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With the continuous progress of urbanization, determining the charging and

discharging strategy for randomly parked electric vehicles to help the peak

load shifting without affecting users’ travel is a key problem. This paper

design a reinforcement learning-based method for the electric vehicle-

assisted demand response management system. Specifically, we formalize

the charging and discharging sequential decision problem of the parking lot

into the Markov process, in which the state space is composed of the state

of parking spaces, electric vehicles, and the total load. The charging and

discharging decision of each parking space acts as the action space. The

reward comprises the penalty term that guarantees the user’s travel and the

sliding average value of the load representing peak load shifting. After that,

we use a Deep Q-Network (DQN)-based reinforcement learning architecture

to solve this problem. Finally, we conduct a comprehensive evaluation with

real-world power usage data. The results show that our proposed method will

reduce the peak load by 10% without affecting the travel plan of all electric

vehicles. Comparedwith randomcharging and discharging scenarios, we have

better performance in terms of state-of-charge (SoC) achievement rate and

peak load shifting effect.
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1 Introduction

With the continuous progress of urbanization, the
population is constantly funneled into large- and medium-sized
cities, and it brings great power load pressure to most cities (Lin
and Zhu, 2020). Considering the fact that the speed of power
infrastructure construction cannot keep up with the speed of
load growth, time-sharing power supply is the most commonly
used method to deal with the electricity outage. For example,
from 2020 to the present, major cities in China have experienced
limited electricity consumption due to excessive load, such as
Guangzhou, Shenyang, Xi’an, and Chengdu. Evidently, this
coercivemethodwill seriously affect people’s daily life.Therefore,
when the power infrastructure cannot be rapidly deployed to
improve the power generation/supply capacity, it becomes urgent
to find a more effective way to relieve the power consumption
pressure.

Smart grid (Fang et al., 2012; Gungor et al., 2011), which
supports bi-directional information and energy transformation,
can attract users to adjust their electricity consumption habits
and actively participate in the dispatch of the power grid,
that is, demand response (Medina et al., 2010; Palensky and
Dietrich, 2011). Therefore, the wide application of smart grid
technology can ensure the safe, reliable, and efficient operation
of the power grid by introducing distributed energy storage
equipment and distributed power users into the demand
response process when the power grid load supply cannot be
rapidly increased. Great research effort has been devoted to
leveraging energy storage equipment to assist demand response
management (Cui et al., 2017; Tang et al., 2019). For instance,
it has to be mentioned that the unrestricted deployment of
electrical energy storage devices will bring great economic
burden, which is impractical.

Recently, with the increasingly severe global energy shortage
and environmental pollution, the automobile industry has
been undergoing major changes, and electric vehicles (EVs)
have become a new direction for the development of various
automobile companies (Emadi et al., 2008; Lopes et al., 2011).
The EV industry has been developing rapidly in recent years,
with the total value of the global EV market growing from
$18 billion in 2018 to $22.42 billion in 2019 and an annual
growth rate of more than 7.5%. Statistical studies show that
most electric vehicles are in shutdown state 90% of the time,
during which the on-board battery of electric vehicles can be
regarded as a distributed energy storage device to participate
in the demand side management of the microgrid, which
is called V2G technology (vehicle-to-grid) (Madawala and
Thrimawithana, 2011; Ota et al., 2012).

Electric vehicles have been widely used as a load-balancing
tool in academic circles because of their good power storage
capacity and flexibility. However, due to the uncertainty
of vehicle owners’ commuting behavior, electricity power

demand and load, etc., reasonably planning the charging and
discharging strategy of electric vehicles to help the power grid
carry out peak load filling and demand response is a key
problem. Scholars have made great efforts in designing an EV
charging/discharging strategy, which can be mainly divided into
two categories: optimization scheduling (Karapetyan et al., 2021;
Zhang et al., 2022) and trading-based method (Li et al., 2019;
Yang et al., 2020). However, these two mainstream approaches
have their drawbacks. The scheduling-based method is suitable
for the offline environment, that is, decision-makers need to
obtain some prior knowledge, such as the EV owners’ travel
plan and the future electricity supply/demand. At the same time,
this method will ignore the needs of EV owners in pursuit of
higher power conversion efficiency. Regarding the trading-based
method, it can be used in an online environment and fully meets
the needs of EV owners, but it has limited help for demand
response because it is a completely free market with limited
incentives for EV owners.

