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Aiming at the problem of lack of training samples and low accuracy in

transformer early winding fault diagnosis, this paper proposes a transformer

early faults diagnosis method based on transfer learning and leakage magnetic

field characteristic quantity. The method uses the leakage magnetic field

waveform on the measuring point of the simulated transformer winding to

draw the Lissajous figure to calculate the characteristic quantity. The

characteristic quantity of the simulation model is used to train the

convolutional neural network (CNN) faults classification model. The CNN

fault classification model is transferred to the actual transformer fault

detection through the improved deep subdomain adaptive network (DSAN),

so as to realize the fault diagnosis of the actual transformer by the classification

model trained by the simulation data. The test examples of the actual

transformer early fault experimental platform and the leakage magnetic field

measurement platform are established, and the feasibility of the transfer

learning method based on the leakage magnetic field feature quantity

proposed in this paper is verified.
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1 Introduction

The power transformer is one of the most important electrical equipment in the power

network. When the transformer is impacted by the external force or repeatedly impacted

by the short-circuit fault current outside the region, it is easy to cause the deformation of

the transformer winding (Hang and Butler, 2002). The long-term operation of the

transformer under overload condition and insulation aging will cause the decrease of

the insulation performance of the transformer winding, which further leads to the inter-

turn short-circuit faults (Liu et al., 2003). The transformer internal winding fault occurs

above and does not have huge impact, we call this fault for the transformer early fault.

Early faults of transformers are often difficult to detect. The cumulative effect of long-term

operation of transformers under potential early faults will eventually lead to serious
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accidents. Therefore, the accurate detection of transformer early

faults is of great significance to ensure the stable operation of

power system (Naseri et al., 2018).

At present, the detection methods for transformer faults are

mainly divided into offline detection methods and online

monitoring methods. Off-line detection commonly used oil

chromatography (Gao and He, 2010; Alshehawy, et al., 2021;

Emara et al., 2021; Wu et al., 2021), frequency response method

(Shamlou et al., 2021), the technology is relatively mature, but the

maintenance is limited by the operation cycle cannot be real-time

monitoring and timely detection of faults. The method of real-

time online monitoring is the main research direction at present.

Transformer winding deformation fault can be diagnosed online

by using leakage inductance parameters of transformer winding

(Deng et al., 2014). The inter-turn short-circuit fault of

transformer can be identified by constructing the fitness

function of resistance and leakage inductance parameters

(Wang and Zeng, 2021). An article paper proposes an online

fault detection method for transformers based on an IoT

platform (Elsis et al., 2022). All of the above studies have

achieved some results. However, one parameter can only

detect a single fault and has the disadvantages of low

parameter calculation accuracy and unclear fault relationship

(Chen et al., 2019). Therefore, it is necessary to find a leakage

magnetic field characteristic which can not only reflect the

internal winding deformation of the transformer but also

identifies the inter-turn short circuit and reflect more quickly

as the early fault monitoring of the transformer. Using leakage

magnetic field to monitor early faults of the transformer is a

feasible online monitoring scheme.

The leakage magnetic field data of the transformer can directly

reflect the operation state of the transformer (Wang andHan, 2021).

When the transformer winding is deformed, the leakage magnetic

field around the winding is asymmetrically distributed in space.

When inter-turn short circuit occurs in the transformer, the iron

coremay be partially saturated, which increases the leakagemagnetic

field around thewinding (Zhang, 2019). Thewinding deformation of

the transformer can be monitored based on the asymmetry of the

distribution of the leakage magnetic field (Zhou and Wang, 2017;

Pan et al., 2020; Zhang et al., 2021). At the same time, themutation of

the leakage magnetic field can be used to diagnose the inter-turn

short circuit faults (Cabanas et al., 2007). However, when the leakage

magnetic field data are used to segment the fault types of

transformers, there are problems such as small differences

between different fault characteristics and difficult to distinguish

manually.

