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Early and accurate battery lifetime predictions could accelerate battery R&D

and product development timelines by providing insights into performance

after only a few days or weeks of testing rather than waiting months to reach

degradation thresholds. However, most machine learning (ML) models are

developed using a single dataset, leaving unanswered questions about the

broader applicability and potential impact of such models for other battery

chemistries or cycling conditions. In this work, we take advantage of the open-

access cycling performance data within the recently released Voltaiq

Community to determine the extensibility of a highly cited feature-based

linear ML model used for battery lifetime prediction. We find that the model

is unable to extrapolate to different datasets, with severe model overfitting

resulting in unphysical lifetime predictions of much of the unseen data. We

further identify that the features engineered for this model are likely specific to

the degradation mode for the original lithium iron phosphate (LFP) fast-charge

dataset and are unable to capture the lifetime behavior of other cathode

chemistries and cycling protocols. We provide an open access widget-based

Jupyter Notebook script that can be used to exploremodel training and lifetime

prediction on data within the Voltaiq Community platform. This work motivates

the importance of using larger and more diverse datasets to identify ML model

boundaries and limitations, and suggests training on larger and diverse datasets

is required to develop data features that can predict a broader set of failure

modes.
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1 Introduction

1.1 Lifetime testing: Challenges and strategies

Understanding battery performance is critical to the development of new battery

technologies, as well as the integration of batteries into products. Battery performance is

examined through controlled laboratory testing, including analyzing rate and power

capabilities, and performing lifetime testing. Lifetime testing exposes a battery to many
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charge-discharge cycles under a variety of temperatures, rates,

and cycling profiles. The outcome of lifetime testing is observing

and recording the cell behavior—including capacity, energy,

efficiency, and voltage fade—over time. The goal of this highly

controlled testing is to provide a proxy for the expected battery

performance during true operation, while still enabling the

calculation of standard metrics to provide a clear comparison

between cells. The length of time it takes to test battery

performance can be prohibitively long, especially for high-

performing battery materials—on the order of months or

years for a battery to truly reach “end of life” based on the

application (Harlow et al., 2019; Beltran et al., 2020). Speeding up

this time to insight is critical in helping accelerate the

development cycles both for new materials, as well as cell

qualification/validation and ultimately product development

and use. Since battery lifetime testing time can approach the

total product development time, especially in the areas of

consumer electronics and automotive where OEMs rush to

release new products, reducing lifetime testing time is a clear

area where optimization and time savings can significantly

reduce development timelines. Conversely, incorrect lifetime

prediction can result in overconfidence and early failure once

a product is launched.

Lifetime testing and prediction in batteries is often

complicated by a non-linear performance decay which can be

dominated by a number of underlying degradation mechanisms

governed by factors such as battery chemistry, form factor, and

operating conditions. This non-linear behavior, often governed

by a roll-over towards accelerated decay–the “knee” point–makes

it challenging to employ simple or naïve methods such as linear

extrapolation for predicting future battery performance and end-

of-life behavior (Dubarry et al., 2020; Attia et al., 2022). End-of-

life designates the performance criteria at which a battery is no

longer fit for the current application, and is often based on a

percent capacity, energy, or power retention. The variability of

battery cycling behavior, even within nominally similar cells,

adds additional complexity and uncertainty to lifetime prediction

(Baumhöfer et al., 2014; Rumpf et al., 2017; Beck et al., 2021).

Strategies for reducing time to insight for battery lifetime

performance include accelerated aging testing, (Schmalstieg

et al., 2013; Sun et al., 2018; Sulzer et al., 2021) physics-based

modeling, (Ning et al., 2006; Safari and Delacourt, 2011; Ouyang

et al., 2016; Atalay et al., 2020) and data-driven lifetime

prediction (He et al., 2011; Wang et al., 2017; Severson et al.,

2019; Ng et al., 2020; Sulzer et al., 2021). Accelerated aging is a

common strategy employed in both academic labs and in

industry, and generally encompasses testing at higher

temperatures and/or rates such that battery degradation

occurs more quickly. However, testing using conditions that

are not expected under normal operation can lead to

fundamental misunderstandings and poor performance

prediction if the degradation modes accessed during

accelerated aging differ from those seen during more realistic

use (Sun et al., 2018). Both academic and industry groups are

therefore also exploring other options for speeding up the

lifetime testing cycle, either through physics-based modeling

or data-driven prediction. Physics-based modeling can be used

to parameterize and completely describe the underlying physics

of a specific battery chemistry and form factor during certain

operation modes. However, the parameterization of these models

is challenging, as high-fidelity models require extensive

measurements on battery chemistry, thermodynamics, macro

and microstructure, etc. These high-fidelity models also solve

complex and often non-linear differential equations which

require significant computational resources and time. Simpler

physics-based models address some of these issues, but the

simplifying assumptions generally prevent their use for certain

operational cases such as high-rate applications.

1.2 Data-driven lifetime prediction

Data-driven predictive techniques have emerged in the past

decade as a promising approach to lifetime prediction due to

their allure of eliminating the need for understanding the

underlying battery degradation mechanisms. As will be

discussed in this work, the belief that data-driven approaches

remove the need for understanding degradation is somewhat

naïve or optimistic, and many of the same challenges exist for

data-driven or machine learning approaches as for the physics-

based approaches mentioned above. Data-driven approaches rely

on the collection or curation of adequate amounts of battery

testing data, as well as the development of algorithms that can

generate accurate prediction models from this data. The scope of

the collected datasets–including chemistry, form factor and

operating conditions–as well as the features engineered by the

researcher or algorithm govern both the resulting accuracy as

well as the potential extensibility of the models.

A variety of machine learning and data-assisted techniques

have been employed for battery lifetime prediction, with

published predictive performance achieving error rates under

10% and as low as 0.2% (Tseng et al., 2015) for the best models.