As introduced earlier, it is necessary to find a novel
optimization algorithm to satisfy the aforementioned
requirements (online, demand response, and EV owners’
travel plan and enthusiasm). Reinforcement learning (RL)
(Kaelbling et al., 1996) is a new artificial intelligence method
to obtain optimal strategies for sequential decision problems.
In the energy trading market, each participant can be regarded
as an agent, while the trading market is formed as a multi-
agent cooperation model (Wu et al., 2007). In such a multi-agent
model, the purpose of each agent is to improve its own utility and
meet its own needs, which causes great difficulty in constructing
and solving the decision-making model of such a multi-agent-
based energy trading market. Since RL can formulate effective
coordination strategies for the agent without explicitly building
a complete decision model, it can adapt the agent’s behavior to
the uncertain and changing dynamic environment and improve
the agent’s performance through interaction. Thus, RL can often
achieve good results in the scenario of multi-agent cooperation,
such as energy trading, which has aroused extensive research
by scholars (Liu et al., 2017; Hua et al., 2019). Nowadays, there
exist many RL-based energy management methods; for example,
Qian et al. (2020) proposed a reinforcement learning-based EV
charging strategy focusing on the intelligent transportation
system, and it can minimize the total travel distance and
charging cost. Zhang et al. (2022) proposed a multi-agent
reinforcement learning method to make an optimal energy
purchase schedule for charging stations and a long short-term
memory (LSTM) neural network to predict the EV’s charging
demand. Although the existing research studies are focused on
power scheduling, different scenarios have different problems,
and the existing reinforcement learning method cannot be
applied to the EV-assisted demand response scenario studied in
our study. Specifically, in this scenario, there are electric vehicles
with uncertain quantities and uncertain charging/discharging
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requirements. This scenario is evidently a multi-agent scenario,
considering that the policy trained by multi-agent reinforcement
learning is only for one agent. However, in this scenario, EV
entry and exit are not restricted, and the strategy for an agent
will not be practical after the EV leaves. So in the EV-assisted
demand response system with uncertain EVs, determining the
strategy of EVs’ charging/discharging behavior is a challenge.

To this end, in this paper, we will study an EV-assisted
demand response management system to relieve the power
consumption pressure in urban peak hours by planning EV
charging/discharging behaviors. Considering the efficiency of
decision-making, we aim to design a reinforcement learning
method for an EV-assisted demand response management
system. The main contribution of this paper is as follows:
we first formalize the EV charging/discharging strategy as an
MDP model. Electric vehicles can enter and exit at any time;
we focus on making decisions for parking spaces, and the
action space is the charging and discharging strategy of each
parking space. Considering that too many electric vehicles
lead to too much action space, we classify electric vehicles,
and similar electric vehicles share one action. The state space
includes the state of parking spaces, EVs, and total demand.
Because our system is a multi-objective optimization problem,
we use a penalty item to ensure that the departure SoC
will be enough for the next travel, and we use a moving
average reward to ensure the peaking load shifting effect. After
that, we design a DQN reinforcement learning architecture to
solve the MDP model. Finally, comprehensive evaluations are
conducted with real-world data to verify the effectiveness of our
method.

The remainder of this paper is organized as follows: in
Section 2, we briefly review the research efforts related to
EV charging/discharging strategy and reinforcement learning
method. In Section 3, we introduce the models of our EV-
assisted demand response management system and build the
EV charging and discharging scheduling optimization model.
In Section 4, the background of deep reinforcement learning is
proposed, and the MDP process of the EV charging/discharging
behavior is modeled. In Section 5, the DQN reinforcement
learning method is introduced, and we propose a DQN-based
EV charging/discharging strategy algorithm. In Section 6, we
evaluate the performances of the proposed method and compare
our method with other methods, concluding the effectiveness of
the proposed method in peak load shifting. Finally, we conclude
this paper in Section 7.

2 Related work

With the rapid growth of electric users, the imbalance
between power supply and demand in the power grid
becomes more prominent. Many scholars have focused on

alleviating the imbalance of power supply through demand
response technology without increasing power infrastructure
(Althaher et al., 2015; Eksin et al., 2015; Wang et al., 2018).
For example, Jeddi et al. (2021) proposed a coordinated load
scheduling method for each home customer in order to optimize
their energy consumption at the neighborhood level. Under
such a load scheduling method, the home customers will be
rewarded, and demand response will be implemented. Similarly,
facing the residential demand response problem, Liu et al. (2019)
proposed an energy trading method based on game theory, in
which the householder with renewable resources will transfer
energy through a peer-to-peer (P2P) trading market. It can be
seen that the demand response mechanism has been widely
used in electric energy scheduling, especially in residential
areas.

Moreover, electric vehicles (EVs) equipped with large
capacity batteries can be used as distributed energy storage
devices to participate in demand response. Therefore,
scholars have also carried out research on demand response
methods involving EVs by vehicle-to-grid technology.
Kikusato et al. (2019) proposed an EV charge–discharge
management framework, in which the home energy
management system (HEMS) decides the EV charge–discharge
plan with information from the grid energymanagement system,
aiming to reduce the residential operation cost. Li et al. (2020)
proposed an auction market that allows electric vehicles with
surplus energy to sell their energy to those with insufficient
energy. (Li et al., 2019). Yang et al. (2020) proposed the auction-
based EV energy trading market, in which EVs with insufficient
energy act as buyers and EVs with surplus energy act as
sellers. This mechanism can help peak-load shifting to a
certain extent. Thus, using EVs as energy storage equipment
for demand response has become a new direction in the
academic world. However, the traditional scheduling and
transaction methods are not enough in terms of efficiency
and user satisfaction for flexible energy storage devices such
as EVs.

