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The energy trading market that can support free bidding among electricity

users is currently the key method in smart grid demand response.

Reinforcement learning is used to formulate optimal strategies for them

to obtain optimal strategies. Non-etheless, the security problem raised by

artificial intelligence technology has been paid more and more attention.

For example, the neural network has been proved to be able to resist

adversarial example attacks, thus affecting its training results. Considering that

reinforcement learning is also widely used for training by neural networks,

the security problem can not be ignored, especially in scenarios with high

security requirements such as smart grids. To this end, we study the security

issues in reinforcement learning-based bidding strategy method facing by

the adversarial example. First of all, regarding to the electric vehicle double

auction market, we formalize the bidding decision problem of EVs into a

Markov Decision Process, so that reinforcement learning is used to solve

this problem. Secondly, from the perspective of attackers, we have designed

a local Fast Gradient Sign Method which affects the environment and the

results of reinforcement learning by changing its own bidding. Then, from the

perspective of the defender, we designed a reinforcement learning training

network containing an attack identifier based on the deep neural network, so

as to identify malicious injection attacks to resist against adversarial attacks.

Finally, comprehensive simulations are conducted to verify our proposed

method. The results shows that, our proposed attack method will reduce the

auction profit by influencing reinforcement learning algorithm, and the protect

method will be able to completely resist such attacks.

KEYWORDS

double auction, markov decision process, reinforcement learning, adversarial
example, fast gradient sign method, adversarial example detection
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1 Introduction

With the application of more and more Internet of
Things equipment and information technology, the traditional
purely physical power grid has gradually transformed into
the Cyber Physic System-based (CPS) Smart Grid (SG)
Zhang et al. (2016); Hong et al. (2019); Bandyszak et al. (2020);
Zhao et al. (2021); An et al. (2022). Smart grid provides bi-
direction information flow and power flow through advanced
information technology, and realize effective interconnection
of power generation, transmission, distribution and others
Grigsby (2007); Haller et al. (2012). The most important
function of smart grid is to plan and guide users to actively
adjust their power load by taking advantage of the bi-direction
transmission of information between the grid and users,
so as to achieve the effect of peak load shifting, which is
called Demand Response (DR) Croce et al. (2017); Albadi and
El-Saadany (2007); Huang et al. (2019).

With the development of science, technology and society,
almost all equipment depends on electric power transportation.
People are increasingly dependent on electricity, which brings
great pressure to the stable operation of the power grid. It is
urgent to use demand responsemethods to alleviate the pressure.
Themainstream demand response methods are divided into two
categories, one is price-basedDRand the other is incentive-based
Hahn and Stavins (1991); Pyka (2002); Liu et al. (2005) DR. The
price-based DR method guides users to adjust the load actively
by setting the price, such as Time of Use Price (TOU), Real Time
Pricing (RTP), and so on Ding et al. (2016); Cheng et al. (2018);
Samadi et al. (2010). The incentive-based DR method realizes
load migration by directly managing the user’s load, such as
Direct Load Control (DLC), Energy Trading Market, and so on
Wu et al. (2015); Ruiz et al. (2009); Ng and Sheble (1998).

Due to the continuous increase of renewable energy
Hosseini et al. (2021); Giaconi et al. (2018) and the popularity
of flexible load and energy storage Miao et al. (2015);
Liu et al. (2018) equipment such as electric vehicles, the energy
trading market, which allows users to freely bid and transmit
electric energy, has received extensive attentionKim et al. (2019);
Esmat et al. (2021). Generally speaking, in typical energy trading
market, the electricity users (or electric energy company) with
surplus energy will act as sellers, the electricity uses with
insufficient energy will act as buyers. Regarding to the winner
decision mechanism in energy trading market, considering that
the market has strong uncertainty, and the market needs to
ensure the benefits of participants, fairness and other properties
to attract more participants, the auction mechanism has better
performance than the optimization algorithm, which is the
mainstream of current research. In recent years, most scholars
have devoted themselves to studying a more efficient auction
mechanism from the perspective of auction platform. For
example, two example of auction mechanism.

With further research, scholars found that determining
optimal bidding strategy from the perspective of participants
also affects the performance of the energy trading market.
Reinforcement learning is a branch of machine learning,
which focuses on interactive goal oriented learning Mohan
and Laird (2014); Erhel and Jamet (2016). It can independently
explore the environment and constantly optimize its own
strategies driven by rewards. Deep reinforcement learning
combines the independent exploration ability of reinforcement
learning with the strong fitting ability of neural network, and has
been widely studied Yu et al. (2022); Zhang et al. (2019). Deep
reinforcement learning technology is widely used in the optimal
decision-making of smart grid due to its strong perception
and understanding ability and sequential decision-making
ability Barto et al. (1989); Roijers et al. (2013). For example, two
example of RL bidding.