The least complex models are feature-based linear regression

models which have the benefit of low computational effort and

clear interpretability (Long et al., 2013; Xing et al., 2013; Tseng

et al., 2015; Berecibar et al., 2016; Song et al., 2017; Severson et al.,

2019; Chen et al., 2020; Attia et al., 2021; Gasper et al., 2021).

Simple feature-based models also limit the potential for

overfitting small training datasets (Sendek et al., 2022) but

require the design and selection of features tailored to a given

battery dataset. These features can be based on electrochemical

signals, such as capacity, current, or internal resistance; auxiliary

signals such as temperature or impedance spectroscopy; or on

metadata such as cell chemistry and form factor. While feature-

based linear models achieve reasonable performance, improved

performance has been shown for more complicated models, such
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as tree-based models, (Nuhic et al., 2013; Liu et al., 2015; Patil

et al., 2015; Berecibar et al., 2016; Mansouri et al., 2017; Susilo

et al., 2018; Fermín-Cueto et al., 2020; Paulson et al., 2022)

Gaussianmodels, (He et al., 2011; Guo et al., 2015; Hu et al., 2015;

Li and Xu, 2015; Richardson et al., 2017; Wang et al., 2017; Susilo

et al., 2018; Aitio and Howey, 2021) or neural network models.

(Liu et al., 2010; Berecibar et al., 2016; Wu et al., 2016; Mansouri

et al., 2017; Zhang et al., 2017; Ren et al., 2018; Khumprom and

Yodo, 2019; Venugopal and Vigneswaran, 2019; Hong et al.,

2020; Ma et al., 2020; Shen et al., 2020; Li et al., 2021; Strange and

dos Reis, 2021). The reduced prediction errors of these models

come with important caveats, including difficulty in model

interpretation, propensity for over-fitting, and high

computational requirements which might limit edge

computing or on-board applications.

As illustrated in Figure 1, most of the research referenced

above is limited in scope to a single dataset or chemistry type,

inhibiting the ability to draw generalizable conclusions from

these studies. The use of small datasets of limited scope originates

due to data scarcity–data acquisition is time-consuming and

costly, requiring specialized testing facilities and access to battery

cells, such that many researchers working at the intersection of

battery engineering and data science turn towards publicly

available datasets, which are themselves generally small, in

non-uniform formats and dispersed across a variety of

sources. Additionally, small datasets are often used when

developing new algorithms as they are easier to manipulate

and often result in cleaner conclusions. While this approach is

valid for new method development - in the case where a

reduction of experimental variables can be useful-there is in

most cases a lack of follow-up by the same group or other

researchers to attempt to identify the boundaries or limits of

given models. A narrow dataset scope means that these models

are generally over-hyped, but often under-utilized in real-world

situations (e.g., by industry) since significant uncertainty remains

about the true applicability of a specific model to a given use case.

Two recent studies did focus on questions surrounding

generalizability of ML models for lifetime prediction, showing

that certain models and feature sets may apply well to a variety of

cathode chemistries. The first study re-created a feature-based

linear regression model first developed by Severson et al. in

2019 for lifetime prediction of fast-charging LFP cells, (Severson

et al., 2019) and showed that they were able to train a similar

model successfully on a set of 12 NMC cells. (Sulzer et al., 2020).

A recent publication by Paulson et al. (2022) is one of the first to

more explicitly explore the implications of ML model

applicability to a broad and diverse range of battery cathode

chemistries. They identified 2 ML models, one which worked

better at prediction within known chemistry spaces, and one

which performed better at extrapolation to new

chemistries–likely because it limited model complexity and

thus prevented overfitting of the training data. They also

identified a series of features that seemed to be generalizable

across chemistries.

1.3 This publication

In this work, we explore these generalizability concepts

further, examining the applicability or efficacy of using a

published ML model on more diverse datasets than those it

was developed on. We first investigate the ability of the Severson

ML model (Severson et al., 2019) to predict the lifetimes of

unseen datasets with diverse chemistries and cycling protocols,

which is examined by using the pre-trainedmodel to predict cycle

performance for diverse datasets. We show that while the original

model’s performance is reasonably accurate, it is unable to

effectively predict the lifetime for a variety of other

chemistries and experimental conditions. Core ML tenets are

highlighted, such as the propensity for over-fitting to occur for

models with more features, which can lead to larger errors and

unphysical predictions. Additionally, an understanding of the

statistical distribution of the training data compared to the

testing data can provide insight into whether a ML model

would need to interpolate or extrapolate; ML models generally

do not extrapolate well, as is confirmed in this study.

Second, we examine whether training the same models on a

more diverse dataset can provide reasonable lifetime prediction

performance—we show that errors can indeed be reduced to

25%. This significant improvement in model error highlights

FIGURE 1
Visual showing the cell chemistries and number of cells per
dataset for previously published data-driven lifetime prediction
studies. Only four studies examined more than a single cell
chemistry: Chen 2020 (2 chemistries), (Chen et al., 2020)
Song 2017 (2 chemistries), (Song et al., 2017) Ma 2020
(3 chemistries) (Ma et al., 2020) and Paulson 2022 (6 chemistries).
(Paulson et al., 2022). Most studies examined fewer than 20 cells
for their dataset, as shown by the shaded yellow region.
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again the importance of ensuring that the training dataset

encompasses the same feature space distribution as the test

dataset. Interestingly, while errors are reasonably low, the

parity plots illustrate that the models still do not fully capture

the lifetime behavior for individual datasets.

Third, we more explicitly investigate whether a model

performs better when trained on a single dataset other than

the one for which it was originally designed. This line of

inquiry probes whether the engineered features can be applied

to different chemistries and diverse operating conditions. We

show mixed results, in which some datasets perform well, and

others perform poorly. In general, the small number of cells in

each dataset increases the variance of our ML pipeline and can

be a cause of both overfitting and underfitting. The mixed

results of small datasets underscore the continued need for

larger and standardized datasets for model performance

comparisons.