Reinforcement learning, as an optimal strategy solution, has
been widely used in energy scheduling and trading. Compared
with previous non-artificial intelligence scheduling or trading
methods, the RL method has a good effect in coping with
environmental changes, so it has a better performance in
the scenario involving EVs. For example, Wan et al. (2019)
proposed a model-free approach to determine the real-time
optimal schedules based on deep reinforcement learning.
The approach contains a representation network to extract
discriminative features from the electricity prices and a Q
network to approximate the optimal action-value function.
Zhang et al. (2020) proposed a DQN-based method to manage
the EV charging behavior in order to improve the income of EV
owners and to reduce the pressure on the power grid as much as
possible.
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FIGURE 1
Market structure.

3 EV-assisted demand response
management system

In this section, we will introduce the EV-assisted demand
response management system in detail. First, we will give the
system model, and then we will introduce the EVs’ model and
the optimization formulation.

3.1 System model

The proposed EV-assisted demand response management
system will be considered to be deployed in a small area which
often has a lot of electricity users, such as a residential area and
shopping mall. In such an area, there exists a parking lot for
electric vehicles (EVs) to charge and discharge. Notably, EVs
with high state-of-charge (SoC) can be regarded as the energy
storage unit and supply electric power to the electric users within
this area via V2G technology. So, the V2G EV-assisted demand
response management system will greatly help to reduce the
load pressure on the grid and enable more power users to use
electricity. Meanwhile, since the position between the EVs and
the electricity user is very close, the power transfer will not
undergomultiple voltage changes, so the power loss is assumed to
be 0. The system model is shown in Figure 1, and the important
notations are shown in Table 1. The symbolic expression and
some assumptions are as follows:

The EVs are saved into set P, and the m parking spaces are
saved into set G. Furthermore, the EVs with insufficient energy

are saved into set Pb, and the EVs with extra energy are saved
into set Ps. The time is slotted and is denoted by an integer set
T = [1,2,3,… ], and 1 day is divided into 24 slots. For an EV
i ∈ P, when he/she enters the parking lot, he/shewill upload some
status and requirements information to the platform, including
the arrival and departure time, arrival SoC, and departure SoC.
The arrival and departure times are denoted as tai and tdi,
respectively. The arrival SoC is denoted as SoCa

i and represents
the state-of-charge when the EV i arrives into the system at
tai. The departure SoC is denoted as SoCd

i and represents the
minimum state-of-charge when the EV i departs at tdi. Notably,
the departure SoC is determined by their travel plans. The
management system is responsible for making decisions about
the charging and discharging behavior of EVs. In each time slot
t, the platform will make a decision to determine the charging
and discharging behavior of each EV in this time slot and charge
or pay according to the real-time electricity bill at that time. The
system makes full use of the capability of EVs for scheduling
while ensuring the departure SOC.

3.2 Electric vehicle model

As introduced before, in our paper, EVs act as both load and
supply. Generally speaking, an electric vehicle can be considered
as amobile chemical energy storage unit.When it is parked in the
parking lot and connected to the EV-assisted demand response
management system, it is no different from the conventional
chemical energy storage unit. However, electric vehicles need
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TABLE 1 Key notations.

Symbols Descriptions

P,Pb,Ps Set of EVs, EVs with insufficient energy, and EVs with extra
energy

T,G Sets of time slots and parking spaces

m Number of parking spaces

tai, tdi Arrival and departure time of EV i

SoCa
i ,SoC

d
i Arrival and departure SoC of EV i

SoCt
i SoC of EV i at time slot t

qi Charging/discharging speed of EV i

Ci Battery capacity of EV i

xtij The connecting status between EV i and EV j at time slot t

st The system state at time slot t

lti The state of parking space i at time slot t

Qt The state of total demand at time slot t

at The system action at time slot t

ati The action of parking space i at time slot t

rt The system reward at time slot t

rti The penalty term of parking space i at time slot t

rtload The reward of peak load shifting at time slot t

to assume the responsibility of vehicles and cannot always be
parked in the parking lot as a power dispatching tool. So, the EVs
can only be dispatched to discharge during their parking time,
especially for the EVs that need to be charged. Specifically, the
EV i’s parking time period is denoted as Ti = [tai, tdi]. Notably,
the EV must be parked in a parking space, so i also denotes the
ID of parking space i ∈ G. At the same time, different models
of electric vehicles also have differences in battery capacity and
charging and discharging speed. We use the symbols Ci and qi
to represent the battery capacity and charging/discharging speed
of EV i. Notably, for convenience of calculation, we assume that
the charging/discharging speed (qi) of EV i is determined by the
parking pile that they park. Then, we construct the following
constraints to model electric vehicles:

SoCt
i = SoC

t−1
i +

qi
Ci
, t ∈ Ti = [tai, tdi] , (1)

where SoCt
i represents the SoC of EV i at time slot t.This equation

reflects the linear transfer formula of battery state when energy
loss is ignored.