In recent years, deep learning technology has made
unprecedented development and has been widely used in
many fields. However, its security problems have become
increasingly prominent. Szegedy et al. (2013) found that the
deep neural network is extremely vulnerable to the attack of
adding disturbance to the confrontation sample image. This
attack will cause the neural network to classify the image
with high confidence, and the human can hardly distinguish
the confrontation sample from the original image with their
eyes. For instance, in Figure 1, the original panda image is
judged as a panda by the depth learning image classification
model with 57.7% confidence, but after adding small random
noise, the model will misjudge the image as a gibbon with
high confidence Goodfellow et al. (2014). The sample, which
is carefully created or generated and leads to the wrong
prediction of the deep learning model, is called Adversarial
Example (AE) Szegedy et al. (2013). The training process of
deep reinforcement learning also relies on neural networks,
so theoretically, there is also a risk of being attacked by
adversarial example. Moreover, the smart grid system, which
requires high reliability, will have a great impact once the
reinforcement learning algorithm is attacked by the adversarial
example.

As introduced above, it is urgent to study the security
problems of reinforcement learning algorithm applied in smart
grid. In our paper, we mainly focus on the attack and defense
of the bidding strategy algorithm based on reinforcement
learning of double energy trading mechanism. At present, the
research on counter attack has been carried out for several
years, but the following problems still exist. 1) The application
scenarios of reinforcement learning algorithms are mostly game
environments. The research on adversarial attack is mainly
carried out on images, and the effectiveness of scenes other than
images is hardly explored. 2) It is worth exploring the adversarial
attack and defense effects when the state observation is very
limited information.
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FIGURE 1
Examples of adversarial attack.

To this end, in this paper we will study the security issue
aiming at the reinforcement learning-based bidding strategy
method in Electric Vehicle double energy trading market.
Specifically, we first conduct a double auctionmodel/mechanism
of EV double energy trading market. And we formalize the EVs’
bidding strategy as a Markov Decision Process model so as to
solve it by deep reinforcement learning. After that, we studied a
method of generatingAdversarial Example based on fast gradient
sign method from the adversary’s point of view, and explore the
impact of AE on deep reinforcement learning algorithm. Then,
we designed a deep reinforcement learning network that contains
a deep neural network-based adversarial example discriminator
to resist such attacks from the perspective of the defender. Finally,
comprehensive simulations are conducted to verify ourmethods.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the research efforts related to
energy trading market, reinforcement learning method and the
adversarial example. In Section 3, we introduce the preliminaries
of this paper. In Section 4, a local-fast gradient adversarial
example generating method is proposed. In Section 5, the
deep neural network-based adversarial example discriminator
is proposed to protect the reinforcement learning method. In
Section 6, the simulations are conducted. Finally, we conclude
this paper in Section 7.

2 Related work

With the development of distributed energy and energy
storage equipment, the electricity trading market between
users has become an important research content in smart
grid demand response. For example, Jin et al. (2013) studied
the electric vehicle charging scheduling problem from
the perspective of energy market, and proposed a mixed
integer linear programming (MILP) model and a simple
polynomial time heuristic algorithm to provide the best solution.
Zeng et al. (2015) introduced a group sales mechanism for
electric vehicle demand response management in the vehicle

to grid (V2G) system and designed a group auction transaction
mechanism to realize the bidding decision of electric vehicle
users. The results show that this mechanism can reduce the
system cost. Zhou et al. (2015) proposed an online auction
mechanism to solve the demand response in smart grid,
expressed the problem of maximizing social welfare as an online
optimization problem in the form of natural integer linear
programming, and obtained the optimal solution.

Reinforcement learning, as a powerful artificial intelligence
tool in sequential decision-making problems, has been
increasingly applied to the scheduling, decision-making
and energy trading strategies in smart grid. For instance,
Zhang et al. (2018) summarized the application research
work of deep learning, reinforcement learning and deep
reinforcement learning in smart grid.Wan et al. (2018) proposed
a deep reinforcement learning real-time scheduling method
considering the randomness of EV users’ behavior and the
uncertainty of real-time electricity price for a single EV user,
designed a representation network to extract identification
features from electricity prices and a deep Q network to
approximate the optimal action value function to determine
the optimal strategy.

