AUTHOR=Li Bin , Li Mingzhe , Yan Shiye , Zhang Yifan , Shi Bowen , Ye Jilei TITLE=An optimal energy storage system sizing determination for improving the utilization and forecasting accuracy of photovoltaic (PV) power stations JOURNAL=Frontiers in Energy Research VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2022.1074916 DOI=10.3389/fenrg.2022.1074916 ISSN=2296-598X ABSTRACT=

As a new type of flexible regulation resource, energy storage systems not only smooth out the fluctuation of new energy generation but also track the generation scheduling combined with new energy power to enhance the reliability of new energy system operations. In recent years, installing energy storage for new on-grid energy power stations has become a basic requirement in China, but there is still a lack of relevant assessment strategies and techno-economic evaluation of the size determination of energy storage systems from the perspective of new energy power stations. Therefore, this paper starts from summarizing the role and configuration method of energy storage in new energy power stations and then proposes multidimensional evaluation indicators, including the solar curtailment rate, forecasting accuracy, and economics, which are taken as the optimization targets for configuring energy storage systems in PV power stations. Lastly, taking the operational data of a 4000 MWPV plant in Belgium, for example, we develop six scenarios with different ratios of energy storage capacity and further explore the impact of energy storage size on the solar curtailment rate, PV curtailment power, and economics. The method proposed in this paper is effective for the performance evaluation of large PV power stations with annual operating data, realizes the automatic analysis on the optimal size determination of energy storage system for PV power stations, and verifies the rationality of the principle for configuring energy storage for PV power stations in some regions of China.