We conclude with a discussion of best practices gleaned

from these results, and the importance of these findings for the

larger community of battery researchers. Specifically, we

encourage the practice of open-access data and code which

enables other researchers to reproduce or expand upon a given

finding. Voltaiq Community (www.voltaiqcommunity.com) is

a newly launched, open-access platform for collaborative

battery data science. In this study, we use the library of

open-access data and the integrated Python programming

environment of the Voltaiq Community platform to

illustrate a best-practices workflow based on open-access

data and ML models. Emphasizing the scope of a study and

the expected limitations of a newly developed ML model will

also help provide context for battery engineers who are

looking to apply ML for lifetime prediction, but who

perhaps lack the prior experience in ML that would allow

them to understand model limitations that are implicit but not

explicit. Lastly, standardization of both the input data as well

as the feature generation/calculation steps can dramatically

improve reproducibility and decrease time to insight. To this

end, we have provided an open-access script in conjunction

with this work that allows users to interactively select models

and train/test datasets to explore the potential extensibility of

ML models on data hosted in the Voltaiq Community

platform.

2 Methods

2.1 Data access and organization

All data for this study was accessed through the open-access

Voltaiq Community platform at www.voltaiqcommunity.com.

Datasets are automatically harmonized to ensure consistent

formatting and cycle statistic calculations to enable

comparison between datasets and calculations of the features

relevant for the machine learning models (see next section). Data

can be accessed and analyzed on www.voltaiqcommunity.com

free of charge, and each dataset includes references to the original

publication or source from which the data was obtained.

2.2 Lifetime prediction model generation
and feature calculation

Three machine learning models are compared in this study:

(Harlow et al., 2019) a Dummy model, using scikit-learn’s

DummyRegressor as a baseline, (Pedregosa et al., 2011)

(Beltran et al., 2020) the Severson Variance model, a feature-

based linear regression (ElasticNetCV) model developed by

Severson et al. 2019 which calculates the variance of the

difference between the discharge vs. capacity curves of a start

and end cycle, and (Attia et al., 2022) the Severson Discharge

model, which is also an ElasticNetCV model based on a number

of additional features which are described in the Supplementary

Information of the original publication. Scikit-learn pipelines are

developed for each model, and results are stored in Prediction

and Model classes within the accompanying script. 5-fold cross

validation is employed, with a single train-test split.

The procedure for feature calculation is as follows:

1. Load voltage and discharge capacity time-series data for cycles

cyc_start and cyc_end. The script defaults, and the values used

in this study are cyc_start = 20 and cyc_end = 99 for each test

record. These were chosen to ensure that the start and end

cycle exist for each dataset, and that they are of the same type

(CCCV cycles with nominally the same C-rate for the start

and end cycle of a single test record). Through interaction

with the provided script, users can select other start and end

cycles for analysis.

2. Interpolate the discharge capacity data using 1,000 evenly

spaced voltage points between the minimum and maximum

cutoff voltages for each dataset. This interpolation is achieved

using Scipy’s interp1d function. Note that the Severson model

originally used a fixed upper and lower voltage cut-off since

these voltages were constant for their dataset, but in our work

this interpolation step is generalized.

3. Calculate the relevant features for each model. These

include the minimum, mean, variance, skew, and

kurtosis of the difference between the interpolated

voltage versus discharge capacity curves of the end and

start cycle. Additional features include: the difference in

capacity measured at the lower voltage cutoff between the

start and end cycle (deltaQ_lowV), the slope and intercepts

of the line fit between the capacity of cycles (cyc_start + 2)

and cycle_end, and of cycles (cyc_end—9) and cycle_end,

the capacity of (cyc_start + 2), the capacity of cyc_end, and

the difference in the maximum capacity and the capacity of

(cyc_start + 2). Details can be found within the
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calc_X_and_y function of the severson_featurization.py

module of the Showcase (https://www.voltaiqcommunity.

com/editions/studio?showcase=ca667ebf-7131-4d1b-

b8b1-cc396c1adc7f). Key deviations between calculations

from the original Severson models and this work are noted

here:

a. The Severson model calculated a few features based on a

fixed voltage or fixed cycle number, which have been

updated for this study. Specifically, delta_Q_lowV,

which previously referenced the difference in capacity

measured at 2V between the start and end cycle, was

updated to use the lower voltage cutoff instead of 2V.

b. Additionally, the Severson model chose the slopes and

intercepts of capacity values of cycles 2, 91 and 100; in our

models we have updated the cycle values to be the (start

cycle + 2), the (end cycle—9), and the end cycle,

respectively. The start and end cycles in our work were

20 and 99, but are left as adjustable parameters within the

provided script. These default start and end cycle values

were chosen to ensure that those cycles were included in

each test for each dataset, without cycling anomalies

present.

c. The capacity of cycle two was an input feature in the

Severson Discharge model, which has been updated to be

the capacity of the (start cycle + 2) instead (in this case,

cycle 22). This cycle shift also translates to the feature

maxQ_q2, which is the difference between the maximum

capacity and the capacity of the (start cycle + 2).

d. In our implementation, we drop the initial cycle from each

test to avoid issues with high capacity measurements that

were recorded especially for the Severson dataset, due to

the existence of a slow conditioning cycle.

e. The capacity of cycle 100 was used in the original

Discharge model, and has been generalized to the

capacity of the end cycle chosen by the user (99 in this

case).

4. Calculate the true “end-of-life” criteria, namely the cycle at

which the 85% capacity retention threshold is met. In the

provided script, 85% is set as the default but is an adjustable

parameter. In order to make this calculation robust to capacity

fluctuations and single cycles with low capacity, the end-of-life

calculation was adjusted to select the first cycle of a series of

five consecutive cycles which fall below 85% capacity

retention. The log of cycle life is used in model

construction and training as it improves the normality of

the distribution for the training dataset.

a. Note that the reference capacity is an important part of this

calculation. The current script implementation allows a

user to choose a cycle ordinal from which to calculate a

reference capacity. The Severson model used cell nominal

capacity as a reference capacity; however, this is not known

for each dataset on Voltaiq Community. Thus, a reference

capacity based on the cycling data is chosen instead.

