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The use of batteries for diverse energy storage applications is increasing, primarily
because of their high energy density, and lithium-ion batteries (LiBs) are of particular
significance in this regard. However, designing estimators that are robust to compute
the state of charge (SOC) of these batteries in the presence of disturbance signals
arising from different battery types remains a challenge. Hence, this paper presents a
hybrid estimator that combines the extended Kalman filter (EKF) and sliding mode
observer (SMO) via a switching function and tracking closed loop to achieve the
qualities of noise cancellation and disturbance rejection. Hybridization was carried
out in such a way that the inactive observer tracks the output of the used observer,
simultaneously feeding back a zero-sum signal to the input gain of the used observer.
The results obtained show that noise filtering is preserved at a convergence time of
.01 s. Also, the state of charge estimation interval improves greatly from a range of [1,
.93] and [.94, .84] obtained from the extended Kalman filter and sliding mode
observer, respectively, to a range of [1, 0], in spite of the added disturbance
signals from a lithium–nickel (INR 18650) battery type.
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1 Introduction

So far, lithium-ion batteries (LiBs) have been increasingly used in energy repository
systems, power backups, and electronics (Orovwode et al., 2021) due to their inherent
properties of dense energy, lower self-discharge, and prolonged cycle life (Guangzhong
et al., 2016), more than conventional lead–acid batteries. LiBs constitute an essential energy
repository system (Adeyemi et al., 2022) used in electrical vehicles and smart grids, hence the
need for a battery management system (BMS). The BMS plays a significant role in monitoring
the battery states, which include the state of charge (SOC) for the purpose of ensuring efficient
and safe operation (ShichunYang et al., 2021; Zhang et al., 2017).

The SOC indicates the available battery capacity relative to the maximum capacity and lies
in the range of 100 to 0 per cent. A typical challenge is that there is no known measuring
instrument to determine the SOC. Thus, there is a continuous quest for developing state
observers that can accurately estimate the SOC based on models that capture the internal
dynamics of the LiB. One of the most popular models used in the SOC estimation task is the
equivalent circuit model (ECM) composed of components such as resistors, capacitors, voltage
sources, and, in some cases, hysteresis elements (Yujie et al., 2020). The attractiveness of the
ECM is based on the less mathematical complexity in developing it and its fewer tuning
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parameters unlike the electrochemical models, which contain complex
partial differential equations (Simin et al., 2017) and a significant
number of tuning parameters.

SOC estimation methods are based on open-loop, model-free, and
closed-loop techniques. The coulomb counting (CC) and open-circuit
voltage (OCV) methods are examples of open-loop techniques. The
former makes use of the current integration technique for SOC
estimation, but it is prone to inaccuracies due to the initial current
measurement error, which accumulates (Liu et al., 2021) and, in
addition, requires the initial SOC to be known. The OCV method
uses a non-linear fitting function to map the relationship between the
SOC and OCV in order to set up a look-up table from which the SOC
of the battery at any step time is obtained (Xu et al., 2020). In real time,
carrying out OCV experiments usually requires a large amount of time
for electrolytes in the battery to become uniformly distributed before
the battery terminal voltage can be accurately measured (Peng et al.,
2017). Model-free techniques include artificial neural networks
(ANNs) (Samuel et al., 2021) and fuzzy logic (FL), which are
developed as a black box, and by studying the trained dataset
(Surajudeen et al., 2021) such as the terminal voltage, temperature,
charge–discharge current, and cycle, the look-up table function that
describes the relationship between the SOC and battery parameters
can be determined (Liu et al., 2021). A major drawback is that the
estimation accuracy of these models is dependent on the size of the
trained data and quality of the dataset (Ng et al., 2009).