SoCmin
i ≤ SoC

i
t ≤ SoC

max
i , t ∈ Ti = [tai, tdi] , (2)

where SoCmin
i and SoCmax

i represent the lower and upper bounds
of SoC.This equation constrains the state of the battery according
to its physical properties so that it can maintain a better

performance.

qi = 0, t ∉ Ti. (3)

This equation means that charging and discharging scheduling
cannot be carried outwhen electric vehicles are not in the parking
lot.

3.3 EV charging/discharging scheduling
problem formulation

In the traditional demand response management system,
the EV charging/discharging scheduling problem is always
formulated as an optimization problem. The system collects the
information of all EVs in the future for a period of time to make
a comprehensive charging and discharging decision so that a
certain index can reach the optimum. In our paper, we consider
that the optimization goal is maximization of peak load shifting,
that is, to help the power grid to cut peak and fill valley as
much as possible. Then, the EV charging/discharging scheduling
problem can be expressed as a mixed-integer linear program
(MILP) model as follows:

max
tn
∑
t=1
‖

m

∑
i=1

xtiSoC
t
i −
∑tn

t=1
Qt

tn
‖, (4)

subject to:

SoCt
i = SoC

t−1
i +

qi
Ci
, t ∈ [tai + 1, tai] , i ∈ G, (5)

xti (SoC
t−1
i − SoC

t
i) = qi, t ∈ [tai + 1, tai] , i ∈ G, (6)

SoCtdi
i ≥ SoC

d
i , i ∈ G, (7)

SoCmin
i ≤ SoC

i
t ≤ SoC

max
i , t ∈ Ti = [tai, tdi] , i ∈ P, (8)

xti = 0,1,−1i ∈ G, (9)

where xti is the optimization parameters, and it represents the
charging/discharging status of the EV which is parked at parking
space i(we call it EV i for convenience). When xti = 1,−1,0, they
mean that at time slot t, EV i will charge, discharge, or stop,
respectively.

Here, we will briefly introduce the aforementioned
optimization model. First, the objective function represents
that we want to maximize the effect of peak load shifting for a
period of time. Constrain 1 shows the calculation rules of power
transmission and SoC. Constraint 2 specifies that the charging
and discharging speed shall satisfy the physical limits of parking
piles. Constraint 3 specifies that the SoC of all EVs will have
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enough SoC when the EVs leave the parking lot. Constraint 4
specifies the constraint of optimization parameters.

To solve such an optimization equation, it is evident that
an optimal charging and discharging strategy will be obtained,
but considering many practical factors, it cannot be really used
in practice. First, solving such a model requires the system to
obtain accurate future information in advance, which is evidently
impossible in practice. Second, even if the system obtains future
information, the optimalmatching strategy is obtained by solving
the optimization problem. But once the future environment
changes, the strategy will no longer be optimal. Therefore,
in order to deal with this uncertain electric vehicle charging
and discharging problem, it is necessary to design a method
that can obtain the optimal strategy according to the current
conditions.

4 MDP model of EV-assisted
demand response strategy

In this section, we will introduce the Markov decision
process (MDP) model of our proposed EV-assisted demand
response system. First, we will introduce the rational of
introducing the MDP model. Then, the background of deep
reinforcement learning is proposed. Finally, the MDP model of
charging/discharging strategy is given.

4.1 Rational

As introduced in Section 3.3, we have formulated
the EV charging/discharging management as an MILP
problem. However, this method has a high demand for
future state and is too sensitive to environmental changes,
which makes it unable to be deployed in actual scenarios.
Reinforcement learning can obtain the best strategies in different
environments through continuous exploration, and it has
natural advantages in the face of such complex and changeable
scenes.

But in our proposed EV-assisted demand response system,
there still exists the following challenges: 1) there exist multiple
EVs with different states and targets: different EVs have different
SoC and different charging and discharging requirements, so it
is necessary to learn different strategies for them. 2) EVs enter
and exit the parking lot at any time; therefore, if each specific
EV is given a learning strategy, the learned strategy will not
be used after it leaves. 3) Considering that parking spaces are
fixed, we can set strategies based on them. However, with the
increase in the number of parking spaces, the dimension of action
space is too large, which often leads to failure to learn useful
strategies. To address the aforementioned problem, we divide
EVs into several categories according to the SoC and charging
and discharging requirements and provide learning strategies for

each, respectively. In this way, we only need to classify the new
EVs to get the related strategy.

4.2 Deep reinforcement learning

Deep reinforcement learning (DRL) combines the perceptual
capability of deep learning (DL) with the decision-making
capability of reinforcement learning (RL), where the agent
perceives information through a higher dimensional space and
applies the obtained information to make decisions for complex
scenarios. Deep reinforcement learning is widely used because it
can achieve direct control from original input to output through
end-to-end learning. Existing research mainly classifies deep
reinforcement learning algorithms into three main categories:
one based on value functions, one based on policy gradients, and
one based on multiple agents.