Currently this cycle number must be the same for all

datasets used for the model. A fixed reference cycle

choice requires a user to have some information about

what cycle to choose–for this study, cycle 20 was used for

reference capacity. We note that while this (a) does not

correspond directly to nominal capacity, such as in the

Severson case and (b) is not actually the first cycle for any

of the datasets explored here, we do not expect this

reference capacity choice to play a large role in the

outcomes discussed within this study. It was deemed

most important that the cells started out near 100%

capacity at the start of cycling, without a large drop in

capacity retention due to changes in cycling protocol,

rather than choosing a value that exactly matches or

reproduces the nominal capacity. In the datasets

examined in this study, no large difference between the

capacity of cycle 5 through 20 was observed. Cycle

20 presented the first cycle that matched the cycling

protocol of subsequent cycles for each test in all datasets

examined in this study.

2.3 Basic model reproduction

The Severson 2019 manuscript describes splitting the

124 commercial LFP cell cycling test records into three

groups–a Train, a Test and a Test2 (or additional evaluation)

dataset. We follow the same dataset splitting as the original

manuscript, which was determined using the cell ID within each

metadata file on the original site hosting the data (https://data.

matr.io/1/projects/5c48dd2bc625d700019f3204). Note that we

also generated a random train-test split using scikit-learn and

obtained similar results. This dataset splitting has been provided

to users as a drop-down selection within the script accompanying

this manuscript.

The Variance and Discharge model are both implemented

using a Scikit-learn pipeline which includes a StandardScaler step

followed by an ElasticNetCV model. This model is implemented

with 5-fold cross validation and L1 ratios of [0.1, 0.5, 0.7, 0.9,

0.95, 0.99, 1]—these values were referenced from Attia et al.’s

(Attia et al., 2021) continuation of Severson et al.’s work (https://

github.com/petermattia/revisit-severson-et-al), (Severson et al.,

2019).

2.4 Machine learning model extrapolation
to unseen datasets

The initial portion of this study examines the ability of the

trained ML models to extrapolate to unseen datasets. In this

section, the models were trained on the original Severson

Train dataset (see above), and then tested on a number of

diverse open-access datasets from www.voltaiqcommunity.
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com. Datasets were loaded based on a dropdown widget in the

provided script, which searches for specific dataset by

keyword(s) within a test record name. The datasets and

their characteristics are provided in Table 1.

2.5 Model re-training on diverse datasets

Next, the diverse datasets were combined into a single

dataset, which was then split into a Train set and Test set

using scikit-learn train_test_split() with a 60–40 split (to

roughly match the train-test split ratio used in Severson et al.)

and a fixed random seed. The accompanying script provides the

train-test split ratio as an adjustable parameter.

2.6 Machine learning model applicability
to single datasets

The Severson models were also trained and tested on two

individual datasets within the list provided in Table 1. The two

datasets that were chosen were Devie2018 and Mohtat 2021.

The Juarez-Robles2020 dataset did not have enough samples

which reached 85% capacity, while the Weng2021 dataset

failed to converge, likely due to the small dataset size and

lower correlation between the Variance feature and end-of-

life. Training and testing on individual datasets entailed using

scikit-learn’s train_test_split() method to randomly split an

individual dataset into a train and test set. A 60–40 split was

chosen for this work, though the accompanying script

provides this as an adjustable parameter. Each model was

then trained on the training subset of the single dataset and

tested on the testing subset. Note that the models include 5-

fold cross-validation.

2.7 Data access and organization

Data used for this work is openly accessible on Voltaiq

Community at www.voltaiqcommunity.com.

Additionally, a script has been made openly accessible for

researchers to explore the findings of this work in greater detail,

or on custom datasets of their choosing which can be uploaded to

www.voltaiqcommunity.com. This script is hosted in a public

GitHub repository (https://github.com/nicole-voltaiq/vce_

Severson-Generalized-Cycle-Life-Prediction_ca667ebf) and is also

associated with a Showcase on the Voltaiq Community platform

(https://www.voltaiqcommunity.com/editions/studio?showcase=

ca667ebf-7131-4d1b-b8b1-cc396c1adc7f). The script provides a

series of widgets for users to select model Train and Test

datasets, which models they are interested in exploring, and

which cycles and capacity retention % they want to use for

model featurization. Users then have the ability to predict battery

lifetimes of an additional prediction dataset, which includes as an

output an estimated time until end of life. Time until end of life is

calculated based on the predicted cycle life, the current test cycle,

and the average cycle time for the test. The time until end of life

value is intended to be used as a rough guideline for test planning.

3 Results

The large volume of standardized data available in Voltaiq

Community presents an unprecedented opportunity for battery

TABLE 1 Overview of the datasets analyzed within this study, including chemistry, number of cells, median lifetime, and general cycling
characteristics. Cycling rates are denoted as C-rates, which designate the number of times a battery can be charged within 1 h (e.g., 4C = 15-min
charge).

Dataset Number
of
cells in
dataset

Number of
cells that
reached 85%
capacity
retention

Chemistry Median lifetime
(cycles)

Cycling conditions

Severson 2019 (Severson et al., 2019) 124 124 LFP 707 Fast-rate step charging, 4C discharge,
varying DOD

Attia 2020 (batch9) (Attia et al., 2020) 45 45 LFP 760 Fast-rate step charging, 4C discharge

Weng 2021 (Weng et al., 2022) 40 40 NMC 342 1C, RT and 45°C

Devie 2018 (Devie et al., 2018) 14 14 NMC/LCO
blend

265.5 1.5C, 100% DOD

He 2011 (He et al., 2011) 7 7 LCO 605 0.5C, 0–60% DOD

Juarez-Robles2020 (Juarez-Robles
et al., 2020)

21 15 NCA 288 0.5C, 100% DOD

Mohtat 2021 (Mohtat et al., 2021) 21 10 NMC 178 0.2C–2C, 50% or 100% DOD
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scientists and data scientists to explore and analyze publicly

available battery datasets in a frictionless manner. While Voltaiq

Community is not the first or only public repository of battery

data, it both presents the largest collection of such data, and also

enables coherent analysis through a web-based application or a

Python or Matlab programming environment, including

seamless integration with GitHub. Voltaiq Community enables

scientists to easily explore numerous datasets and expand their

analysis beyond a single or small dataset generated by themselves

or their collaborators.