In recent years, with the development of artificial intelligence

technology, data-driven transformer fault classification methods

have been widely employed because they can effectively identify

small data differences. Machine learning can effectively classify

transformer faults and identify early faults in transformers

(Haghjoo et al., 2017; Li et al., 2022). Recent studies have shown

that the distribution of the magnetic field leakage changes when the

transformer has an early fault. Onlinemonitoring of the early fault of

the transformer can be realized by using the magnetic field leakage

data and artificial intelligence methods. However, there are several

problems worthy to solve.

(1) When using magnetic field leakage data to diagnose

transformer faults, the change in transformer load has a

greater impact on fault classification, and the fault

classification accuracy is low.

(2) Is difficult to obtain actual transformer fault data in field

applications, and there is a lack of labeled training data.

Based on the deficiencies in the existing literature, this study

proposes the following innovations:

(1) The Faraday magneto-optical effect was used to measure the

leakage magnetic field of the transformer, and current

information was used to normalize the leakage magnetic

field waveform to eliminate the influence of load changes on

fault classification. The leakage magnetic field waveform was

used to draw Lissajous figures and extract the characteristic

quantities for the early fault classification of transformer

windings, which enhances the classification accuracy.

(2) Through the improved DSAN, the transfer learning can reduce

the difference between the actual transformer and the simulation

model data, so as to realize the fault diagnosis of the actual

transformer using the neural network trained by the simulation

data, and solve the problem of insufficient training data.

In this study, a fault diagnosis test was performed on the

measured data of an actual transformer. The results reveal that

the proposed method can effectively transfer the transformer

fault classification model and has high classification accuracy.

2 Transformer fault classification
method based on deep subdomain
adaptive network

For a new transformer we cannot obtain data on early

winding faults, but we can use simulation software to simulate

different fault types and obtain a large amount of fault data, but

there are deviations between the simulation data and the actual

data before. We first use the simulation data to train a CNN fault

classification model, and then use the DSAN transfer learning

method to achieve early fault diagnosis of the actual transformer.

2.1 Convolutional neural network
classification model

The convolutional perceptual features of CNN can fully

extract various features of the input image and have strong
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transferability. In this study, the classic LeNet-5 in CNNwas used

for the feature extraction of images. The parameters for each

layer of the designed CNN are presented in Supplementary

Appendix A1. The convolution layer in a CNN is composed

of several convolution kernels. Different convolution kernels can

extract different image features. Convolution operations can

extract low-level to complex features from the input image

data. The mathematical expression of the convolution layer is

expressed in Eq. 1 (Lecun et al., 1998):

gl(γ) � ACT⎡⎢⎢⎣∑G
i�1
∑H
j�1
W l

i,j*γ
l
i,j + El

i,j
⎤⎥⎥⎦ (1)

In the formula, l indicates the number of layers, ACT indicates

the activation function, G,H denotes the size of the current layer

node matrix, γ indicates the number of nodes in the node matrix,

W l
i,j corresponds to the weight matrix of the convolution kernel,

γli,j indicates the input value of the convolution layer, and El
i,j

denotes the bias of the current node.

Using a nonlinear Rectified Linear Activation Function

(ReLU) activation function can solve the problem of low

expression ability of linear models (Wang et al., 2019). Using

the maximum pooling layer to scale and map the convolution

image can simplify the parameters and reduce the data

dimensions. The mathematical expression is as follows Eq. 2

(Wang et al., 2019):

gl+1(γ) � MP{gl(γ)} (2)

MP indicates the maximum pooling function, gl(γ) represents
convolution computes the eigenvalues of the output. After the

convolution-pooling network, the transformer fault classification

stage is composed of a full connection layer, and the last fully

connected layer is used as the classifier. The transformer winding

is divided into different states using one-hot coding form to

calculate the classification probability of one sample for each

state and take the state with the maximum probability as the

classification result. Cross-entropy loss is used as the loss

function of the classifier, as expressed in the following Eq. 3

(Jang et al., 2017):

J(θ(xi), yi) � −∑C
c�1
{yi |� c}log θ(xi) (3)

In the formula, J(·, ·) denotes the cross-entropy loss function, C �
{1, 2,/, c} indicates the type of classification, and θ(xi) represents
the probability that the network attaches the current type label yi to
the sample xi. The empirical error of the CNN classificationmodel is

given by the Eq. 4 (Jang et al., 2017):

min
θ

1
n
∑n
i�1
J(θ(xi), yi) (4)

In the formula, n represents the total number of samples. In

the form represents a collection of parameters for each layer

of CNN.