Mnih of DeepMind proposed Deep Q-Networks (DQNs)
(Mnih et al., 2013), and people gradually started to study them at
a deeper level while applying them to a wider range of fields. In
recent years, research in deep reinforcement learning has focused
on DQN, which combines convolutional neural networks with
Q-learning and introduces an experience replay mechanism that
allows algorithms to learn control policies by directly sensing
high-dimensional inputs. The Deep Q-Network uses a Q-value
function Q (s,a,θ) with parameters θ to approximate the value
function. Under environment ϵ, when the number of iterations is
i, the definition of the loss function Li (θi) is expressed as follows:

Li (θi) = Es,a ρ(.) [(yi −Q(s,a,θi))
2] , (10)

where ρ(.) denotes the probability distribution of s choosing
action a in a given environment, and yi denotes the objective of
the ith iteration Q-value function, which is defined as follows:

yi = Es′ ϵ [r+ γmaxQ(s
′
,a
′
,θi−1|s,a)] , (11)

where r is the reward value fed to the agent by the environment,
and γ is the discount factor. The goal of learning depends on the
network weights, and the update formula of network weights is

∇θiLi (θi) = E[(r+ γmaxQ(s
′
,a
′
,θi−1)

− Q(s,a,θi))∇Q(s,a,θi)] . (12)

Although DQN based on the Q-learning algorithm has
achieved good results inmanyfields,DQN is no longer applicable
when facing continuous action space. Therefore, policy gradient
methods have been introduced to deep reinforcement learning.
Lillicrap et al. (2015) proposed the deep deterministic policy
gradient (DDPG) algorithm in 2015. DDPG is an algorithm
for deep reinforcement learning applied to continuous action
space, which combines a deterministic policy gradient (DPG)
algorithm with an actor–critic framework. In the DDPG, the
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objective function is defined as the sum of the awards with
discounts:

J (θu) = Eθu [r1 + γr2 + γ2r3 +⋯]. (13)

Then, the stochastic gradient descent method is used for end-to-
end optimization of the objective function. Through a series of
experiments, it is shown that DDPG not only performs stably in
the continuous action space but is also much faster than DQN in
terms of solution speed.

A multi-agent system (MAS) is a collection of multiple
agents whose goal is to build complex systems into easily
manageable systems. Multi-agent reinforcement learning
(MARL) is the application of reinforcement learning ideas and
algorithms to multi-agent systems. In the 1990s, Littman (1994)
proposed MARL with a Markov decision process (MDP) as
the environmental framework, which provided a template for
solvingmost reinforcement learning problems.The environment
of MARL is an MDP-based casuistic game framework with the
following tuple:

< S,A1,…An,R1,…,Rn,P >, (14)

where n is the number of agents and A is the set of joint action
spaces of all agents:

A = A1 ×⋯×An, (15)

where Ri is the reward function for each agent:

Ri:S×A× S→ R, (16)

where P is the state transfer function:

P:S×A× S→ [0,1] . (17)

In the case of multiple agents, the state transfer is the result of all
agents acting together, so the reward of the agents depends on the
joint policy. The policy H is defined as the joint policy of agents,
and accordingly, the reward of each agent is

RH
i = E[Rt+1|St = s,At = a,H] . (18)

Its Bellman equation is

vHi (s) = E
H
i [Rt+1 + γVH

i (St+1) |St = s] , (19)

QH
i (s,a) = E

H
i [Rt+1 + γQH

i (St+1,At+1) |St = s,At = a] . (20)

Depending on the type of task, MARL can be classified as
fully cooperative, fully competitive, or hybrid, using different
algorithms for different problems.

4.3 MDP for EV-assisted demand
response management

First, to address the EV-assisted demand response problem
via reinforcement learning, the main goal is to design a
central agent to achieve peak and valley filling in the area,
taking into account the individual economic benefits of EVs.
Considering that the charging and discharging behavior of
EVs are implemented at regular intervals, so the EV-assisted
demand response problem can be regarded as a sequential
decision problem. Therefore, we introduce an MDP model with
discrete time steps to establish the charging and discharging
behavior of EVs in the EV-assisted demand response system.
Briefly, the agent represents a community electric company,
and it observes the environmental status st , including the
electricity demand in the current region and the battery status
of each electric vehicle. Then, the charging/discharging action
at is selected for the EVs, and the environment provides a
corresponding reward rt for the replacement. After that, the
aforementioned process will be repeated in the time series.
Finally, we can obtain the best execution strategy π* by repeating
the aforementioned process (training process) many times.
Furthermore, the transition relationship between states is no
longer internal but is determined by both states and actions. In
the following, we will introduce the elements of the proposed
Markov model in detail, including agent, state space, action
space, observation space, transition, and reward.

In the model, the agent is the parking lot provider, and the
responsibility of the agent can be expressed as follows: they give
charging or discharging instructions to EVs in each parking
space according to the state at eachmoment. It can help the power
grid to cut peak load and fill valley load and, at the same, time try
to satisfy the power demand of EVs.