In this study, we take advantage of several diverse, open-

access datasets on the Voltaiq Community platform to identify

the extensibility and possible limitations of a seminal

academic machine learning model for battery lifetime

prediction. The model framework chosen in this work was

developed and published by Severson et al. and includes two

feature-based linear regression models–the ‘Variance’ model

and the ‘Discharge’ model. Severson et al. also developed a

third ‘Full’ model which was not considered here because it

included features based on temperature and internal resistance

which were not always present for other publicly available

datasets. The datasets examined in this study are shown in

Figure 2a, including their distribution of cycling performance

to 85% capacity retention–see Methods for more information

on this calculation. 85% capacity retention was chosen as the

“end of life” parameter in this study because it enabled the

examination of the largest subset of battery data, since not all

studies cycled their cells to lower levels of capacity retention.

While selecting a different threshold parameter might

change the specific details of the resulting study, the

goal of this work is not to optimize the performance or

output of any one parameter or model, but rather to

illustrate common challenges and pitfalls that occur when

developing machine learning models for small and uniform

datasets.

Notably, this work seeks to emphasize that ML models

developed on one dataset cannot be expected to be

automatically applicable to other datasets–instead, the dataset

characteristics (such as battery degradation mode) and model

parameters will determine the extensibility of a model.

The datasets examined in this study include the common

cathode chemistries LFP, NMC, NCA, and LCO (Table 1), as well

as a range of cycling conditions from fast-charge cycling (rates at/

above 4C) and some slow cycling (C/2) (Table 1). The data can be

explored in more detail and free of charge at www.

voltaiqcommunity.com.

3.1 Basic model reproduction

The original Severson models are able to predict cell lifetime

to 85% capacity retention with a mean absolute percentage error

(MAPE) of under 16% for the original LFP fast-charge dataset

(Figure 3A). A smaller MAPE value indicates lower prediction

errors and thus better model performance. Similar to the original

study, which used an end-of-life metric of 80% of the nominal

capacity, the feature-based linear regression models are able to

capture the lifetime trends of the Train, Test, and Test2 datasets

with reasonable accuracy, as illustrated by the parity plots shown

in Figures 3B,C. It is important to examine the parity plot trends

as they provide additional details compared with the MAPE

results. Deviations from the unity line shown in each parity plot

would suggest the model’s inability to truly learn from the given

dataset; the Dummy model’s parity plot (shown in

Supplementary Figure S1) illustrates that complete inability to

learn from the data would result in a horizontal trend of the data

within the parity plot. In agreement with the conclusions

presented within the original study, we find that the two

models perform reasonably well on the original dataset which

suggests that these models can be used to predict the lifetime of

commercial LFP 18650 cells under fast-charge conditions with an

accuracy of around 16% after only 100 cycles of testing. As

discussed in the original study, lifetime prediction after only

100 cycles of testing is an exciting result as early prediction

enables reduced testing time for qualification/validation and

presents an opportunity for possible on-board lifetime

prediction due to the simplicity of the model feature calculations.

3.2 Extrapolation to unseen datasets

While the linear feature-based models presented above

perform well on the original dataset, the models extrapolate

poorly to previously unseen chemistries and cycling conditions.

The simplicity of the Severson Variance model, which only uses a

FIGURE 2
Overview of the open-access datasets used within this study,
showing the distribution of “end of life” (85% capacity retention)
cycle count for each dataset. The number of cells in each study are
shown along the right-hand side of the plot.
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FIGURE 3
(A) Mean absolute percentage error on the training, test and test2 (evaluation) datasets for a Dummy, Severson Variance and Severson
Dischargemodel. Train/test/test2 splits follow that of Severson et al., (Severson et al., 2019) andMAPE values are similar to those found in the original
publication. Parity plots showing observed vs. predicted cycle life for the (B) Severson Variance model and (C) Severson Discharge model show the
models generally capture the dataset behavior well, with under-prediction of long lifetime cells.
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single feature as a lifetime predictor, limits the propensity for

overfitting of that model, and therefore results in better predictive

performance compared to the Discharge model on the unseen

datasets (Figures 4A–C). The better extrapolation performance

for the Variance model illustrates a core tenet of ML, which states

that simpler models (e.g., those with fewer fitting parameters) are

less likely to overfit training data and therefore might perform

better on unseen datasets. (James et al., 2013). Mean absolute

percentage errors for the Variance model range from 17% (for a

small dataset of only seven test records) to 30%, with an average

FIGURE 4
(A)Mean absolute percentage error for the Dummy, Severson Variance and Severson Discharge models trained on the Severson et al. training
dataset and tested on a variety of open-access datasets. The MAPE shows that the Severson Discharge model suffers from severe overfitting, while
the simpler Severson Variance model performs significantly better but still shows errors of up to 30%. (B) Parity plot of the Severson Variance model
suggests that it performs reasonably well on the combined datasets, though (C) closer inspection of any single unseen dataset will reveal a
deviation from unity slope, suggesting the model does not fully capture the lifetime behavior. (D) A semi-log parity plot of the Severson Discharge
model shows that this model suffers from severe overfitting and extreme, unphysical lifetime predictions for many datasets; only the Severson and
Attia datasets are predicted reasonably well from the Discharge model trained on Severson data.
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of 22% error for all unseen datasets. This is almost twice the

MAPE of the Severson Test2 dataset (12.6%). Additionally, closer

inspection of the parity plot (see Figure 4C) suggests that this

model is unable to capture the true end-of-life trend of many of

the datasets, since each individual dataset shows strong deviation

from the unity slope that would be expected if a model is able to

learn the dataset behavior fully.

