training set is used to train the
prediction model and calculate the model’s parameters. The validation
set determines whether the model is underfitting or overfitting. The
test set is used to check the model generalization performance.

The model uses the root mean square error (RMSE) between the
predicted and actual values of the target parameters as the evaluation
metric, as shown in the following equation.

RMSE �

��������������������
1
N

∑N
i�1

fpredict
i − ftrue

i( )2[ ]√√
(1)

Sobol sensitivity analysis is based on the variance decomposition
technique. It is suitable for measuring the non-linear relationship between
multiple input parameters and outputs (Ikonen, 2016), selecting a total
sensitivity index value of 0.05 as a distinction between important and
unimportant parameters (Zhang et al., 2015). Figure 7 shows the Sobol
sensitivity index between the input parameters and the target values in the
dataset. The results show that although there are differences in the
sensitivity indices of each input feature, they satisfy the requirements
of the critical parameters, and there are no redundant features.

3 Regression model

This section introduces the neural network algorithm and three
ensemble algorithms.

3.1 Neural network

The neuronal action potential will change when a stimulus is
delivered to a neuron in the human brain. If the potential exceeds a

FIGURE 5
The power variation during the start-up process.

FIGURE 6
Flowchart of the data set calculation in the start-up process and
power-up process.

FIGURE 7
Total sensitivity indices between input features and targets of the
dataset in the start-up process and power-up process.
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threshold, the neuron is activated and sends neurotransmitters to other
neurons. The artificial neural network (ANN) is built concerning the
structure of the human brain nervous system. The M-P neuron shown in
Figure 8 simulates the neuron in the human brain. The M-P neuron
receives the input xi from other neurons, multiplies it by the connection
weight ωi, and then subtracts the activation threshold θ to obtain the
output value ∑ωixi − θ. The non-linear activation function f
transforms the original output value to consider the non-linear factor.

As shown in Figure 9, the artificial neural network consists of an
input layer, several hidden layers, and an output layer. Each layer
includes several M-P neurons. The data are propagated backward and
forward, but no co-layer and cross-layer propagation occur.

The neural network optimizes the parameters ω and θ of the neurons
using the error back propagation algorithm (BP). The BP algorithm
updates the parameters through stochastic gradient descent and can step
out of the local optimum values and find the optimum global value.

4.2 Model evaluation

This section provides a comprehensive evaluation of the neural
network prediction model in terms of cost, accuracy, interpretability,
and uncertainty.

4.2.1 Cost
The artificial neural network has many parameters. There are

corresponding connection weights between neurons of adjacent two

FIGURE 8
Concept schematicof the M-P neuron model.

FIGURE 9
Concept schematic of the fully connected artificial neural network
model.

TABLE 2 Training and prediction time of the neural network model.

The dataset Training time s) Prediction time(s)

S (E)tart-up 120.1635 5.8364-3

Power-up 139.3435 6.0854-3

TABLE 3 Partial hyperparameters of the neural network.

Type of hyperparameters Hyperparameter

Network structure n_dense

n_hidden

Model training epochs

batch_size

earlystopping

loss

activation

optimizer

initialization

regularization

standardization

learningrate
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layers and thresholds on each. The artificial neural network adopts the
BP algorithm to update parameters, which requires the input to be
propagated layer by layer from front to back. Then the error is
propagated step by step from back to front. Ittakes a long time to
train the artificial neural network model. Table. 2 shows the time
required to prepare and predict the neural network model on the two
datasets.

The complexity of the neural network model is also reflected in the
size of the model hyperparameters. Table. 3 shows part of the
hyperparameters of the neural network.

The model’s generalization performance can be driven to the best
state by adjusting the values of hyperparameters. Due to a large
number of hyperparameters, it usually takes time to adjust the
parameters of the neural network. Thus, it is more sensible to
select the random sampling method in tuning the neural network
model.

4.2.2 Error percentage
The peak powers of the test set were predicted using the optimized

neural network model, and the error percentage distributions are
shown in Figure 10.

The error percentages of the neural network are within 20% in
both the start-up and the power-up processes, showing the high
accuracy of artificial neural networks. There are two reasons. One
is that the neural network has lots of parameters that can fit complex
functional relations. Hornik (1991) has proved that, under certain
conditions, the artificial neural network is capable of arbitrarily
accurate approximation to a function. Secondly, in updating the
model parameters, the neural network uses the stochastic gradient
descent algorithm; it can jump out of the local extremes and find the
global minimum.