We denote S as the state space in our MDP model and st is
the state at time slot t. Specifically, st can be expressed as

st = {lt1, l
t
2,…, l

t
m,Q

t−1} , (21)

where lti represents the state of parking space i ∈ G, m represents
the number of total parking spaces, and Qt−1 represents the total
demand of this area at time slot t− 1. Furthermore, lti can be
expressed as

lti = {speedi,work,classi fy
t, tdi,SoC

t
i,SoC

d
i ,Ci} , (22)

where speedi represents the charging/discharging speed of
charging pile i. work represents the dispatch demand of charging
pile i, and when there is no EV in this parking space or it does not
need to be dispatched, the value is 0; otherwise, it is 1. classifyt ,
tdi, SoC

t
i, SoC

d
i , and Ci represent the category, departure time,

current SoC, departure SoC, and battery capacity of the EV in
parking space i, and when there is no car in the parking space,
these values are all 0.

We denote A as the action space in our MDP model and at

as the action at time slot t. As introduced before, we will classify
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EVs into five categories to help the agent to learn strategies more
effectively and reduce the dimension of the action space:

• Case A: The EV i’ SoC at time slot t is within the following
range:

SoCt
i − SoC

d
i ≤ 5%. (23)

These EVs will not give action at this moment.

• Case B: The EV i’ SoC at time slot t is within the following
range, and the charging piles are the DC model (7 KW in
our paper):

SoCt
i − SoC

d
i > 5%. (24)

• Case C: The EV i’ SoC at time slot t is within the following
range, and the charging piles are AC model (30 KW in our
paper):

SoCt
i − SoC

d
i > 5%. (25)

• Case D: The EV i’ SoC at time slot t is within the following
range, and the charging piles are DC model (7 KW in our
paper):

SoCt
i < SoC

d
i . (26)

• Case E: The EV i’ SoC at time slot t is within the following
range, and the charging piles are AC model (30 KW in our
paper):

SoCt
i < SoC

d
i . (27)

Specifically, at can be expressed as

at = {at1,a
t
2,a

t
3,a

t
4} , (28)

where m represents the number of charging piles. at1 to at4
represents the action of the aforementioned categories fromCase
B to E at time slot t. When the value is 0, it means that the EV
in the parking space will not be charged or discharged; when
the value is 1, it means that the EV in the parking space will be
charged; and when the value is −1, it means that the EV in the
parking space will be discharged.

Considering the state st and action at , at time slot t+ 1,
each parking space will update its status according to the
charging/discharging decision at the last time slot and read the
new status if a new EV enters.

Finally, considering the two goals of peak load reduction
and satisfying the SoC demand of EV as much as possible, the

rewardwill consist of two parts: 1) the reward represents the peak
shifting and 2) the penalty item represents the SoCdemandof EV.
Specifically, the reward space R can be expressed as

Rt = {rt1, r
t
2,…, r

t
m, r

t
load} , (29)

where rti represents the penalty item which is calculation at each
time slot.

rti =
{{{
{{{
{

0 SoCt
i ≥ SoC

d
i

−1 SoCt
i < SoC

d
i

(30)

While rload represents the reward of peak shifting, and we express
it in the form of moving average:

rtload = 1− ‖
Avetpower −Qt

Avetpower
‖, (31)

where Avetpower represents the total power of the last o time slot
before time slot t:

Avetpower =
Qt−o+1 +⋯+Qt

o
. (32)

Notably, in our paper, o is set as 4.
Overall, the total reward at time slot t can be expressed as

rt = 1
m

m

∑
i=1

rti + r
t
load. (33)

5 Solutions via deep reinforcement
learning

In this section, we design a value-based reinforcement
learning method to adaptively learn the policy of the agent,
which can obtain the algorithm performance while effectively
lightening the attack success rate. The diagram of the proposed
method is illustrated in Figure 2.

5.1 Network structure

Two neural networks are introduced for different objectives
in this paper: 1) a value evaluation network Q (st ,at ; θ) for
evaluating the performance of employed action policy under
state given and 2) a target network Q′(st ,at ; θ′) for stabilizing
the policy training process.

Specifically, the output of the value evaluation network is
an estimation of cumulative reward function E[∑Tτ=tγ

τ−1rt|st,at].
The estimation methodology using neural networks prevents the
reinforcement learningmethod from the curse of dimensionality
that traditional tabular reinforcement learning methods face.

Recalling the Bellman equation in Eq. 20, the update target
of the value evaluation network includes the evaluation network
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FIGURE 2
Deep reinforcement learning.

itself. It leads to the problem of instability when updating
the evaluation network. To address this problem, the target
networkQ′(st ,at ; θ′) is proposed.When updating the evaluation
network, the fixed target network is used to replace the Q-
value estimation on the right side of Eq. (20). Furthermore, after
certain times of evaluation network update, the parameters of
the target network will be reset as the parameters of the value
evaluation network. The details of the update mechanism will be
introduced in Section 5.3.