Closed-loop SOC estimation techniques include the Kalman filter
(KF), particle filter (PF), unscented particle filter (UPF), and sliding mode
observer (SMO). The superior advantage they have over other methods is
the ability of handling real-time disturbance and uncertainties of the
battery system by correction in the feedback non-open-loop structure,
leading to high accuracies in SOC estimation (Yidan, 2020). The PF and
UPF produce good estimate results when used in non-linear systems, but
they are restricted to non-Gaussian noise distribution. However, the KF is
best used for uncertainties represented as Gaussian distributions, but its
shortcoming is that its accuracy decreases when applied to non-linear
systems, i.e., it generates accurate estimates for linear processes only. To
this end, various extensions of the Kalman filter, namely, the extended
Kalman filter (EKF), dual extended Kalman Filter (DEKF), and dual
Kalman Filter (DKF), have been developed to further improve the SOC
accuracy for non-linear systems affected with Gaussian noise distribution.
The SMO is seen as a paradigm shift from the traditional Luenberger
observers andUrtink observers, inwhich they do not require the system to
be observable before the sliding motion can be implemented. In
traditional observers, the error between the plant and model output,
decreases to zero in infinite time. However, SMOs guarantee the error is
exactly zero, and the model state is exactly that of the plant, beginning
from the instant the sliding motion takes place. They also offer high
robustness to measurement uncertainties and disturbances (Bouchareb
et al., 2020). A major drawback in these observers is that the sliding
motion is majorly composed of chattering caused by the high switching
gain present in the SMO feedback loop.

Over the years, several works have been carried out by researchers
in estimating the battery SOC. The KF was implemented by
Guangzhong et al. (2016) for onboard SOC applications. The
performance results under experiment conditions, namely, the
dynamic current, direct power, and discharge capability tests,
showed estimation errors of about 4 percent. The method is
limited to linear system applications, and the complexity of the
algorithm also limits its practical implementation. Benedikt et al.

(2021) proposed an EKF with a hysteresis-coupled battery model for
multiple cell SOC determination. The method showed a 300 percent
decrease in maximum error and high stability from an EKF with no
hysteresis present in its battery model. The shortfall was that the EKF
parameters were highly sensitive on the variations of the process noise,
which had effect on its accuracy and convergence. To solve this
problem, an improved EKF (IEKF) was proposed in Shichun et al.
(2021) by developing noise filtering and adaptation methods as
augments to an existing EKF. The results showed an under
temperature disturbance and dynamic stress conditions (DSCs); the
maximum errors were three percent and one per cent, respectively.
However, the SOC response due to complex coupling effects of the
battery was not considered.

ByWenhui et al. (2019), the SOC estimation for power LiB using a fuzzy
logic slidingmode observer (FLSMO)was proposed. Thework improved the
performance of SMOs through the use of the fuzzy logic control (Atayero
et al., 2012). The discharging test results showed that the FLSMO algorithm
had a higher SOC estimation accuracy, with a considerable convergence rate.
Compared with the sliding mode observer and extended Kalman filter, the
FLSMO algorithm shows better performance regarding the robustness
against the measurement noise and parameter disturbance. Sassi et al.
(2018) carried out a comparison of the KF and SMO and noted the
competitive nature of both methods with regards to the precision but
concluded on the superiority of the SMO over KF in terms of handling
parameter changes to uncertainties in the battery model.

To obtain desired qualities associated with two or more SOC
estimation strategies, hybridization is required. The unique difference
between a hybrid state estimator and existing state estimators is that it
offers an approach for combining the strength of noise filtration, a
characteristic of the EKF, and robustness, an attribute of SMO, in
predicting the SOC of batteries, thus producing a better adaptive
system to the uncertainties that arise from the environment and
measurement instruments. In addition, the hybrid system consists
of a well-posed dynamic system and draws both discrete time and
continuous time behaviors of EKF and SMO state estimation
algorithms to improve the accuracy of individual methods.

One of the challenges present in the SOC estimation subject is the
problem of designing accurate state observers that can be adaptive to
disturbances influencing the signal characteristics of lithium-ion
batteries. A state observer designed for one battery type loses its
estimation reliability when subjected to a different battery type due to
variation of chemistry. In fact, the model sees the new input signals as
a form of disturbance, and hence, the question that arises is how one
can redesign the system to become insensitive to alien data in a way it
maintains precise parameter predictions. This paper aims to address
this issue by proposing the design and implementation of a hybrid
estimator combining EKF and SMO state estimation strategies to
improve the performance accuracy of the EKF and the robustness
quality of both estimators in the face of complex LiB parameter
disturbances due to the change of the battery type.