As introduced above, the research and application of
reinforcement learning in smart grid has been very extensive,
so its security must be guaranteed. While as the application
potential of deep reinforcement learning algorithm is gradually
exploited, the adversarial attack and defense against deep
reinforcement learning has gradually attracted the attention
of scholars. For example, Huang et al. (2017) proved the
effectiveness of adversarial attack against the neural network
strategy in reinforcement learning. Lin et al. (2017) proposed
two adversarial attack methods against the reinforcement
learning neural network, and verified the effectiveness of
the attack in a typical reinforcement learning environment.
Qu et al. (2020) proposed a “minimalist attack” method for the
deep reinforcement learning strategy network, and formulated
countermeasures by defining three key settings and verified the
effect of the attack. Although the above research is aimed at
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reinforcement learning, in fact, the adversarial examples are
aimed at environmental information mainly based on pictures.
In the application of smart grid reinforcement learning, most of
the environmental information is digital, so the research in this
area needs to be carried out urgently.

3 Preliminaries

In this section, we will first introduce the Electric Vehicle
double auction model, and then introduce the definition of deep
reinforcement learning and adversarial attack.

3.1 Electric vehicle double auction
energy Trading Market

System Model: In this paper, we consider a Electric Vehicle
energy trading market which is shown in Figure 2. Specifically,
the EVs which need to charge act as buyers, and the EVs with
surplus energy and want to discharge to get some profits act
as sellers. They are allowed to submit their charing/discharing
request freely. The bidding information always including the
valuation, demand/supply volume, arriving/departuring time.
These bidding information would submitted to the auctioneer,
which is acted by microgrid control center. The auctioneer will
make a fair, effective determination within these information. In
general, the auctioneer is always assumed as a trust platform,
which means auctioneer will not steal or tamper the bidding
information to threat the auctionmarket. Note that, in our paper,
the auction determination rule is considered as the typical double
auction mechanism: McAfee mechanism. Due to the limit of the
space, we will not introduce the work flow in detail.

In the above auction market, the bidding strategy of EVs
is the key issue affecting their profits in the market. However,
in such a game market, the information of competitors and
environment is constantly changing, and it is impossible to obtain
an optimal bidding strategy through traditional methods. And
reinforcement learning can get an optimal strategy to adapt to
different environments in the future by constantly exploring the
environment.Therefore, at present, using reinforcement learning
to find the optimal strategy is themainstream to solve the bidding
strategy problem.

Threat Model: Non-etheless, reinforcement learning is an
artificial intelligence method, and neural networks are often
used in the solution process. The neural network has been
proved to be vulnerable to attacks against samples, that is, by
adding a little noise to the samples, the training results of the
neural network are affected. In our EV double auction market,
the reinforcement learning bidding strategy will be attacked
by this attack. So in our paper, we assume the adversary is
one participant in the auction market. He/she modifies his/her

own bidding information, thereby affecting the reading of the
environment by reinforcement learning, and thus affecting the
bidding strategy of other users. Specific attack methods will be
given in Section 4.

3.2 Deep reinforcement learning

Deep reinforcement learning (DRL) combines the perceptual
capability of deep learning (DL) with the decision-making
capability of reinforcement learning (RL), where agent perceives
information through a higher dimensional space and applies the
obtained information to make decisions for complex scenarios.
Deep reinforcement learning is widely used because it can
achieve direct control from original input to output through
end-to-end learning. Initially, due to the lack of training data
and computational power, scholars mainly used deep neural
networks to downscale high-latitude data, which were later
used in traditional reinforcement learning algorithms Lange and
Riedmiller (2010). Then Mnih of DeepMind proposed Deep
Q-networks (DQN) Mnih et al. (2013), and people gradually
started to study them in a deeper level while applying them
to a wider range of fields. In recent years, research in deep
reinforcement learning has focused on DQN, which combines
convolutional neural networks with Q-learning and introduces
an experience replay mechanism that allows algorithms to learn
control policies by directly sensing high-dimensional inputs. As
the most basic reinforcement learning algorithm, because of
its good training speed and effect, it is widely used in various
practical scenes.

4 Adversarial attack method against
reinforcement learning -based
trading market

4.1 Adversarial attack

Deep learning algorithms have been widely used in many
fields, but the ensuing security issues deserve attention.
Adversarial attack is an important risk. Since the input of deep
neural network is a numerical vector, the attacker canmaliciously
design a targeted numerical vector (called adversarial sample) to
make the deep neural network make a misjudgment. In the field
of deep learning, we assume that x is the input and f represents a
deep neural network, the production of adversarial samples can
be represented as:

min
δ

d (x,x+ δ) (1)

subject to

f (x) ≠ f (x+ δ) (2)
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FIGURE 2
Ev double auction model.

where d represents the distance metric, which is calculated by
l− norm.