5.2 Action selection

During each time step, the agent needs to first observe
the state of the environment, and based on this, the agent
selects the action with the aim to maximize the future
cumulative reward.The critical part is to balance the relationship
between the exploration and exploitation in action selection.
If the agent explores the environment more, the convergence
speed of the policy learning process will be inevitably
reduced. Nevertheless, if the agent chooses to exploit existing
knowledge deeply, it may be trapped in the sub-optimal
policy.

To balance between the exploration and exploitation well,
an annealing ϵ-greedy is used in this paper. At each time
step t, the action chosen is determined based on a parameter
ϵ, which varies from (0,1). The agent will choose a random

action from the action space with probability ϵ to explore
the environment. Otherwise, the agent selects the action at =
argmax

a
Q(st,a;θ) with probability 1− ϵ for exploiting existing

knowledge. During the early stage of optimal policy learning,
the agent has relatively less knowledge about the environment, so
the agent should explore the environment more than exploiting.
Thus, the value of ϵ is set as a high value during the early stage.
As the agent possesses more knowledge about the environmental
dynamics, the weight of exploitation should be enlarged when
selecting an action, and the value of ϵ should be reduced
gradually. In implementation, the value of ϵ is initialized as
ϵini which is a relatively high value before the policy learning.
At each training step, the value of ϵ minus an annealing
parameter ϵdec until the value of ϵ is not larger than a small
value ϵmin.

5.3 Policy iteration mechanism

At each time step t, the interaction information between the
agent and environment [st ,at , rt , st+1] is stored in an experience
replay memory with size Er . When updating, to ensure the
property of independently identically distribution (i.i.d) of
training data, a mini-batch of interaction data [sτ,aτ, rτ, sτ+1]

Np

τ=1
is randomly selected from the experience replay memory as
training data to update the network. Np is the size of the mini-
batch.
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TABLE 2 EVmodels.

EV Battery capacity (kWh) Market share

Tesla Model 3 55 .210

Tesla Model Y 60 .350

Tesla Model S/X 100 .025

BYD Han EV 85 .100

Zeeker 001 86 .080

Xiaopeng P7 60 .130

Porsche Taycan 79.2 .005

BMW iX3 80 .100

The value evaluation network Q (st ,at ; θ) is updated
according to loss function as follows:

L = 1
Np

Np

∑
i=1
[(y−Q(sτ,at;θ))

2] , (34)

y = rτ + γmax
a

Q(sτ,aτ;θ) . (35)

In order to keep the stability of the policy learning process,
the target network is updated via tracking the value evaluation
network slowly. Specifically, the parameters of the target network
are reset as the parameters of the value evaluation network at
every D time step.

The training process of the DQN-based load hiding
algorithm is summarized in Algorithm 1.

6 Performance evaluation

In this section, we conduct several comprehensive
evaluations to verify the performance of our proposed method.
In the following, at first, the evaluation settings are given. Then,
the results of our proposed method are introduced. Finally, the
comparison results are shown.

6.1 Evaluation settings

In the following evaluations, the EV-assisted demand
response environment follows the following settings and
assumptions. First, we assume that the method is deployed in a
community [randomly selected 40 electricity users in the REDD
dataset (Kelly and Knottenbelt, 2015)] in 1 day (24 time slots).
In addition, there exists a parking lot to help with the demand

Input: EV charging/discharging environment,

Env; single training step length, t; maximum

number of training sessions, N; exploring

mechanisms and strategies, e; window length,

m; and network structure parameters,

hyperparameters of DQN

Output: Optimal execution strategy π∗

1 Initialize the target network ˆQ and the

evaluation network Q according to the

network structure;

2 Get the EV charging/discharging environment

Env;

3 Give a state space S and an action space A;

4 for i = 1 to N do

5 Initialization of the load hiding

environment Env;

6 for j = 1 to t do

7 Get the current state s from the

environment;

8 Calculate lt based on window length;

9 Select an action a from the action space

according to the pre-defined exploration

mechanism and strategy e;

10 Get the reward for the current action from

the environment observation r;

11 Get the state s′ after executing the current

action from the environment observation;

12 if The experience pool is not full then

13 Store data (s, a, r, s′) to the experience

pool

14 else

15 Let go of old experiences and deposit new

ones

16 end

17 Randomly sample data from the experience

pool (ˆs, ˆa, ˆr, ˆs′);

18 Calculate the target value using the target

network ˆ Q;

19 Update the parameters of the evaluation

network Q using the target value;

20 Assign the parameters of the evaluation

network Q to the target network ˆQ every k

times;

21 end

22 Update the optimal action A = a1, a2, ....at;

Algorithm 1. DQN-based EV charging/discharging strategy algorithm.
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FIGURE 3
(A) Training process, (B) peak load shifting reward, and (C) penalty term.