Beginning with this introductory section, the organization of this
paper starts with data collection description in Section 2. The
equivalent circuit model of the batteries derived in the discrete
state space is presented in Section 3. The battery model parameter
identification technique is discussed in Section 4. In Sections 5 and 6,
developments of EKF and SMO state estimators are presented,
respectively. Section 7 explains the hybridization procedure, while
Section 8 presents the results and evaluation of estimators. The
conclusion of this paper is given in Section 9.
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2 Data collection

A charge and discharge experiment was carried out on 4No. 4-V and 2-
Ah Panasonic’s lithium-ion batteries connected in a series at room
temperature. The materials used and the experimental setup are shown in
Table 1 and Figure 1, respectively. The charge experiment was made possible
through theDC–DCconverter passing the charging current at the 1 C rate to
flow into the batteries. The current transformer (CT) rated 3-Ameasures the
current and passes the signal to the 12-V digital Coulomb counter for the
measurement of the capacity, voltage, and current information on the
batteries. The BMS helps regulate the batteries from overcharging and
discharging and monitors the maximum cut-off voltage of 4 V and
minimum cut-off voltage of 2.7 V for each cell set by the manufacturer.
The cut-off voltage setwas required to protect the batteries fromovercharging
and discharging by disconnecting the load from the batteries whenever the
limits were reached. This is crucial in ensuring the batteries maintain
maximum capacity, increased life, and are not damaged in an excessive
charge or discharge process. For the discharge readings, a 3.8-V, 2.35-Ah
mobile device was used as the load connected across the batteries in parallel
and to the Coulomb counter for the measurement readings to be displayed.
The current and voltage profiles for the discharge and charge experiment are
shown in Figures 2A–D, respectively. The positive and negative values of the
current profile in Figures 2A, C show the batteries were charged and
discharged, respectively.

TThe step-by-step procedures used in carrying out the experiment
are outlined as follows:

Step 1: Connection of the batteries in a series.

Step 2: Connection of the battery terminals to the BMS.

Step 3: Connection of the BMS output to the CT.

Step 4: CT connected to the coulomb counter.

Step 5: The negative terminal of the CT passed to the negative
terminal of the BMS, and positive terminal of the CT passed through
the CT to the positive terminal of the BMS.

Step 6: The DC–DC converter is connected to the power pack.

Step 7: The converter voltage output is adjusted to 12 V.

Step 8: The converter is connected to the CT and BMS.

Step 9: The measurement reading is taken at the display interface of
the coulomb counter.

3 Battery modeling

The choice of the model in representing the LiB internal
states is the equivalent circuit model (ECM) due to its merits of
simplicity, few parameters, and faster implementation in
carrying out the SOC estimation. To carry out battery
modeling with a reasonable level of accuracy and with less
parameters, a first-order ECM choice is required. As shown in
Figure 3, the first-order ECM can be regarded as an RC (resistor
and capacitor) model. It consists of an open-circuit
voltage (OCV), two internal resistors, and a single capacitor.
The internal resistance, R0, is responsible for the drop and rise of
the measurement voltage profile, while the R1C1 term
describes the transient behavior of the measurement voltage
response.

At node A, applying Kirchhoff’s current law (KCL), we obtain the
following:

TABLE 1 Experiment material specifications.

Name of equipment Specification

Coulomb counter 12 V

18650 Panasonic 4 no. 4 V; 2 Ah

Battery charger 19 V; 3 A

BMS 4S; 40 A

Current transformer 110/3 A

DC–DC converter 15 V

FIGURE 1
Experimental setup.
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it � iR1+iC1 �
V1

R1
+ C1

_V1. (1)

Making the derivative of V1 the subject of the formula, we obtain the
following:

_V1 � − V1

R1C1
+ 1
C1

it. (2)

Taking Kirchhoff’s voltage law (KVL) across the full loop results,
we obtain

Vt � OCV Zt( ) − V0 − V1 � OCV − R0it − V1. (3)
The SOC equation is given as follows:

Zt � Z0 − ηk
Qbatt

∫t

0
idt, (4)

where Zt refers to the state of charge at time t, Z0, the initial state of
charge (=100%), Qbatt, the maximum battery capacity, ηk, the
Coulombic efficiency, OCV, the open circuit voltage, and i, the
input current.

The following sign convention was used for the current:

sgn it( ) � +, for discharging,
−, for charging.