The above equation also shows that the attacker tries to
find the minimal perturbation δ that can make the deep neural
network output wrong results.

Deep reinforcement learning (DRL) algorithms integrate
deep neural networks based on the theory of reinforcement
learning, which also leads to the risk of suffering from
adversarial attacks. In value-based RL algorithms, adversarial
samples can make the neural network misestimate the value
of a specific action at a specific state and guide the agent
to choose the wrong action. In policy-based RL algorithms,
the attacker can make the agent unable to use the policy
gradient to select the optimal policy through the adversarial
sample.

4.2 Double auction and bidding strategy
formalization

In the double auction scene model of electric vehicles, there
are mainly the following three participants: auctioneer, buyer
and seller. Among them, the microgrid control center serves
as the auctioneer of the trading market, the electric vehicle
with insufficient electric energy serves as the buyer, and the
electric vehicle with surplus electric energy serves as the seller.
In the electricity trading market, there are multiple buyers and
sellers who can participate in the auction using their mobile
devices or Internet of vehicles systems. The winning bidder
trades the electric energy through the charging pile, avoiding the
transmission loss of electric energy in the traditional power grid
system.

According to the characteristics of the auction process, this
paper discretizes the transaction process and adopts the integer

set T = {1,2,⋯} to represent the time series in the transaction
process. B is the set of buyers, and the number of buyers is |B|. S
is the set of sellers, and the number of sellers is |S|.

At time slot t, the actual power demand of the ith buyer is di,t ,
and its bidding information is denoted as a triplet:

χb,i,t = {i,pb,i,t,qb,i,t} , i ∈ B (3)

where i represents the buyer ID, pb,i,t represents the valuation of
one unit electricity submitted by ith buyer, and qb,i,t represents
the submitted volume.

Similarly, at time slot t, the actual power supply of the jth
seller is uj,t , and its bidding information is:

χs,j,t = {j,ps,j,t,qs,j,t} , j ∈ S (4)

where j represents the seller ID, ps,j,t represents the valuation of
one unit electricity submitted by jth seller, and qs,j,t represents the
submitted volume.

The actual power supply/demand and the submitted volume:

qb,i,t ≤ di,t, t ∈ T, i ∈ B (5)

qs,j,t ≤ uj,t, t ∈ T, j ∈ S (6)

In the energy trading market, electric vehicle users with
insufficient and excessive electric energy report bidding
information according to their own wishes. The microgrid
control center, as the auctioneer, organizes a double auction to
determine the winning buyer and seller, and then determine
the transaction price and volume of each buyer and seller.
Subsequently, the auction results (including the winning
buyer/seller) are released to all participants in the system to
ensure the fairness and verifiability of the auction.
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4.3 Rational

Research on adversarial attack theory in deep learning
has made some progress. At present, deep learning plays an
important role in the field of computer vision. Most of the
adversarial attack methods for deep learning are based on the
image-based system. The latest research on adversarial attack
methods in deep reinforcement learning algorithms is also
mainly oriented at game scenarios, and the observations of agents
are also images. Note that the application of deep reinforcement
learning algorithm is also likely to face the threat of adversarial
samples in the scenario of electric vehicle energy trading.

Theoretically, the observation of agents in smart grid is
mainly the digital data of electric energy, electricity price and so
on. Similarly with the image data, these digital data is also the
numerical vectors, and it has fewer input features. This makes it
possible to produce adversarial samples for deep reinforcement
learning algorithms in energy trading market theoretically. Once
affected by the attacker’s malicious interference, it may have a
negative impact on the benefits of users in the power grid.

In the process of participating in smart grid energy trading,
electric vehicle users need to continuously submit their bidding
information to participate in double auction, and achieve their
optimal benefits through multi-step decision-making. There is
correlation between continuous decisions. Deep reinforcement
learning algorithm can exactly give full play to its unique
advantages in this process. Considering the current situation of
actual power grid charging and discharging, it is appropriate
to discretize the bidding price and trading volume of energy
trading. Deep-Q-network (DQN) is a good choice in power
trading scenarios. This paper considers the adversarial attack
research on deep Q learning algorithm in power transaction of
smart grid.

4.4 Adversarial attack method against
reinforcement learning-based bidding
strategy

In the double auction process, the attacker can affect the
benefits of the other auctioneer by maliciously modifying his
real demand/supply, making the average cost of the buyer group
rise or making the average profit of the seller group decrease.
Because each participant in the double auction has limited
observations, and some state quantities cannot be explicitly
modified, once changed, they are easy to be screened out and lose
the attack effect. Therefore, this paper considers that attackers
can change the state of agents in the system by submitting
false bidding information. As a result, the deep-Q-network
selects non-optimal bidding strategies to reduce the average
reward.