The Severson Discharge model illustrates extreme overfitting

behavior and wildly over-predicts the lifetime of many of the

unseen datasets, suggesting this model is unable to extrapolate to

unseen chemistries and cycling conditions. Again, this model

contains more features than the Variance model, and it thus

might be expected that the model, which was trained on a small

dataset, will learn the training set behavior well but will not

extrapolate well to different conditions. (James et al., 2013).

Examining the distribution of calculated features, which are

used by the trained model to predict lifetime performance,

can help illustrate possible reasons for the model’s high error

on many of the datasets.

There are two reasons why a ML model might not perform

well on an unseen dataset. First, the dataset might not have the

same range and distribution of features compared to the

training dataset, which is a core assumption in the use of

machine learning. Alternatively, the model’s features might be

irrelevant or inappropriate for capturing the signatures that

determine cell degradation and end of life within the new

dataset. To examine whether one or both reasons is the cause

for the poor performance of the Severson models, we plot the

distribution of values of calculated features which are used by

the trained model. The Variance model uses only var(ΔQ99-20)

(Figure 5B), while the Discharge model includes five features

(the weightings are shown in Supplementary Table S1); we

FIGURE 5
Distribution of the top three features (A) mean(ΔQ99-20), (B) var(ΔQ99-20) and (C) intercept between a linear fit of the capacity decay between
cycles 22 and 99 for each dataset for the Severson Discharge model trained on the Severson2019 Train dataset. The distribution of all three features
differs between the LFP Severson/Attia datasets and the other cell chemistries, with the largest variations occurring for the feature of third-most
importance–the intercept value between cycle 22 and cycle 99. The median values for each dataset are listed on the right-hand side of each
figure for reference.
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have selected the three highest weighted features [which

includes var(ΔQ99-20)] for illustrative purposes. The

Variance model had errors in lifetime prediction of up to

30%, and based on Figure 5B it is possible that some of that

error arises due to the difference in statistical distribution of

the Variance feature for the unseen datasets. Specifically, the

calculated Variance feature in many of the unseen datasets

falls outside of the range of the training data. Additionally, the

spread in the data—as signaled by the interquartile ranges of

the box plot—is also much narrower for some of the datasets.

The difference in feature distribution between the Train and

Test datasets motivates that re-training the model on a more

diverse training set (see Section 2.3) might improve model

performance further.

As for the Discharge model, Figures 5A,C likewise suggests

that some of the features that are used for model training vary

dramatically in scale and distribution for the unseen datasets.

These two features are the first- and third-most important

features for the discharge model. It is likely that the large

deviation in feature distribution is causing the extremely

unphysical lifetime estimations using this model and suggests

that this model is poor at extrapolating to unseen data.

3.3 Model re-training on diverse datasets

A more robust approach for attempting to build a

generalizable machine learning model is to train the model on

FIGURE 6
(A) Models trained on a diverse dataset including data from all studies show significantly improved MAPE results, with a maximum error of
around 23%. Parity plots for the (B) Variance and (C) Discharge models show reasonable agreement between predicted and observed cycle lives,
though any individual study still shows deviation from unity slope, as can be seen in (D) for the Devie2018 and Weng2021 datasets.
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a larger variety of data, such that it will not overfit to a single

dataset type. The models are trained on more diverse data by

selecting all datasets and using Scikit-learn’s train_test_split

method to split the datasets into a training set and a test set.

(Pedregosa et al., 2011). The Dummy, Variance and Discharge

models are then trained on the training dataset, and their

performance is evaluated on the test dataset.

The MAPE values (Figure 6A) for the various test datasets

are all below 23%, suggesting this model would perform

reasonably well on any of the tested chemistries after

incorporating some of those chemistries within the training

dataset. The MAPE for the model trained on diverse data

shows a small improvement compared to the model trained

only on the Severson data for the Variance model, while a

substantial improvement is seen for the Discharge model,

since that model had previously dramatically overfit the

Severson training data. The parity plots (Figures 6B,C) also

show relatively good performance for all datasets as well,

though both models underestimate the performance of

long-lasting cells, similar to the original Severson models

shown in Figures 3B,C. Importantly, focusing on any single

dataset still shows deviation from a unity slope in the parity

plot, as can be seen for both the Devie2018 andWeng2021 data

for the Severson Discharge model in Figure 6D. Thus, while an

improvement in model performance is certainly seen by

increasing the diversity of the training dataset to encompass

the full feature distribution, the model continues to have some

difficulties in learning the nuanced behavior of any individual

dataset.

Interestingly, the Variance feature is selected as an important

feature during Discharge model training for both the LFP

training set and the more diverse training set, suggesting that,

of all the features examined by Severson et al., it captures a large

portion of the lifetime behavior. Importantly, the Variance

feature is weighted much more heavily when the discharge

model is trained on the diverse data set, while all other

feature weightings are reduced by an order of magnitude

(Supplementary Table S2). Thus, the Discharge and Variance

models are very similar when trained on the diverse training

dataset. For the Discharge model trained on only the Severson

data, the mean(ΔQ99-20), and linear fit of the capacity decay

between cycles 22 and 99 also play an important role. As

mentioned, when the Variance and Discharge models were

trained on more diverse datasets, the models performed

similarly. The simple model that focused on a single feature is

most likely to be more generalizable, due to limited overfitting

inherent to the single feature, which was observed. However,

underfitting for individual test sets occurred for the diversely

trained models, as they were unable to perform well for any

individual test set. This suggests that the Variance feature is not

universal enough between datasets to act as a metric that can

provide lower than 23% mean absolute percentage error in the

end-of-life estimation.