{ (5)

The coulombic efficiency describes the efficiency of a charging
process due to the number of electrons transferred into the cell. It can
be estimated from the OCV charge and discharge curves (Benedikt
et al., 2021), which is expressed as follows:

ηk � 1, ik > 0 for discharging,
η*, ik < 0 for charging.

{ (6)

The next step is to discretize Eqs 2–4 using the sample time k + 1 as the
present value and k as the previous value. To discretize Eq. 2, the
difference ratio is approximated as follows:

_V1 � V1,k+1 − V1,k

δt � − V1,k

R1C1
+ 1
C1

ik, (7)

so that

V1,k+1 � V1,k 1 − δt
R1C1

( ) + δt
C1

ik. (8)

The discretization of Eqs 3, 4 is straightforward. Therefore, the
battery model is represented in the state space form as follows:

V1,k+1
Zk+1

[ ] � 1 − δt
τ1

0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ V1,k

Zk
[ ] +

δt
C1

−ηδt
Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ik[ ] (9)

Vk � OCV Zk( ) − R0ik − V1,k,

FIGURE 2
(A) Primary data charge current plot. (B) Primary data charge voltage plot. (C) Primary data discharge current plot. (D) Primary data discharge voltage plot.

FIGURE 3
First-order ECM model.
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where Zk is the state of charge, OCV is the open circuit voltage of the
battery at no load, Q is the battery-rated capacity, and R0 is the battery
ohmic resistance. The product R1C1 represents the polarization time
constant τ1; V1,k represents the current state of voltage across the
capacitor C1 and resistor R1. The model’s output Vk represents the
terminal or observed voltage, and the input is the measured current ik; ηk
represents the battery coulombic efficiency assumed as 1 in this paper.

4 Model parameter identification

A global pattern search algorithm (GPSA) available in the
Simulink parameter optimization toolbox is used for the offline
battery parameter identification to obtain the optimum values of
the internal parameters, OCV,R0, τ1{ }. The algorithm generates
these parameters by searching sets of points called the mesh
around a current point determined to have had the least objective
function, ∑n

k
(Vt − V̂t) value. The step-by-step implementation is

presented as follows:

Step 1: The number of independent N variables for the objective
function is set.

Step 2: The initial point v0 is set along with upper and lower
boundaries of model parameters.

Step 3: Pattern vectors are generated depending on N. By default, for
a 2N maximal base, where N � 2 for the pattern vector, vi is
represented as follows:

v1 � 1 0[ ]; v2 � 0 1[ ] ; v3 � −1 0[ ]; v4 � 0 −1[ ]. (10)

Step 4: The current mesh size Δm is set.

Step 5: The mesh is computed as follows:

m � v0 + Δm · vi. (11)

Step 6: The process of polling is initiated, following the direction
produced by the pattern vector that generates a mesh point.

4.1 Parameter initialization

Proper parameter initialization of the battery model is essential
for obtaining an accurate fitting relationship between the measured
and estimated voltage input. Hence, the voltage discharge curve is
partitioned into 10 pulses corresponding to an SOC value in the
range [.1, 1.0] with a step value of .1. To compute the initial
parameters (OCV, R0; R1), a mathematical comparison between the
fitting functions in Table 2 described by the transient pulses and the
transient terminal voltage in Eq. 12a, 12b, 12c is carried out as
follows:

VL � OCV − R0It − R1Ite
−t
τ1 (12a)

The transient terminal voltage VL describes the
dynamic exponential behavior of the battery terminal voltage
profile shown in Figure 2D after each rise and drop in the
pulse and is derived from the transient solution of Eq. 2 by
first recalling from basic principles; the general solution of a
first-order non-homogenous linear differential Eq. 2 is given as
follows:

V1 � e
−t
τ1 ∫ it

c1
·e −t

τ1 · dt + k[ ] (12b)

Carrying out the integration in Eq. 12b and applying the initial
condition, V1(0) � 0. This implies k � −R1it so that

V1 � R1it − R1ite
−t
τ1 (12c)

Taking the transient portion of Eq. 12c, i.e., the term with the
exponential function for the discharge case and then substituting it in
Eq. 3, the transient terminal voltage equation Vt = VL in Eq. 12a is
obtained.