2.2 Transfer learning

Based on the theory of transfer learning (Ghifary et al.,

2014), this study applies the knowledge learned in one field to

another similar field. More specifically, a machine learning

algorithm is utilized to transfer the transformer fault

classification model trained by the simulation model from

the fault diagnosis of the simulation transformer to the fault

diagnosis of the actual transformer. In field applications,

actual transformer fault data are often difficult to obtain

and the fault process causes irreversible damage to the

transformer. Actual transformers take the initiative to

produce fault data at a high cost. For an actual

transformer that needs to be diagnosed, there is almost no

available labeled data. Although a large amount of sample

data can be generated using the transformer simulation

model, there are still some differences between the

simulation data and actual data. The classification model

trained using simulation data cannot be directly applied to

the fault diagnosis of an actual transformer.

Owing to the lack of actual transformer data with labels, this

study adopted the method of model transfer. We define the

dataset generated by the transformer simulation model as the

source domain data, which is a labeled system

DS � {(xS1, yS1),/, (xSs , ySs )}, the actual transformer data set as

target domain data, and the target domain data as unlabeled

system DT � {(xT1 ),/, (xTt )}. The simulation data and the actual

data are mapped from the original feature space to the new

feature space. In the new feature space, the data distribution of

the simulated data and the actual data are similar, so that the

existing labeled data samples of the simulated data can be better

used in the new space for classification testing of the actual

transformer data. We place the description of transfer learning

schematic in Supplementary Appendix B1. The probability

distributions p and q are obtained by sampling the

transformer simulation data DS and the actual transformer

data DT. The goal of using transfer learning in this study is to

design a neural network to eliminate the difference between

simulated transformer data and real data by learning the

transferable characteristics of distribution p and q to

minimize the target risk.

2.3 Deep subdomain adaptive network
based onmulti-core local maximummean
difference

To minimize the distance between the source domain data

DS and target domain data DT, and align the edge distribution

of the simulation and actual transformer data, a multiple

kernel variant of the maximum mean discrepancy (MK-

MMD) is used to measure the distance between the source

domain data and the target domain data (Long and Wang,
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2015). MK-MMD is an extension of MMD and is a non-

parametric method used to measure the distribution

differences between datasets in different domains. MMD

uses a single kernel for transformation, and it is difficult to

determine an optimal kernel for different datasets. The

optimal kernel of the MK-MMD is obtained by a linear

combination of several kernels, which can be adapted to

different datasets. MK-MMD is defined to map the source

domain data distributed and the target domain data

distributed as to the reproducing kernel Hilbert space

(RKHS) and calculate the mean distance as follows Eq. 5

(Ghifary et al., 2014):

M2
k(p, q) ≜ ����ExS ~ p[ϕ(xS)] − ExT ~ q[ϕ(xT)]����2Z (5)

In the formula, ‖ · ‖2- represents the two norms of RKHS, ExS~p[·],
and ExT~q[·] represents the mathematical expectation of

distribution p and q, ϕ(·): x → - denotes the infinite order

nonlinear feature map of vector x in -.