FIGURE 4
(A) Load curve, (B) charging/discharging volume, (C) and the difference between charging and discharging.

response, which contains 20 parking spaces. The parking lot is
equipped with V2G charging piles to satisfy the charging and
discharging between EVs. There exist twelve 7-kWh charging
piles and eight 30-kWh charging piles. The electric vehicle
models and their proportions are shown inTable 2.Their electric
power varies from 55 kWh to 100 kWh. The proportion is also
reasonably assumed according to the sales of electric vehicles.
Then, when a parking space is free, there is the probability of
ɛ = .85 that an EV will enter the parking lot and park at that
location at the next time slot. The model of EVs will follow the
assumption of Table 2, and its arrival SoC follows the uniform
distribution from 0 to 100, while the departure SoC follows the
normal distribution from 15% to 85%.

6.2 Reinforcement learning performance

First, we will show the performance of the reinforcement
learning training process. As shown in Figure 3, we can see
that when the training episode reaches about 1,000 rounds, the
rewardwill converge quickly. RegardingFigures 3B, C, these two
figures show the changes in two main components of reward.
Similarly, we can see that the convergence speed is very fast.
The reason for the fast convergence speed is that we simplify

the action space so that the training process becomes simpler.
In fact, we have tried to give each parking space an action. In
this large-scale action space, there is no trend of convergence
after 10,000 times of training. Meanwhile, after convergence,
there still exists little penalty term. The reason behind this is the
setting of the trade-off coefficient between the two awards. In
order to completely eliminate the behaviors prohibited by the
penalty term, we can appropriately increase the coefficient of
the penalty term. From these results, we can see that our MDP
model and reinforcement learning method can effectively solve
the charging/discharging decision problem of EVs.

6.3 Power grid performance

After verifying the feasibility and effectiveness of the
proposed method in training, we will verify the actual
performance of the proposed method in the power grid. In
Figure 4A, we can see that the proposed method is likely to
allow the electric vehicle to charge at a low load and discharge
at a high load. Therefore, the effect of peak load shifting can
be achieved. Specifically, in the area introduced before, our
proposed method can reduce 10% of the peak load and improve
over 50% of the valley load. Moreover, Figures 4B, C show the
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TABLE 3 Satisfaction ratio and SoC achievement rate.

Number of charging piles Satisfaction ratio (%) SoC achievement rate (%)

10 88.6 90.9

20 85.0 87.5

30 82.1 78.0

40 89.1 86.8

50 88 86.9

FIGURE 5
Comparison: load curve.

charging/discharging power in each time slot. The results show
that in daily time, the charging behavior will be strictly limited.
While during the night, in order to increase the valley load, the
discharging behavior will be completely prohibited. Therefore,
our method can effectively learn effective strategies to cut peak
and fill valley.

The aforementioned results show that at the overall level of
the power grid, our method is conducive to achieving peak load
shifting. Next, we will discuss the performance of our method in
ensuring the future travel of individual EV owners. As shown in
Table 3, we have verified the proportion of EVs that can leave the
parking lot with enough SoC (satisfaction ratio) and the final SoC
achievement rate of EVs that need to be charged under different
numbers of parking spaces. It can be seen that almost all EVs
can leave the parking lot with the target SoC, and almost all EVs
that need to be recharged can satisfy their charging requirements.
In addition, our method has similar efficiency in dealing with
parking spaces of different sizes because we have classified and
simplified the action space, thus reducing the coupling between
each action and increasing the effectiveness of the strategy.

In conclusion, our method achieves the effect of peak load
shifting while ensuring individual demand.

6.4 Comparison

Finally, we will compare our method with other methods,
such as the offline optimization method and the randommethod
(i.e., freely charging and discharging). Regarding Figure 5, it
can be demonstrated that the offline optimization method
has a certain peak shaving effect but does not perform as
well as our proposed method. For the random method, it
will not greatly change the demand response of the grid
because there are electric vehicles that need to be charged or
discharged at every moment, and their loads will offset each
other. While regarding the satisfaction ratio, the result of the
offline optimization method is similar to that of the proposed
method. The random method has no restriction on the user’s
behavior, so it will be equal to 1. It is not very different
from the 90% achieved by our method, and it is completely
acceptable.

All in all, our proposed method has a good effect in
terms of convergence speed, load-shifting performance, and
EV satisfaction ratio, and it also performs better than other
methods.

7 Conclusion

In our paper, addressing the problem of demand response
in a small area, we proposed a reinforcement learning-based
method for an EV-assisted demand response management
system to determine the best charging/discharging strategy.
Specifically, we formalized the EV charging/discharging strategy
determination problem as a Markov decision process (MDP),
and the MDP model is constructed as follows: the state space
mainly consists of occupation and charging speed of charging
piles, current SoC, departure SoC, battery capacity, departure
time of EVs, etc.The action refers to the EV charging/discharging
behavior in each charging pile. We use a sliding average load
method to represent the reward about the peak load shifting
effect, andwe set a series of penalty terms to ensure the departure
SoC is enough for the next travel. Then, we proposed a DQN-
based reinforcement learning architecture to solve this problem.
Finally, the evaluation based on the real world shows that our
method can effectively help regional peak load shifting and
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has better performance than the random scheduling and offline
optimization methods.
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