Data-driven lifetime prediction depends on being able to

capture information about relevant degradation mechanisms

within the electrochemical signals that are selected as features

for a ML model. The dominance of the Variance feature suggests

that this feature does indeed capture some of the degradation

behavior within the first 100 cycles. The key insight of the

importance of the Variance feature was discovered by

Severson et al. in their original study and emphasizes that

there is a rich amount of information within the discharge

voltage curve that can be used to identify subtle signals

indicating early degradation. However, deviations from a unity

slope in the parity plots shown above, suggest that for many of

the datasets presented here, this variance feature captures only

part of the degradation signal. Additional signals are either

(Harlow et al., 2019) present within the dataset but described

by features other than the Variance feature, or (Beltran et al.,

2020) not present within the electrochemical signatures of the

first 100 cycles. It is important to emphasize that data-driven

methods can only be expected to learn cell lifetime trends reliably

if the dominant degradation pathways of those cells can be

described by the features being used to train a model. (Attia

et al., 2022).

3.4 Model applicability to single datasets

In the previous section we have shown that training both of

the Severson models (Discharge model and Variance model) on a

diverse dataset can provide lifetime predictions with under 23%

error. We would now like to explore whether the MAPE

performance can be further improved when the model is

trained on a single dataset, differing from the dataset that the

model was originally developed on. This returns to the workflow

set out at the outset of this study and in the original Severson

study, which focused on a dataset with uniform cathode

chemistry, cell form factor, and only small variations in

operating conditions.

We begin by looking at the correlation between the Variance

feature and the cycles to “end-of-life” for each dataset–some

datasets show a strong correlation with this single parameter,

while others show weaker (but non-zero) correlations (Figure 7,

Table 2). The Pearson correlation coefficient is a measure of the

linear correlation between two variables, with one or -1 denoting

perfect positive or negative correlation, respectively, and

0 denoting no correlation. The non-zero correlation for all

datasets emphasizes that the Variance feature captures at least

some of the degradation signals from all of the datasets explored

in this study. The Variance feature expresses the dispersion of

changes in the voltage versus discharge capacity curve between

two cycles–in our study between cycle 99 and cycle 20. As

Severson et al. noted in their original study, battery cycling

curves provide rich information about electrochemical

processes occurring within a battery, and the creation of
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features based on shifts in those cycling curves can enable models

to better capture degradation phenomena that ultimately affect

the time to reach “end of life”.

The datasets in this study which show the weakest

dependence of cell lifetime on the Variance feature are Weng

2021 (NMC) with a Pearson correlation coefficient of -0.42,

Devie 2018 (NMC/LCO) with a correlation coefficient of

-0.58, and Juarez-Robles2020 (NCA) with a correlation

coefficient of -0.74 (Table 2). The low correlation of the

Weng2021 dataset is especially interesting, as it contrasts

sharply with the strong correlation of the Mohtat2021 NMC

dataset which was generated within the same lab, and which was

used in a previous study for lifetime prediction with a slightly

modified version of the Severson models with great success.

(Sulzer et al., 2020). It is possible that differences in

degradation mechanisms between these two studies plays a

role, as the Weng2021 dataset explicitly examined the role of

changing SEI characteristics based on varying formation

protocols. However, both studies indicate that loss of lithium

inventory (LLI) as examined through differential capacity

analysis, plays a dominant role in degradation, and Sulzer

et al. suggest a strong correlation between LLI and the

Variance feature within the Mohtat2021 dataset.

Two datasets were chosen for training using the Variance and

Discharge models–Devie 2018 (NMC/LCO) and Mohtat 2021

(NMC)—and show the large contrast in possible model

performance outcomes (Figure 8). As might be expected based on

the weaker correlation between the Variance feature and calculated

FIGURE 7
(A) Plot showing correlation between the log of the Variance feature and the log of the number of cycles to 85% capacity retention for all
datasets. Correlation plots for single datasets are shown for (B) the Devie2018 data and (C) the Mohtat2021 data.
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lifetime, the Devie2018 NMC/LCO dataset shows poor performance

for bothmodels. TestMAPE values do not decrease significantly from

the Dummy model to either of the two models, suggesting that

neither model appropriately captures the lifetime behavior of this

dataset. In contrast, the Mohtat2021 NMC dataset can be fit

extremely well by both the Variance and Discharge models,

though the Discharge model dramatically overfits the training

data, likely due to the small number of samples compared with

the number of features in the model. Again, in this case an analysis of

sample size to feature set size is important in limiting the potential for

overfitting. Feature weightings for the Discharge model are included

in Supplementary Tables S3, S4 for the Devie2018 and

Mohtat2021 datasets, respectively.

The dramatic difference in performance between the two

datasets points to two important take-aways from this single-

dataset analysis:

1. Small datasets can lead to specific analysis outcomes that

might vary dramatically based on sampling.

2. Generalizability discussions must begin to use larger datasets

which are more likely to capture inherent or untracked

variability between cells.

As battery scientists know, there are a large number of

parameters which can affect battery lifetime, and a lot of

variability in performance can be seen in even nominally

identical cells. (Baumhöfer et al., 2014; Rumpf et al., 2017;

Beck et al., 2021). This lifetime performance variability does

not always create clear signals within the features used for model

development and can therefore be lost in prediction outcomes

when small datasets are used.

3.5 Best practices

As was mentioned earlier, this work represents an illustrative

case study on the extensibility of a highly cited linear feature-

based model. As was shown in Figure 1, several other models

have been developed, some of which might perform better on

unseen chemistries than others. The goal of this study is not to

denigrate a single model or suggest that no models can

extrapolate to unseen chemistries, but to illustrate the

importance of (Harlow et al., 2019) thinking critically about

the claims and impact of any ML model and (Beltran et al., 2020)

understanding and identifying the known or suspected

degradation mechanisms for a specific dataset, as that will

likely govern whether or not a specific model might be able to

learn from and capture the behavior of a dataset.