Assuming that a characteristic kernel in RKHS is k, and the

mean value of distribution p in kernel space - is an element

μk(p), all the key statistical features in distribution p are coded

into μk(p), so that all the mapping functions satisfying f ∈ -

satisfy the expectation Ex~pf(x) � 〈f(x), μk(p)〉-, so we can

learn through μk(p) rather than distribution p, so as to eliminate

the incalculable density estimation in distribution p. The

empirical estimation of the MK-MMD is given by the

following Eq. 6 (Long and Wang, 2015):

M2
K(DS,DT) ≜
1

n2s
∑ns
i�1
∑ns
j�1
k(xSi , xSj) + 1

n2t
∑nt
i�1
∑nt
j�1
k(xTi , xTj )

− 2
nsnt

∑ns
i�1
∑nt
j�1
k(xSi , xTj )

(6)

In the above formula, ns, nt denote the sample size of DS,DT.

k(x, x′) � 〈ϕ(x), ϕ(x′)〉 is considered as the correlation between

vectors x and x′, and the kernel function k(x, x′) is a convex

combination of k Gaussian kernels. The composition of kernel is

as follows Eq. 7 (Long and Wang, 2015):

⎧⎨⎩k � ∑K
i�1
βiki: ∑K

i�1
βi � 1, βiP0,∀U

⎫⎬⎭ (7)

Constraints are imposed on coefficient β to ensure that each

core k combination has unique characteristics. K denotes the

total number of the kernel. Using kernel k with different

bandwidths to obtain the mean value of the distribution at

different scales can give distribution p and q an optimal kernel.

The regularization based on MK-MMD can effectively align

the probability distribution of the sample; however, DSAN

considers the fine-grained information of the label of the

sample and defines the label weight wi,c as shown in Eq. 8

(Zhu et al., 2021):

wi,c � yi,c∑
yj.c∈{DS,DT}

yj,c
(8)

yi,c denotes the probability that sample xi belongs to category

c, and yj,c denote the category of the current sample label.

The source domain data uses the actual annotation to

calculate the wS
i,c, the target domain samples data uses the

CNN prediction probability calculate wT
j,c. The regularization

formula (8) of MK-LMMD use the activation vectors {zSi }nsi�1
and {zTj }ntj�1 of the full connection layer as features to calculate

the distance, as follows Eq. 9 (Zhu et al., 2021):

M2
KL(DS,DT) ≜

1
C
∑C
c�1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ns
i�1
∑ns
j�1
wS

i,cw
S
j,ck(zSi , zSj)+

∑nt
i�1
∑nt
j�1
wT

i,cw
T
j,ck(zTi , zTj )

−2∑nt
i�1
∑nt
j�1
wS

i,cw
T
j,ck(zSi , zTj )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

In the expression zSi , z
T
j represent the activation vectors of the

source domain and target domain samples.

Convolutional layers in a CNN are transferable; therefore,

there is no need to add MK-LMMD regularizers to these

layers. When migrating, we freeze the convolution and

pooling layers to maintain the effectiveness of collaborative

adaptation. In a CNN, the deep features transition from

general to specific features in the last layer of the network.

The transferability of the neural network decreases with an

increase in the difference between the source and target

domains, and the transferability of data between different

domains decreases through the full connection layer.

Therefore, we only compute the distance difference

between the source and target domains in the full

connection layer, and the transfer learning loss function as

follows Eq. 10:

min
θ

1
n
∑n
i�1
J(θ(xSi ), yS

i ) + λ∑l2
l�l1

M2
KL(Dl

s, D
l
t) (10)

λ symbolizes a penalty factor, l1 and l2 denote the number of

layers based on MK-LMMD regularization, M2
kL(Dl

s, D
l
t)

represents the local maximum mean difference value of the

current layer.

2.4 Improvement of deep subdomain
adaptive network

Considering the different correlations between the

simulation data and the actual measurement data, to

further improve the generalization ability of the DSAN, it

is proposed to add the self-attention mechanism to the
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traditional DSAN (Bo et al., 2021). Based on the regional

characteristics, the full connection layer and sigmoid are used

to estimate the importance of the sample and provide the

weight value. The input sample is divided into several features,

and the full connection layer data obtained by the convolution

of each sample is input into a sigmoid function to obtain

different weights. The correlation between the simulation data

and actual measurement data is too large to obtain higher

weights, and vice versa. This allows the neural network to

automatically focus on samples with significant weights. The

sigmoid function is shown in the following Eq. 11 (Bo et al.,

2021):