5 The extended Kalman filter algorithm

The non-linear dynamic state representation of the battery is
expressed as follows:

xk+1 � f xk, uk( ) + wk
yk � g xk, uk( ) + vk (13)

where f(xk , uk) represents the process of non-linear dynamics and
g(xk , uk) represents the measurement of non-linear dynamics. The
matrices, wk and vk, represent the noise present in the process and
measurement part of the system, respectively (Rui et al., 2017). A step-
by-step implementation of the first-order EKF algorithm is given as
follows using a hat (∧ ) notation to identify the state estimates:

Step 1: Setting the internal state xk+1 0[ ] � 1
0

[ ] and system state
error Pk+1[0] � [0]2×2.

Step 2: Calculating the priori estimates

x̂k+1|k � Akx̂k|k + Bkuk
Pk+1 � AkPk|kAk

T + Qk. (14)

Step 3: Linearizing the system model (Awelewa et al. 2013) about
xk+1|k such that

TABLE 2 First order ECM parameters.

SOC Fitting functions

.1 11.38–.3166*exp(-.2093t)

.2 10.114–.74exp(-.392t)

.3 11.83–.277exp(-.046t)

.4 10.672–.95exp(-.03445t)

.5 10.596–.18exp(-.48t)

.6 11.541–.276exp(-.6797t)

.7 11.459–.956exp(-.34t)

.8 11.336–.506exp(-.6991t)

.9 11.544–.301exp(-.587t)

1.0 10.758–.402exp(-.672t)
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Ak � zf xk, uk( )
zxk

( )
xk+1|k ,uk

� diag 1, e
−Δt
τ1( ); Bk �

−ηk
Δt
Qbatt

R1 1 − e
−Δt
τ1( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(15)
Ck � zg xk, uk( )

zxk
( )

xk+1|k ,uk

� zV0

zZk
,−1[ ]. (16)

The Jacobean matrices Ak, Bk, and Ck were derived from the first-
order Taylor series approximation (Awelewa et al., 2021) of (13); V0 is

the OCV; Zk is the SOC, and the state vector is xk � Zk

V1,k
[ ].

Step 4: Calculating the Kalman gain Kk+1

Kk+1 � Pk+1|kCT CPk+1|kCT + Rk+1( )−1. (17)

Step 5: Calculating the a posteriori (Mohammed, 2013) estimates

x̂k+1│k+1 � x̂k+1│k + Kk+1 yk − ŷk( ). (18)

Step 6: Calculating the system state error

Pk+1|k+1 � 1 − Kk+1Ck+1( )Pk+1|k. (19)

6 The sliding mode observer

From the first-order ECM in Figure 3, the equations representing
the state dynamics of the LiB is deduced as follows:

Vt � Voc SOC( ) − R0Ib − V1, (20a)
_V1 � −1

R1C1
( )V1 + 1

C1
( )Ib, (20b)

_SOC � −Ib
Cb

, (20c)

where Voc is the open-circuit voltage (OCV); Ib is the battery current;
V1 is the voltage across the RC pair; Cb is the nominal battery capacity.
The SOC derivative equation in Eq. 20c is deduced from the
relationship SOCt � SOC0 − 1

Cb
∫ idt, which represents the current

integration SOC technique.
From the terminal voltage equation, Vt in Eq. 20a, we get the

following equation:

−Ib � Vt − Voc + V1

R0
. (21)

Substituting Eq. 21 into Eq. 20c results in the following equation:

_SOC � 1
R0Cb

( ) Vt − Voc + V1( ). (22)

Differentiating Vt in Eq. 20a gives the following equation:

_Vt � dVoc

dSOC
· dSOC

dt
− dV1

dt
. (23)

Since dVoc
dSOC ≈ 0, substituting Eq. 20b gives the following:

_Vt � − _V1 � V1

R1C1
+ Ib
Cb

. (24)

Making V1 the subject in Eq. 20a and substituting it in Eq. 24, we
get the following expression:

_Vt � −1
R1C1

Vt + 1
R1C1

Voc − R0

R1C1
+ 1
C1

( )Ib. (25)

Combining _Vt, _V1, and _SOC equations, the state dynamics of the
battery becomes the following:

_Vt � −1
R1C1

Vt + 1
R1C1

Voc − R0

R1C1
+ 1
C1

( )Ib + Δf 1

_V1 � −1
R1C1

( )V1 + 1
C1

( )Ib + Δf 2, (26)