To be specific, in the bilateral auctionmarket, it is considered
that there is an attacker in the buyer group. His purpose is to

influence the state observation of other buyers by maliciously
modifying his quantity demanded, so other buyers will make
non-optimal bidding strategy. Ultimately, it affects the utility of
the buyer group. Similarly, for the seller group, this paper also
considers the existence of an attacker and studies the impact of
the generated adversarial samples on the seller group’s revenue.
Adversarial attacks in electrical energy trading are shown in
Figure 3.

At present, most of the adversarial sample production
method for deep reinforcement learning borrows from the
methods in deep learning. The Fast Gradient Sign Method
(FGSM) make adversarial perturbations and add them to the
observations, so as to attack theDRL agent.The core idea is to add
perturbations along the direction where the deep neural network
model gradient changes the most to induce the model output
error results. Formally, adversarial samples generated by FGSM
can be expressed as follows:

x′ = x+ ε ⋅ sign(∇xJ (θ,x,y)) (7)

where ɛ is the size of the disturbance, J represents the cross-
entropy loss function, θ is the parameter of the neural network,
x represents the model input, and y represents the sample label
(here refers to the optimal action term). The cross-entropy loss
function here measures the difference between the distribution
of the label y and the distribution that puts all the weight on the
optimal action.

Inspired by the original FGSM, to address the problem
that the attacker can only modify some observations to avoid
being detected by the system, in this paper, a local-FGSM
is proposed to make adversarial samples by modifying some
components of the agent state vector, which can be expressed as
follows:

x′ = x+ ε ⋅ sign(∇xJ (θ,x,y)) ⋅ μ (8)

where μ is a vector whose dimension is equal to the dimension
of input x, the value of the dimension corresponding to the
component to be modified by the agent state vector is 1, and the
rest is 0.

The attack process is shown in Algorithm 1.

5 Adversarial sample
recognition-based reinforcement
learning-based energy Trading
Mechanism

In this section, we propose a adversarial sample recognition-
based reinforcement learning method for the above double
auction.
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FIGURE 3
Adversarial attacks in electricity trading.

Algorithm 1. The process of local-FGSM adversarial attack.

5.1 Markov Decision Process model

We construct the EV electric energy trading double auction
scenario as aMarkov Decision Process (MDP) with discrete time
steps, which can be expressed as a quadruple {S,A,P,R}.

S stands for the state space. SB and SS denote the state space
sets of buyers and sellers, respectively. Electric vehicle users
can be informed of the total demand and total supply during
the current period. Assuming that each participant conducts v
auctions in the trading market, the variable σ is introduced to
indicate whether the participant currently participated in the last
auction or not. In time slot t, the states of the ith buyer and the
jth seller are denoted as:

s (b, i, t) = {di,t,Dt,Ut,σ} (9)

s (s, j, t) = {uj,t,Dt,Ut,σ} (10)

A stands for action space. After acquiring observations
at each time slot, buyers and sellers need to submit bidding
information to participate in the bilateral auction, and the
decision of bidding price and bidding volume will have an
impact on their respective profits. In this system, the bidding
information submitted by buyers and sellers is regarded as their
respective actions. In time slot t, the actions of buyer EV users
and seller EV users are denoted as

a (b, i, t) = {pb,i,t,qb,i,t} (11)

a (s, j, t) = {ps,j,t,qs,j,t} (12)

R is the reward function.The immediate reward of the buyer
and seller of time slot t is denoted as r (t). For the buyer, if he wins
the bid in the bilateral auction, the cost is pb,i,t ⋅ qb,i,t . The buyer’s
goal is to keep the cost as low as possible, but win the auction
as much as possible. For the seller, if he succeeds in winning the
bid in the bilateral auction, then his profit from selling electric
energy is ps,j,t ⋅ qs,j,t ; otherwise, if he fails to win the bid, his profit
ps,j,t ⋅ qs,j,t is 0.Then, the reward function of the buyer in time slot
t is denoted by:

r (b, i, t) =
{{{
{{{
{

−pb,i,tqb,i,t, i ∈MB

−2pb,i,tqb,i,t, i ∉MB

(13)

Setting the buyer’s reward function as negative can make the
optimal strategy for buyers and sellers using deep reinforcement
learning algorithms formally consistent, and the goal is to
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Algorithm 2. The training process of deep Q-learning algorithm in double

auction.

maximize their own long-term benefits. The buyer’s cost is
the absolute value of the reward. For the buyer who fails to
win the bid, it may need to spend more money to buy the
much-needed power, so a large penalty coefficient is added
to it to encourage the buyer to avoid the failure as much as
possible.