τ i � SIG(xSi , cov(xSi )) (11)

cov(xsi ) represents the parameter feature of the full connection

layer after the convolution layer. τi corresponds to the

importance weight parameter of i − th, SIG represents the

sigmoid function. The improved DSAN loss function is given

by Eq. 12:

min
θ

1
n
∑n
i�1
J(θ(xSi ), τiySi ) + λ∑l2

l�l1
M2

KL(Dl
s, D

l
t) (12)

The DSAN model, based on the self-attention

mechanism, is presented in Figure 1. From the perspective

of the construction process of the transfer model, although

feature extraction is not necessarily able to completely

eliminate the difference between the actual transformer

simulation model and the actual transformer data

distribution, according to the statistical principle, MK-

LMMD regularization can reduce this difference as much

as possible and can obtain a better classification effect in

theory. Simultaneously, a DSAN with a self-attention

mechanism can weight the sample data, which can further

improve the accuracy of classification.

3 Transformer fault diagnosis based
on magnetic field leakage
characteristic

3.1 Load normalization of magnetic flux
leakage

In this study, leakage magnetic field information is used to

diagnose transformer faults. Because the load change of the

transformer affects the current of the secondary winding and

subsequently affects the amplitude and phase angle of the leakage

magnetic field waveform, it will adversely affect the accuracy of

fault classification. Previous papers have selected several different

load conditions to analysis of leakage fields for different load

conditions. In this paper, we propose a method based on real-

time load normalization of the current on the first and second

sides of the transformer.

To eliminate the influence of load changes on fault diagnosis,

in this study, the amplitude and phase angle of the leakage

magnetic field waveform are normalized using the currents at

the primary and secondary windings of the transformer. The

magnetic line of the leakage flux of the primary and secondary

windings is closed along the nonferromagnetic material and is

FIGURE 1
DSAN model based on self-attentive mechanism.
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linear with the primary and secondary side currents (Gu, 2010).

The resistive inductive load is the common load of a transformer.

The change in load simultaneously affects the waveform of the

leakage magnetic field amplitude and phase angle. The linear

function between the leakage magnetic field and the response of

the transformer primary and secondary side currents is as Eq. 13

(Gu, 2010):

_BL � _p _I1 + _q _I2 (13)
_BL Indicates leakage magnetic field. _p, _q is constant coefficient,
_I1, _I2 is the primary and secondary side current. When the

transformer operates in any two different load states, the Eq.

14 shows:

_B
*

a � _p _Ia1
* + _q _Ia2

*

_B
*

b � _p _Ib1
* + _q _Ib2

*
(14)

_B
*
a, _B

*
b indicates the leakage magnetic field under two different

loads. _Ia1*, _Ia2*, _Ib1*, _Ib2* is the primary and secondary side current

under two different loads. When the transformer operates

under the rated load, as shown in the Eq. 15:

_B
*

f � _p _If1
* + _q _If2

* (15)
_B
*
f Indicates leakage magnetic field under the rated load. _If1* , _If2*

is the primary and secondary side current under the rated load.

Eq. 16 can be obtained from Eq. 14, 15:

_B
*

f � [ _If1
* _If2

* ][ _Ia1* _Ia2*

_Ib1* _Ib2*
]−1[ _B

*

a

_B
*

b

] (16)

Eq. 16 shows that under any two load conditions, the leakage

magnetic field intensity of any measuring point can be

normalized to the rated load condition, which avoids the

interference of load fluctuation on the fault classification.

3.2 Extraction of Lissajous figure feature
quantity of magnetic field leakage

The transformer used in this experiment was a toroidal core

transformer, which is widely used in electronic equipment with

high technical requirements, and it primarily serves as a power

transformer. From the perspective of straightening the iron core,

the radial magnetic field leakage is equivalent to the axial

direction of the core transformer, and the tangential direction

is equivalent to the radial direction of the core transformer. This

is called the radial direction and the tangential direction is called

the axial direction. In this study, the primary and secondary-side

windings of the A-phase Y/Y connection of the three-phase

transformer are used as an example for testing.