_SOC � 1
R0Cb

( ) Vt − Voc + V1( ) + Δf 3,

where Δf 1, Δf 2, and Δf 3 represent non-linear disturbances
(uncertainties) added to the real system in Eq. 24, satisfying the
Lipschitz boundary criterion ‖Δf(x) − Δf(x̂)‖2 ≤ γ‖x − x̂‖2. Here,
1≤ γ. The SMO equations are then proposed as follows:

_̂Vt � −1
R1C1

V̂t + 1
R1C1

V̂oc − R0

R1C1
+ 1
C1

( )Ib + λ1sgn eVt( ),
_̂V1 � −1

R1C1
V̂1 + 1

C1
( )Ib + λ2sgn eVoc( ), (27)

_̂SOC � 1
R0Cb

( ) V̂t − V̂oc + V̂1( ) + λ3sgn eVR1C1
( ).

Subtracting Eq. 27 from Eq. 26 gives the following error dynamics:

_eVt �
−1
RC

eVt +
1
RC

eVoc + Δf 1 − λ1sgn eVt( ), (28a)

_eV1 �
−1
R1C1

( )eV1 + Δf 2 − λ2sgn eVoc( ), (28b)

_eSOC � 1
R0Cb

( ) eVt + eVoc + eV1( ) + Δf 3 − λ3sgn eV1( ), (28c)

where the switching signal sgn e( ) � +1, e> 0
−1, e< 0{ and state errors are

defined as follows:

eVt � Vt − V̂t; eV1 � V1 − V̂1; eVOC � VOC − V̂OC � k SOC − ŜOC( )
� keSOC.

(29)
To achieve stability (quadratic) of the terminal voltage error (eVt),

the following Lyapunov function is chosen for a symmetric error:

Vvt � 1
2
eVt

2 � eVt
T1
2
eVt. (30)

To achieve an ideal sliding motion, i.e., (eVt � 0), then _Vvt < 0.
The sliding surface S0 � (estate, eVt): eVt � 0{ }.
Differentiating Eq. 30 gives the following:

_Vvt � eVt × _eVt. (31)
For the Lyapunov stability condition to be satisfied λ≫Δf so that
_Vvt < 0, which implies _eVt � eVt � 0.

By replacing _eVt � eVt � 0 in Eq. 28a and recalling eVoc � keSOC, the
equivalent injection signal is deduced as follows:

eSOC � λ1
kb1

sgn eVt( ). (32)
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Similarly, by replacing _eSOC � eSOC � 0 and eVt � 0 in Eq. 28c and
substituting them in Eq. 32, we obtain the following equation:

eV1 �
λ2
b2

sgn
λ1
kb1

( )sgn eVt( ). (33)

The state vector
SOC
V1

[ ] can then be obtained by substituting the

aforementioned injection signals into the error dynamics equations.

7 Hybridized estimator

Among the estimators developed, this work observes certain intervals, in
which the first-order EKF has poor performance. This means that there are
regions where there is the presence of a mismatch between the EKF and Ah
(referred to as the real SOC), typically at the SOC error bound [−.05, .05] and
[−.1, .1]. In addition, the SMO has a slow convergence time when subjected
to complex disturbances. To solve these problems, a hybrid EKF−SMO
observer is designed, as shown in the block diagram of Figure 4 such that the
inactive observer tracks the output of the used observer, simultaneously
feeding back a zero-sum signal to the input gain of the used observer. The
following steps are carried out in achieving the hybrid estimation:

Step 1: Determination of intervals for switching to take place

Step 2: Connection of the current input source to both observers

Step 3: Back feeding the error obtained from the outputs of the two
observers via a gain to the input of the currently used observer.

Step 4: Finally, tuning the observer gain to improve the response of
hybridization.

In brevity, switching is performed as follows:

Hswitch � SMO SOC( ), −0.05≤ SOC≤ 0.05 and − 0.1≤ SOC≤ 0.1,
EKF SOC( ), otherwise.

{
(34)

8 Results and discussion

The performance of the first-order ECM based on discharge
measurement data obtained from the experiment is presented in

this section, followed by the response analysis of individual
estimators and the robust hybrid estimator designed.