4.2.3 Interpretability
Talking about the interpretability of models, an eural network is

more of a black box in that it delivers results without an explanation. It
is only possible to observe what caused the neuron’s activation on the
first hidden layer and what the neuron’s activation did on the last
hidden layer. It is difficult to understand more neurons in the hidden
layers in the middle. Therefore, the neural network is unsuitable for
some scenarios requiring high interpretability.

The interpretability of neural networks is currently a research
hotspot, which can be divided into active and passive interpretability
studies according to whether interpretability interventions are made in
the design and training processes of the model. Active interpretation
drives neural network models in the direction of interpretability by
adding physical information to the structure of the model, using
physical constraints in the model’s training process, or combining the
neural network with other models with high interpretability. Wan
et al. (2020) constructed the neural-backed decision tree NBDT by
replacing each node in the decision tree with a neural network,
claiming it preserves the high precision of a neural network and
high-level interpretability of a decision tree and successfully applied in
the field of image recognition. However, due to the specific
modification of the internal structure of the neural network by
active interpretation, it is less intuitive in interpretation and has a
narrow scope of application. Therefore, more work is currently
focused on passive interpretation.

In this section, the neural network prediction models are
interpreted using the attribution interpretation and the distance
interpretation, respectively, according to the decreasing
interpretability completeness.

4.2.3.1 Attribution interpretation
The concept of attribution interpretation refers to the attribution of

responsibility or blame based on the effects of the input features on the
output. The rapid rotation of the control drum brings about a rapid rise
in core temperature and the following negative temperature feedback, so
the total reactivity fluctuates violently near the criticality, generating
power fluctuations and the maximum peak power.

Figure 7 shows the contribution of the input features to the peak
power, during the start-up process, with the minimum observation
time having the most significant effect on the peak power, followed
by the control drum’s angle of a single rotation and speed of rotation.
At the microscopic level, the single rotation angle and rotation speed
of the control drum directly affect the speed of each control drum
rotation. Thus, the contribution to the peak power is enormous. At
the macroscopic level, the minimum observation time determines
the length of the single rotation interval of the control drum during
the “frog-hopping” start-up. Actually, it controls the overall speed of
the control drum during the whole rotation.

FIGURE 10
Error percentage distribution of test set prediction by the neural network during the start-up process and power-up process.
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In the power-up process, the target power factor becomes the most
influential factor on the peak power, which is well understood as it
determines the steady-state power level and, naturally, the peak power
range above the steady-state power.

The above analysis illustrates the usefulness of analyzing the
effect of input features on the peak power according to Figure 7. This
section takes the power-up process as an example to perform the
attribution interpretation by sampling ten samples from the test set.
All the samples are normalized and sorted by the output value. As
shown in Table. 4, it is easy to identify the features that contribute
most on the peak power when it is small or large. For instance, the
small PSC value in sample No. 1 limits the speed of power increase.
And the large MOT values in samples No. 2–4 extend therotation
interval of control drum. All the above factors reduce the reactivity
introduction speed. The large peak powers of samples No.8–10 come
from the opposite reason.

The attribution interpretation explains the results from the
mechanism, which can deepen the understanding of the peak
power formation process, but it requires human confirmation in
practice, which is inconvenient. Therefore, this section adopts the
distance interpretation method based on Euclidean distance to prove
the reliability of the model prediction results.

4.2.3.2 Distance interpretation
The distance interpretation finds the nearest training sample from the

training set to explain the output for a particular test sample. A reasonable
assumption is that the peak power is considered a function of the input
features and that the “derivatives” are present and bounded over most of
the domain so that the outputs of the test sample and the nearest training
sample should not be too different from each other.

Therefore, this section still selects the above 10 test samples,
searches for the nearest training samples and compares their
outputs. The results are shown in Figure 11. It is found that the
output values of five nearest training samples are within the 20% error
range of test samples, indicating that the output of the neural network
can be quickly verified by distance interpretation.

4.2.4 Uncertainty
The uncertainty of the model contains epistemic uncertainty and

aleatory uncertainty, where the epistemic uncertainty comes from the

lack of understanding of the physical system, and aleatory uncertainty
comes from the uncertainty of the physical system itself, which is
difficult to distinguish in practice. This section analyzes the
uncertainty of neural network models by identifying the sources of
uncertainty, performing uncertainty propagation, and finally
analyzing the output uncertainty.

The uncertainty of neural network comes from the model
hyperparameters, training data, and model parameters. The
model hyperparameters and training data are controllable
uncertainties and can be specified artificially before training. The
model parameters are uncontrollable uncertainties, which are
updated by the gradient descent method during the training
process and cannot be interfered with artificially, so the
uncertainty of the model parameters can be considered by adding
a Dropout layer to abandon the model parameters randomly
(Gurgen, 2021). The process of model uncertainty quantification
is shown in the Figure 12.