When an early fault occurs in the transformer, it can be found

by analyzing the waveform of the leakage magnetic field that the

change in the leakage magnetic field at the end and central

positions of the transformer is the most evident, and there are

distinct differences in different fault types. To distinguish the

different fault types of the winding, it is proposed set a measuring

point at the two ends and central positions of the winding to

measure the axial and radial leakage magnetic fields. The

measurement point position of the transformer leakage

magnetic field is illustrated in Figure 2.

Previous studies have only used the amplitude and phase

angle of the leakage field at individual measurement points, but

for transformer faults it is the internal leakage field balance that

changes. The relationship of the leakage field between the

measurement points is also important information. We

propose a method that uses the Lissajous image of the leakage

field signal to better integrate the information between these

measurement points. The transformer leakage magnetic field

waveform is a harmonic signal and the Lissajous figure is

widely used in harmonic signal processing (Zhao et al., 2019).

When the transformer fails, the symmetry of the magnetic field

leakage at both ends of the winding changes. The Lissajous figure

drawn by the leakage magnetic field waveform at measuring

points 1, 3 and 4, 6 can reflect the change in the symmetry of the

winding at the time. The leakage magnetic field in the middle of

the fault winding changes; however, that of the non-fault winding

remains unchanged. The Lissajous figure drawn by the leakage

magnetic field waveform at 2, 5 measuring points can reflect this

mutation. To make the fault characteristics more intuitive, this

work deduces the length, swing angle, area, least square radius,

and roundness of the long and short axes of the Lissajous figure as

characteristic parameters that reflect the change in the leakage

magnetic field amplitude and phase angle. Considering the

leakage magnetic field waveform of 1, 3 measuring points as

an example, the characteristic quantity of the leakage magnetic

field is calculated. Assuming that the leakage magnetic field

waveform of measuring points 1, 3 is as shown in Eq. 17:

FIGURE 2
Schematic diagram of transformer measurement points.
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{B1 � M cos(ωt + ψ1)
B3 � N cos(ωt + ψ3) (17)

M,N indicate the amplitude of the magnetic field leakage, and ξ �
ψ1 − ψ3 is defined as the phase angle difference between points 1,

3 measuring points. Solve the equation, we obtain the length of the

long- and short-axis a、b of the Lissajous figure, as follows Eq. 18:

a2orb2 �
(M2 +N2) ∓

                       (M2 +N2)2 − 4M2N2sin 2 ξ
√

2

(18)

According to the elliptic area formula, the area of the

Lissajous figure is calculated using S � πab.

The coordinates are rotated to calculate the swing angle of the

Lissajous figure as follows Eq. 19:

θQ � 1
2
arctan

2MN cos ξ
N2 −M2

, N ≠ M (19)

It is evident from the above formulas that the long-short axis,

area, and swing angle of the leakage magnetic field Lissajous

figure are functions of the amplitude and phase difference of

measuring points 1, 3, and the fault information of the leakage

magnetic field represented by it is more abundant, which is

conducive to improving the accuracy of classification.

Assuming that u、v is divided into m points of

ui、vi(i � 1, 2, . . . , m) following sampling, then the center

coordinate of the least square circle is (u0 � 2
m∑m

i
ui;

v0 � 2
m∑m

i
vi). The radius of the least square circle of Lissajous

figure is r0 � 1
m∑m

i�1
        
(u2i + v2i )

√
, and the distance between the first

point and the least square center is as follows Eq. 20:

ri �
                  
(ui − u0)2 + (vi − v0)2

√
(20)

The circularity of the Lissajous graph is e � max(ri) −min(ri).
The change in the least square radius of the Lissajous figure

reflects the change in the amplitude of the leakage magnetic field

waveform, and the change in the roundness reflects the change in

the phase difference of the leakage magnetic field waveform. It

can also be used as a characteristic quantity of the magnetic field

leakage for transformer fault diagnosis.