The seller’s reward function is denoted as:

r (s, j, t) = ps,j,t ⋅ qs,j,t (14)

P represents the state transition function. Function pt is
defined as a transition function. The state transition probability
from state st to state st+1 is expressed as:

pt:st × at→ st+1 (15)

5.2 Solution via reinforcement learning

In the electric energy trading market model designed in
this paper, deep Q-learning algorithm is used to learn the
optimal bidding strategy for buyers and sellers in microgrid
bilateral auction respectively. In order to estimate the state action
value function, this paper defines a multi-layer perceptron as a
deep-Q-network for buyers and sellers respectively, taking the
state as input and the state action value Q (s,a) ≈ Q (s,a,θ) as
output, where theta is the neural network parameter. Deep-Q-
network is a fully connected neural network with two hidden
layers.

In the process of training deep-Q-network, the state st , action
at , reward rt and next state st+1 obtained from each interaction
with the system environment can form an empirical tuple,
denoted as [st,at, rt, st+1]. For buyers and sellers, a experience
replay is set to store the corresponding experience tuples
respectively, and its capacity is N.

In addition, a target network with the same structure as the
deep-Q-network is defined to solve the correlation and stability
problems. Both the deep-Q-network and the target network
initially have the same parameters. In the training process, the
target network’s parameter θ′ is updated to the deep Q network’s
parameter θ every C steps. At each training session, a mini-
batch sample of size B is sampled from the experience replay and
used as input to the main network, and the output is selected to
calculate the Q-value:

Qevel = Q(St,At,θ) (16)

The target Q-value is:

Qtarget = rt + γ ⋅Q(st+1,arg
a′

Q(st+1,a
′
,θ) ,θ

′
) (17)

The γ is a discount factor, indicating the extent to which the
future reward affects the current reward. The smaller the γ, the
more the agent focuses on the current reward, and vice versa.

The loss function is calculated from the difference between
the targetQ-value and the estimatedQ-value, and the parameters
of the main network θ are updated by gradient descent. The loss
function is:

L (t) =
B

∑
i=1
(Qtarget −Qevel)

2 (18)

The training process of deep Q-learning algorithm is shown
in Algorithm 2.

5.3 Defense Strategy Architecture

At present, deep learning mainly achieves defense effect
by modifying network structure, objective function or training
process, but most defense methods cannot meet the practical
application scenarios of DRL. From the perspective of data
security and reliability, this paper considers the use of additional
network to preprocess the data of the perturbed observation
vector and screen out the adversarial samples to ensure the
system security.

When EV users participate in the electric energy trading
market, they obtain their current state according to the data
published by the microgrid control center. Based on the deep
Q learning algorithm proposed above, deep Q network is used
to help EV users make optimal bidding decisions. In order to
avoid adversarial samples that may appear in the process of
electric energy trading, the state information of all EV users
is screened out by an adversarial sample discriminator before
bilateral auction. In this way, only real samples can be allowed
to participate in the auction, and then bidding decisions can
be made based on the deep-Q-network, and further transaction
decisions and scheduling optimization can be made by the
microgrid control center. Figure 4 shows the architecture of the
adversarial defense model.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1071973
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2022.1071973

FIGURE 4
Defense strategy architecture.

The adversarial sample discriminator is designed by a fully
connected deep neural network with four hidden layers. The
specific network structure is shown in the following table. The
input layer consists of four neurons corresponding to the four
elements of the electric vehicle user’s state. The output is 0 or 1,
representing the input EV states as adversarial and real samples,
respectively.

The adversarial sample discriminator is essentially a binary
classifier, which is used to judge whether the input EV state
sample is an adversarial sample, and its training process is
a supervised learning process. Firstly, select a buyer deep-Q-
network and train it well, so that users can make the optimal
bidding decision according to it. Then the data set is collected
and made. In each episode of electric energy trading, after
the user state is initialized, 10 bilateral auctions are conducted
successively, and the next state of the user will be obtained
after each auction. The local-FGSM is used to make adversarial
samples, and the real next time state and adversarial samples are
stored with labels being made. After that, by using the collected
adversarial samples and real samples, the training set and test set
are divided to train the adversarial sample discriminator, and the
weight is updated by using the back propagation to reduce the
loss function value. Finally, the effectiveness of the adversarial
sample discriminator is verified by the test set. Similarly,
the adversarial sample discriminator of sellers’ Q-network is
trained.