8.1 Parameter estimation performance

The optimum parameters (OCV, R0, R1, and τ1) of the battery model
are shown in Table 3 from the GPSA results.With these parameter values,
themodel response is simulated via the discharge data voltage and current
input obtained from the experiment to derive themodel states (V1 and Zt)
and output terminal voltage (Vt) of the batteries, as shown in Figure 5.
This was carried out in order to validate the model developed and further
visualize the real SOC, which will be used as a benchmark to test the
performance of the EKF and SMO. The voltage plots in Figure 6 represent
themeasurement from the experiment and the estimation from themodel
parameter identification. Evidently, the extremely close fit verifies the
accuracy of the model developed in this work, which is dependent on
good parameter initialization discussed in Section 4.1.

8.2 Validation of the EKF and SMO estimator

The response of the first-order EKF and SMO is shown in Figures
7, 8 respectively, with the root mean square error (RMSE) and
maximum absolute error (MAE) values presented in Table 4. The
benchmark used is the coulomb counting technique to compare the
performance of both estimators. From the plots, it is evident that the
SMO converges faster with a higher SOC estimation accuracy than the
EKF. The SMO drove the error between the real and estimated SOC to
zero, as shown by its RMSE and MAE values in Table 4. Both
estimators show high quality in filtering the random white noise
that is added to the input current and voltage measurement. However,
it is observed beginning from t = 2.6 × 104 that the EKF diverges from
the ideal value in contrast to the SMO, which maintains a high
matching behavior. The RMSE and MAE metrics of the EKF are
approximately zero in Table 4 due to the large time range of matching
between the real and estimated SOC, overwhelmingly exceeding the
short time range of the mismatch, as shown in Figure 7.

To test for robustness of the estimators designed, the current and
voltage measurement inputs of the Panasonic 18650 batteries are
interchanged with that of a 5 A h, 4V, lithium−nickel rechargeable
(INR 18650) battery to see how far the stability behavior could be met

FIGURE 4
Block diagram of the hybrid SOC estimator.
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in the face of complex disturbances. Figures 9, 10 show the
performance of the EKF and SMO subjected to the disturbance. As
seen, the SMO diverges from the initial SOC of 100% to begin at an
initial SOC of 94% and later maintains an estimation of about 90%
SOC. The EKF, on the other hand, maintains a sustained estimation in

TABLE 3 Optimized parameter values for the first-order ECM.

SOC .1 .2 .3 .4 .5 .6 .7 .8 .9 1

R0 .00297 .00228 .00234 .002253 .002265 .002226 .002209 .002120 .001968 .001901

R1 .00200 .00069 .00076 .00083 .000702 .000651 .000741 .000814 .000814 .000769

τ1 27.9060 18.7730 38.6630 35.1800 28.0850 24.3610 29.6090 29.8280 21.7490 16.2450

OCV 11.3849 11.4595 11.5455 11.944 11.6297 11.6805 11.7733 11.8280 10.9828 11.1093

FIGURE 5
Model response of the first-order ECM.

FIGURE 6
Measured vs. the estimated voltage response of the first-
order ECM.

FIGURE 7
Extended Kalman filter response.

FIGURE 8
Sliding mode observer response.

TABLE 4 Estimator performance metrics.

EKF SMO

RMSE .000170 0

MAE .00733 0
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the SOC range of [1, .93]. This shows that the EKF experienced the
greatest impact on its behavior compared to the SMO due to the
complex disturbance. However, the filtering properties of both
estimators are still preserved during the course of estimation.

8.3 Hybrid estimator performance

The hybrid estimator performance is shown in Figures 11, 12 for
noise and with no noise additions to measurement inputs, respectively.
The hybrid estimation goal in this work is to improve the response of the
EKF and provide improved robustness to complex disturbances
originating from other battery types. As Table 5 reveals, the
improvement goal is met as the hybrid performance is seen to have
two (2) decimal places of accuracy compared to the EKF estimation
having an accuracy of a single decimal place. Furthermore, the hybrid
estimation shows that the convergence starts at the initial SOC of 100%
with an impressive error bound of 12.9%. It is observed that starting at
time t � 2.5 × 104, the hybrid estimator is seen not following the real

SOC in Figure 11 due to the non-adaptive filtering addition. However,
upon removing the noise, as shown in Figure 12, the hybrid estimator is
seen to draw closer to the real SOC from that time onwards.