The uncertainty of the model is propagated through the
framework shown in Figure 12. And it is then quantified by

TABLE 4 Attribution interpretation of the peak power prediction model in the power-up process.

Number ASR SR MOT TSC PSC Predict peak power

1 0.90 0.50 0.16 0.43 0.07 1,535,104

2 0.90 0.28 0.95 0.81 0.22 1,581,559

3 0.80 0.84 0.68 0.19 0.14 1,697,292

4 0.90 0.82 0.74 0.25 0.21 1,847,500

5 1.00 0.22 0.26 0.50 0.30 1,989,466

6 0.50 0.98 0.32 0.18 0.53 3,193,530

7 0.30 0.06 0.32 0.30 0.59 3,565,175

8 0.90 0.20 0.21 0.72 0.47 4,817,171

9 0.20 0.46 0.05 0.24 0.52 5,491,084

10 0.60 0.18 0.53 0.94 0.85 5,848,254

FIGURE 11
Distance interpretation of the peak power prediction model in the
power-up process.
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analyzing the uncertainty output. Taking a sample of the start-up
process and the power-up process as an example respectively, the
uncertainty outputs of the modelsare shown in Figures 13, 14.

3.2 Ensemble algorithms

The predictive ability of a regression model for unknown samples
is defined as the generalization error, expressed as the mean square

error (MSE) of the predicted and actual values of the target parameter.
The mean square error (MSE) can be broken into two components:
bias and variance.

MSE � Bias2 + Variance (2)
The bias indicates the accuracy of the model prediction, and the

variance measures the stability of the prediction. The general
relationship between bias and variance is shown in Figure 15
(Geman and Bienenstock, 1992).

FIGURE 12
The process of uncertainty quantification.

FIGURE 13
Uncertainty quantification of the peak power prediction model in
the start-up process.

FIGURE 14
Uncertainty quantification of the peak power prediction model in
the power-up process.
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Zhou (2016) offers theoretical justification for ensemble
algorithms that can improve the accuracy and stability of models
and reduce generalization errors by enhancing the diversity of models.
The conventional ensemble algorithms include bagging, boosting, and
stacking based methods.

Bagging can reduce the variance of the ensemble model by
sampling the dataset, training multiple regression models of
the same type separately, and weighting the prediction results
of the models to obtain the final output. Boosting uses the next
model to predict the residuals of the previous model. Finally, it
combines the prediction results of multiple weak regression
models with an additive model, which can reduce the bias of
the ensemble model.

Stacking has a two-layer structure, using different regression
models to predict the dataset in the first layer and the prediction
results as the dataset to train the meta-model in the second layer.
Relearning the prediction results may obtain higher generalization
performance.

This paper uses three ensemble algorithms to optimize the neural
network, with the structure shown in Figure 16.

FIGURE 15
Bias and variance dilemma: the general relationship between bias
and variance.

FIGURE 16
Concept schematic of three ensemble algorithm models. (A) Bagging ensemble algorithm, (B) Boosting ensemble algorithm, (C) Stacking ensemble
algorithm.
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4 Optimization and evaluation of
artificial neural network model

The artificial neural network can model non-linear relationships
between variables. Macroscopically, it partitions the data space by
progressive decomposition and relies on the scale of the model to
obtain better performance. The artificial neural network has a wide
range of applications. However, the relationship between targets and
features varies so much in datasets of different scenarios that it is
difficult to use the comparative results on one dataset as a guide to
another. This paper is more interested in how the ANN performs in
the specific application scenario of the heat pipe cooled reactor’s start-
up and power-up processes and how to comprehensively evaluate the
neural network’s applicability.

Therefore, this section builds a peak power prediction model for
the heat pipe cooled reactor’s start-up and power-up processes based
on an artificial neural network, optimizes the model by adjusting the
model structure, and evaluates the model’s performance in terms of
cost, accuracy, interpretability, and uncertainty using a comprehensive
framework.

4.1 Model optimization

The accuracy of neural network models is affected by numerous
factors. The hyperparameters affect the prediction ability by
determining the complexity of the model, the training data directly
affect the effect of model learning, and the ensemble algorithms can
achieve performance improvement through the combination of
multiple models.

4.1.1 Hyperparameters optimization
The hyperparameters determine the complexity of the model.

The learning ability of a simple model is limited, but as the
complexity increases, the model overfits, i.e., gradually learns
some properties of the training set and loses good
generalization performance. Taking the power-up dataset as an
example, the complexity of the model can be represented by
hyperparameters that indicate the model structure size, such as
the depth (n_dense) and width (n_hidden). The neural network

will directly determine the size of the model. This section uses the
training set to calculate the model parameters and the validation set to
determine the degree of overfitting. Figure 17 shows the effect of
hyperparameters on the overfitting of the neural network model.