The training process of the adversarial sample discriminator
is shown in Algorithm 3.

6 Performance evaluation

In this section, we conduct several comprehensive
evaluations to verify the performance of our proposed method.
In the following, first the evaluation settings are given. Then
the results of our proposed method is introduced. Finally, the
comparison results are shown.

In this section, we conduct several comprehensive
evaluations to verify the performance of our proposed method.

Algorithm 3. The training process of the adversarial sample discriminator.

TABLE 1 Buyer’s average cost per round.

Number of buyers 5 10 15 20

Buyers’ average cost (DQN) 6.5649 6.4973 5.0431 4.8707

Buyers’ average cost (random) 29.7003 31.5305 32.2234 32.5878

TABLE 2 Seller’s average profit per round.

Number of sellers 5 10 15 20

Sellers’ average profit (DQN) 11.0802 11.2976 11.4352 11.5323

Sellers’ average profit (random) 8.1247 8.0215 7.9866 7.9864

In the following, first the evaluation settings are given. Then
the results of our proposed method is introduced. Finally, the
comparison results are shown.

6.1 Evaluation settings

6.1.1 Environment settings
Consider a microgrid in which energy trading is performed

10 times per round, that is, each round of bilateral auction is
divided into 10 time slots, and 8,000 rounds of bilateral auction
are conducted to train the deep Q-learning algorithm. In order
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FIGURE 5
Convergence process of deep-Q-network with the numbers of buyers are (A) 5; (B) 10; (C) 15; (D) 20, and the numbers of sellers are (E) 5; (F) 10;
(G) 15; (H) 20.

TABLE 3 Success rate of adversarial attack.

Magnitude of perturbation 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%) 0.9 (%)

Buyers’ Q-network 5 buyer 43.3 48.1 47.3 47.7 46 47.7 47.8 46.7 45.6

10 buyer 34.6 33.8 33.6 34.5 32.5 36.3 31.8 32.1 32.3

15 buyer 47.1 49.6 49.6 48.5 50 48.5 48.7 46.5 48.2

20 buyer 49.3 52.1 47.5 48.1 48.8 50.3 49 46.9 49

Sellers’ Q-network 5 seller 23.5 36 44.4 48.2 50.1 52.5 51.9 49.5 47.8

10 seller 39.5 48 56.7 59.7 57.1 62.2 60.3 60.4 62.3

15 seller 39.9 56.4 61.1 63.5 67.5 66.8 66.2 66.2 66.7

20 seller 45.4 59.4 61.7 66.7 65.8 66.4 68.8 66.7 68.8

to make the simulation fit the actual transaction as much as
possible and avoid the dimension explosion problem, this paper
discretizes the bid price and bid volume of the buyer and seller.
The bid price is selected from [0.6,1.5]with a spacing of .1, a total
of 10 bid price schemes, and the bid quantity is selected from
[0.5,5] with a spacing of .5, a total of 10 bid volume schemes.
In order to facilitate the simulation, the number of EVs of the
buyer is assumed to be equal to the number of EVs of the seller
in each training process, and the number of the two parties is
considered to be 5, 10, 15 and 20 respectively. In each round of
10 auctions, the emerging demand or supply generated by each
participant is a discrete number chosen from the set (0.5, 1.5] .
Assuming that the unmet demand or supply from the previous
step will be inherited to the next auction with an inheritance rate

of .9, then

di,t+1 = 0.9(di,t −wb,i,t) +φ, i ∈ B (19)

uj,t+1 = 0.9(uj,t −ws,j,t) +φ, j ∈ S (20)

where, wb,i,t and ws,j,t respectively represent the transaction
volume of the ith buyer and the jth seller in time slot t, and the
value of φ satisfies the uniform distribution on (0.5, 1.5] .

6.1.2 Reinforcement learning settings
For the deep Q-learning algorithm, the learning rate is set

to .001, the buyer discount rate is set to .99, the seller discount
rate is set to .7, and the time interval for replacing the target
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FIGURE 6
Effect of adversarial attacks.

network parameter θ′ with the deep-Q-network parameter θ is
set to 5. The size of the experience replay buffer is set to 3,000
for both buyer and seller, and the mini-batch size B sampled
from it during training is set to 32. The input layer of the deep-
Q-network is set to four neurons, the output layer is set to 100
neurons, and the number of neurons in the four hidden layers is
20, 512, 256 and 128, respectively.The greedy coefficient satisfies
the following relation:

ε = ε2 + (ε1 − ε2)e
− t

8000 (21)

where ɛ1 and ɛ2 are the values of .99 at the beginning of training
and 0 at the end of training, respectively.