The hybrid estimator has also shown the ability to adjust its response
to the measurement data on the INR 18650 used as the replica complex
disturbance in Figure 13. It can be seen that unlike the EKF and SMO
individual poor stability for parameter changes influenced by the
chemistry of INR 18650, the hybrid estimator is observed to closely
match the real SOCwith the starting convergency time at nearly the initial
time period, thereby supporting the merit of combining both estimators.
Another observation from the result of hybridization is that the SOC
estimation range has impressively improved from a range of [1, .93] to an

TABLE 5 Performance metrics of the hybrid estimation performance.

Hybrid EKF SMO

RMSE .0262 .3826 0

MAE .0136 .3508 0

FIGURE 9
Response of the SMO under INR 18650.

FIGURE 10
Response of the EKF under INR 18650.

FIGURE 11
Hybrid estimator performance under noisy measurements.

FIGURE 12
Hybrid estimator performance without the noise.
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estimation range of [1, 0], in spite of the disturbance addition. Varying the
tracking gain of the SMO could increase the accuracy further but reduce
the SOC estimation range. The hybrid improvement can be explained due
to the role the tuning parameters of the EKF have in ensuring faster
convergency and noise cancellation, and the role the SMO gains have in
ensuring robustness.

9 Conclusion

This paper has demonstrated the use of a first-order equivalent
circuit model in the implementation via the simulation of the
extended Kalman filter (EKF) and sliding mode observer (SMO) for
estimating the SOC of multi-cell LiB batteries under discharge
measurement data. The response of the individual estimators and
their hybridized form has been shown. Following the existing
works carried out for the SOC estimation being reviewed, the
hybrid method having an MAE value of 1.36 percent is seen to
outperform both the onboard SOC estimation technique in
Guangzhong et al. (2016) and the improved EKF technique
developed in Shichun et al. (2021), having both MAE values of
4 percent and 3 percent, respectively. However, Benedikt et al.
(2021) proposed that the work had an accuracy difference of
roughly one-quarter compared to that of the hybrid MAE
performance. This is because of the addition of a hysteresis
element, which accounted for a more accurate battery model
than that used in this paper. The traditional method such as the
curve fitting-based SOC estimation has shown divergent
characteristics (Yujie et al., 2020), especially during the starting
phase due to the difficulty in deducing the parameters of suitable
fitting functions describing the battery terminal voltage profile,
making model identification parameters less accurate in the
consequent outputting poor estimation results. Furthermore, the
hybrid technique performance is not affected by a variation of the
initial state estimates, a challenge commonly used for SOC
estimation techniques including the coulomb counting
integration method (Ng et al., 2009) we still face.

It is true that various hybrid estimation strategies have been
developed in the literature such as by Alfi et al. (2014), where the

radial bias neural network was used to obtain the output equation
(linearized battery terminal voltage) so as to form a full state
equation with the SOC variable in combination with the extended
H∞ filter, which was used for estimating the SOC. A contrast
between the proposed model developed in this paper and similar
hybrid works is that this work combines discrete and continuous
form representations of the model equations for the EKF and SMO,
respectively, in order to improve accuracy. Furthermore, in
comparison to the work introduced by Alfi et al. (2014), the
accuracy of the estimation carried out in this paper does not
depend on large discharge data required for neural network
training since the algorithms used here are procedure-based. The
estimation accuracy in this work showed that the RMSE using the
hybrid neural technique performed better with a negligible error
difference of .12 percent. However, matching accuracy between both
methods can be achieved by proper tuning of the EKF gain in
contrast to the hybrid neural technique, which depends on the
trial and error method for selecting a number of hidden neurons
and learning rates. With a convergence time of about 1 s, the
proposed method surpasses the 4 min time it took for the
extended H∞ filter to approach the real SOC, giving the former a
significant advantage. These faster convergence characteristics can
be attributed to accurate modeling of the battery in its non-linear
form, as opposed to linearization carried out using the radial bias
function.

In summary, the hybridized estimator shows an impressive SOC
estimation range, convergence rate, and high matching results via the
results discussed; these are the properties traditional SOC estimation
methods lack. This demonstrates the quality of the hybrid technique in
estimating multi-cell lithium-ion batteries and offers more research
opportunities in designing estimators that are adaptive to complex
disturbances arising from other battery types.
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