A simple set of best practices can be developed based on the

findings of this study. First, for those developing new ML models

for lifetime prediction: it is important to be explicit about the

dataset that was used to train and test a ML model, as well as the

assumptions inherent to the model’s parameters (e.g., within the

features that are either engineered or learned by the mode l). As

was shown in this study, ML models can exhibit accurate

performance for one dataset and one type of degradation

mode while failing to perform well for another. While it is

not necessary to work towards the development of universally

applicable MLmodels, the battery community could benefit from

a more explicit statement of assumptions and limitations of any

one model. Additionally, industry partners would likely benefit

substantially from a discussion of model extensibility, since the

curation of data and model development represent the

bottlenecks in lifetime prediction work.

Many early ML prediction studies are performed on

battery test data and chemistries that might be less relevant

in the future (e.g., models developed on older cells which

exhibit poor performance such as the NASA dataset, (Saha

and Goebel, 2007) models developed on cells of unspecified

chemistries, etc.). A best practice is to provide both

information about the dataset (usually done, though

incomplete information sometimes provided) as well as the

developed models so that future researchers can easily extend

the models to different datasets, chemistries and systems. We

acknowledge that not all models are easily written in a

generalizable manner, and that some data requirements will

remain (e.g., models built on impedance spectroscopy inputs

will require EIS data, etc.).

To this end, the larger community would dramatically benefit

if those who publish new lifetime prediction studies could

(Harlow et al., 2019) ensure model calculations are dataset

agnostic (or clarify where they are not, such as might be the

case if temperature or impedance features are required) and

(Beltran et al., 2020) provide open access to datasets and model

development code for other researchers to reproduce and extend

the published findings.

To begin to follow our suggested best practices, we have

developed a Jupyter Notebook script and associated modules

which will allow users to examine the extensibility of a machine

learning model to publicly available data hosted on the Voltaiq

TABLE 2 Pearson correlation coefficient between the Variance feature
and the cycle life of each dataset.

Dataset Pearson
correlation coefficient

Severson2019 Train −0.93

Severson2019 Test −0.95

Severson2019 Test2 −0.78

Attia2020 −0.89

Weng2021 −0.42

Mohtat2021 −0.93

Devie2018 −0.58

Juarez-Robles2020 −0.74

He2011 −0.90

Frontiers in Energy Research frontiersin.org14

Schauser et al. 10.3389/fenrg.2022.1058999

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1058999


Community platform. In the initial script release, we have

focused on reproducing and generalizing the Severson

Variance and Discharge models, though we provide users with

the ability to add or edit ML models based on our generalized

Model class. This script represents a coordinated effort to help

others structure their ML pipelines and model development

workflow in a manner that will enable not only

reproducibility but also extensibility; since these models can

be run on any dataset within the Voltaiq Community

platform, special emphasis should be placed on ensuring

model robustness and generalizability of feature calculations.

Those who are evaluating the claims and impact of published

lifetime prediction studies can benefit by asking some of the

following questions.

• What sort of chemistry and experimental conditions exist

within the training and testing datasets explored by the

study?

• Are the dataset parameters relevant to the application of

interest?

• What degradation modes might be expected to exist within

the dataset(s)?

FIGURE 8
Severson model performance for the Devie2018 and Mohtat2021 datasets. (A,D) Train and Test MAPE for the Devie and Mohtat datasets,
respectively. Parity plots for the (B,E) Variance, and (C,F) Discharge model for the Devie and Mohtat datasets, respectively.
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• Do those degradation modes exhibit electrochemical

signals that could be reasonably captured by the features

used or learned by the model of interest?

Following these best practices can ensure better

communication and understanding of potential impact for the

development of new lifetime prediction models for the broader

community. Academic research can take advantage of small

datasets to explore potentially high-impact new ideas, such as

the development of novel ML models for lifetime prediction.

Industry and practical application require a more concerted

effort to explore the extensibility of a published model

towards a specific use case. Without ultimately gaining an

understanding of the scope and limitations of the developed

models, the work performed during academic exploration cannot

cross the gap towards practical deployment. Thus, for maximum

potential impact, researchers can at a minimum make their work

available to collaborators, peers and the broader community on

an open-access and traceable platform.

4 Conclusion

This work emphasizes the challenges and opportunities for

assessing machine learning (ML) model generalizability for

battery lifetime prediction. Many previous studies have

suggested that ML can be a powerful tool for predicting

battery lifetime, especially from controlled cycling data on

relatively uniform datasets. Here, we hope to expand this

discussion further towards identifying the limitations of

developed ML models, as this is an important cornerstone in

the transition of data-driven lifetime prediction from academic

research into practical industry applications.

Using a feature-based linear regression model as a case

study, we illustrate a few core ML tenets. First, ML models are

better at interpolation than extrapolation; understanding the

statistical distribution of the model inputs and features can

help ascertain likelihood of success in the lifetime prediction

of unseen data. Second, small datasets can lead to variance

issues for ML models. Specifically, small datasets might only

sample a small subset of the actual performance space, even for

a single chemistry and range of operating conditions–this

narrow dataset range can result in overly optimistic models

which perform well on one dataset, but do not perform well for

a similar dataset, such as in the case of exploring the

lifetime performance of the Mohtat2021 and

Weng2021 NMC datasets. While these datasets were

suggested to have similar degradation mechanisms (LLI),

the Variance feature worked well as a descriptor only for

the Mohtat2021 dataset.

In all cases, access to more diverse and larger datasets can

help the battery community understand the extensibility and

limitations of published ML models. An understanding of

model applicability is integral for moving from model

development to application, and will provide not only the

academic community but also industry with important tools

for gauging model applicability and potential for impact. We

have developed a script to enable users to compare various ML

models, and examine their applicability to a growing number

of open-access datasets on Voltaiq Community. Readers are

encouraged to add open-source or private data to the Voltaiq

Community platform to test this script and others available, or

to develop their own models. We hope that this work sets the

stage for continued development and expansion of lifetime

prediction algorithms coupled with an exploration of their

generalizability.
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