6.2 Effectiveness analysis of deep
Q-Learning algorithms

In the case of different number of participants, deep Q-
learning algorithm and random strategy are respectively used to
compare the average cost per round of buyers and the average
profit per round of sellers in the last 1,000 rounds.The results are
shown in Table 1 and Table 2.

It can be seen from Table 1 and Table 2 that buyers and
sellers can obtainmore significant benefits whenmaking bidding
decisions based on deep-Q-network compared with random
strategy. The average cost of buyers is the negative value of the
cumulative reward in each round. It can be seen from Table 1
that under the deep Q-learning algorithm, with the increase of
the number of buyers, the average cost of buyers participating
in electric energy trading will also decrease. The average profit
of sellers is the cumulative reward in each round. It can be

seen from Table 2 that under the deep Q-learning algorithm,
with the increase of the number of sellers, the average profit of
sellers participating in electric energy trading will also rise. This
shows the effectiveness of the algorithm and fully considers the
willingness and interests of the participants. It can also encourage
EV users to participate in the electric energy trading market
and contribute to the peak regulation of the power grid. The
convergence process of deep-Q-network training is shown in
Figure 5.

6.3 Effectiveness evaluation of
adversarial attacks

The effectiveness evaluation of adversarial attacks can be
considered from two aspects. One is the success rate, and the
other is the extent to which adversarial attacks affect participants’
utilities. For the setting of user states in this paper, the attacker
affects other users’ state observations mainly by maliciously
modifying its own demand/supply. Therefore, in local-FGSM
for buyer-Q-network, the values in the first two dimensions of
vector u are one and the rest are 0. The value of the first and
third dimensions of the vector u of local-FGSM for the seller-
Q-network is 1.

When attacking the buyer Q-network, a buyer is selected
as the attacker in each auction, and its state is modified to
affect the state observation of other buyers, then a non-optimal
bidding strategy is selected to participate in the bilateral auction.
Similarly, the seller Q-network is also attacked. If the buyer’s
average cumulative cost per turn increases or the seller’s average
cumulative profit per turn decreases, the attack is successful.The
success rate against the attack is shown in Table 3.
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FIGURE 7
Effect of adversarial sample discriminator for buyer Q-Network.

FIGURE 8
Effect of adversarial sample discriminator for seller Q-Network.

The impact of adversarial attacks on user benefits is
shown in Figure 6. As can be seen from Figure 5, when
adversarial samples are added, the average cumulative
cost of buyers per round increases, especially when the
number of buyers is small, the impact is greater. When
adversarial samples are added, the average cumulative profit
of sellers in each round decreases, and with the increase of
disturbance size, the profit becomes lower and lower. When
the number of sellers is small, the profit decreases more
significantly.

6.4 Effectiveness evaluation of defense
strategy

Theadversarial sample discriminator is trained by supervised
learning, and the well-trained buyer Q-network and seller Q-
network are selected to collect 20,000 real samples and 4,000
adversarial samples in the process of adversarial attack for
2000 training times. The learning rate is set to .001. The final
defense effect of the adversarial sample discriminator is shown
in Figure 7 and Figure 8.
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It can be seen from Figure 7 and Figure 8 that the
adversarial defense method proposed in this paper can achieve
defense effect in most cases. The buyer adversarial sample
discriminator has a good screening effect on adversarial samples
with different disturbance sizes, and can basically achieve a
screening success rate ofmore than 80% in trading scenarioswith
different number of buyers. Compared with buyer adversarial
sample discriminator, seller adversarial sample discriminator
has a poor performance, but the success rate of adversarial
sample screening generally reaches more than 60%, and it
can also play a good adversarial defense effect in most
cases.

7 Conclusion

In this paper, focusing the EV double auction market,
we study the security issue of bidding strategy based on
reinforcement learning raised by adversarial example. First, we
construct a Markov Decision Process for EV energy trading,
and use DQN to solve this problem. Second, we design a local-
fast gradient sign method to try to counter attacks on DQN
from the perspective of attackers. Third, from the perspective of
defenders, we choose the method of adding additional network,
and use the deep neural network to build the adversarial
example discriminator to screen the adversarial example. Finally,
the simulation results shows that adversarial example would
have an impact on the deep reinforcement learning algorithm,
and different disturbance sizes will have different degrees of
negative impact on market profits. While after adding the
discriminant network, it can almost completely resist such
attacks.
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