The overfitting phenomenon can be observed in the training of the
neural network. Although each neuron can use the complete samples,
the increase in width due to the different weights still causes the effect
of further division of the data space. The neural network that is too
deep may cause parameters instability with vanishing gradient
problems or exploding gradient problems due to the continued
multiplication of multiple activation functions. Therefore, the hyper
parameters should be tuned to alleviate the overfitting situation to get
the prediction model with the best results.

FIGURE 17
Influence of the neural network depth and width on overfitting.

FIGURE 18
Flowchart of bias and variance calculation method.
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This overfitting phenomenon of the model can be explained by the
bias-variance dilemma, where the model complexity makes a
difference in the effect of the bias and variance, thus leading to a
change in the generalization error of the model, as shown in Figure 15.
A model’s generalization error can always be decomposed into bias
and variance, and the effect of hyperparameters on overfitting is a
combination of the effects on bias and variance, respectively. The bias
and variance are averaged over all possible datasets computed by the
model and are only relevant to the model and not to the specific
dataset.

In cases where datasets are difficult to obtain, the bias and variance
of the model can be computed on the multiple datasets obtained by
bootstrap replicates from the original dataset as shown in Figure 18
(Sofus et al., 2008).

Overfitting can be alleviated by adjusting the model hyperparameters
and controlling the bias and variance in a suitable position. It is found that
the bias of the neural network always decreases monotonically with the
increase of depth or width.However, as the width increases, the variance is

unimodal, and it is found that deeper models increase variance. Thus, the
trend of the generalization error of the neural network with model
complexity depends on the relative magnitude of bias and variance
(Yang et al., 2020).

The artificial neural network is a low bias but high variance model
and the generalization error depends mainly on the control of variance.
For the neural network, the variance will increase if the model is too
deep. The effect of width on variance is still unimodal, as shown in
Figure 19, and performance can be further improved by widening.

4.1.2 Dataset size
This section investigates the effect of dataset size on model error.

Figures 20, 21 shows that the relationship between dataset size and
model error has basically converged during the start-up and power-up
processes, indicating that it is appropriate to use both datasets to train
the neural network model. However, both datasets still have room for
expansion to reduce the error. The neural network has many
parameters. It is difficult for a small amount of data to learn more
accurate parameters in the error back propagation process, so it is
usually suitable for large datasets such as picture and text recognition.

FIGURE 19
Influence of the neural network depth and width on bias and variance.

FIGURE 20
Influence of dataset capacity on RMSE in start-up and power-up
processes.

FIGURE 21
Effect of ensemble models in start-up and power-up processes.
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4.1.3 Ensemble algorithms
Finally, the performance improvements of the three ensemble

algorithms on the neural network model were compared. The results
show that all three ensemble algorithms effectively reduce the
generalization error of the models compared to single models.

The reduction effect on the variance and the bias is consistent with
the theoretical analysis, with Bagging mainly reducing the variance
and Boosting mainly reducing the bias. Considering that the neural
network is a high variance but low bias model, the gains are more
significant using Bagging than Boosting. While Stacking may obtain
better results by relearning based on a simultaneous ensemble of a
single model, Bagging and Boosting simultaneously.

5 Conclusion

The following research has been conducted in this paper. Firstly,
the Monte Carlo sampling method and the deterministic model are
combined to generate the heat pipe cooled reactor datasets in start-up
and power-up processes. Then, the peak power prediction model
based on the artificial neural network is established. Next, the
influence of hyperparameters, dataset size, and ensemble
algorithms on the model performance is studied. Finally, the
following conclusions were obtained.

(1) The neural network model has a high prediction accuracy. The
prediction error of the peak power in the heat pipe cooled reactor
is 0.5658 MW for the start-up process and 0.7385 MW for the
power-up process. It has a low uncertainty, and the predictive
percentage errors of most samples are less than 20 percent.

(2) The neural network is a model with high variance and low bias.
Thus, ensemble algorithms are mainly used to improve
performance by reducing the variance of the model. The
dataset size also impacts the model, and there is room for
further expansion.

(3) The training and tuning costs of the neural network are high; the
training time is 120 s on the start-up process dataset and 139 s on
the power-up process dataset. But it has a relatively low prediction
cost. The interpretability is weak too. It can be partially explained
by passive interpretation, such as attribution interpretation and
distance interpretation. It could be improved by combing neural

networks and other algorithms in the future. Applying the neural
network in scenarios that do not require high interpretability is
more advantageous.
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