3.3 Transformer early fault diagnosis
process

First, the CNN classification model was constructed by

offline learning the fault leakage magnetic field characteristics

of the simulation transformer model. Second, the actual

transformer fault is diagnosed by online measurement and

extraction of the magnetic field leakage characteristics of the

actual transformer. The early fault diagnosis process of the

transformer is as follows.

3.3.1 Simulation model construction and actual
transformer experimental platform construction
1) Measured actual transformer structure data and electrical

parameters on the nameplate to establish a 1: 1 actual

transformer simulation model.

FIGURE 3
System operation flowchart.

FIGURE 4
Transformer leakage magnetic field measurement.
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2) Develop the actual transformer fault simulation and magnetic

field leakage measurement platform.

3.3.2 Data generation
1) An actual transformer simulation model was used to simulate

the possible faults in the transformer under different load

conditions. The current on the primary and secondary

windings of the transformer and the waveform data of the

leakage magnetic field at each measuring point were recorded.

The measured current data are normalized by the formula in

Section 3.1, and the characteristic quantity of the magnetic

field leakage is calculated. The gray image formed by the

characteristic quantity of the magnetic field leakage is

considered as the sample data xs, and the label ys is added
according to the fault type to generate the training sampleDS.

Part of the data was randomly divided into training dataset

Dtrain, and another part of the data was randomly divided into

validation dataset Dvalid.

2) Normal operation, inter-turn short circuit, and winding

deformation experiments of the actual transformer

experimental platform were performed, and the data were

recorded. The measured data from the actual transformer are

used to constitute the test sample. DT.

3.3.3 Network structure and acceleration
algorithm

Because the input image is small, to fully extract its feature

information, the kernel functions of the convolution and

pooling layers in the CNN are both large. The momentum-

updating stochastic gradient descent (SGD) acceleration

algorithm was used to improve the network training speed.

Offline model training was terminated when the error was less

than the set value. The online detection model inherits the

convolution layer parameters completed by offline training,

and its full connection layer parameters are randomly

initialized.

3.3.4 Parameter update and stop
1) The loss function of the offline CNN model is calculated

according to the actual label data and label output

predicted by the classifier and stops after the error

reaches the set value.

2) The online model uses direct transfer learning. After

calculating the transfer loss and classification loss by MK-

LMMD regularization, the full connection layer parameters in

the CNN model were retrained until the set number of

training was reached.

FIGURE 5
Transformer leakage magnetic field measurement device and installation schematic. (A) Schematic diagram of fiber optic leakage magnetic
field sensor. (B) Optical signal transmitter and receiver Instrument. (C) Leakage magnetic field measurement sensor installation. (D) Field
measurement device for leakage magnetic field.
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FIGURE 6
Measured waveform of transformer leakagemagnetic field. (A)Measured waveform of normal Operation leakagemagnetic field. (B) Simulation
waveform of normal operation leakage magnetic field. (C)Measurement Waveform of Interturn Short Circuit leakage magnetic field. (D) Simulation
waveform of interturn short circuit leakagemagnetic field. (E) TheMeasured waveform of winding deformation leakagemagnetic field. (F) Simulation
waveform of winding deformation leakage magnetic field.
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3) Online model parameter updating refers to online model

updating by re-labelling the monitored fault data following

manual verification after each running period of online detection.

The overall flowchart of the transformer early fault diagnosis

model based on CNN transfer learning is illustrated in Figure 3.

4 Example analysis

4.1 The establishment of simulation model
and actual transformer experimental
platform

4.1.1 Transformer simulation model
The ANSYS MAXWELL software used in this study

simulated an actual transformer. In the actual

measurement, the sensor only measure the axial and radial

leakage magnetic field waveforms in the transformer section.

To reduce the generation time of the simulation data, only the

two-dimensional (2D) section model of the ring core

transformer is established. The solution area of the model

was set according to the actual box size, and the primary and

secondary windings were connected using a star connection.

The 2D model of the transformer was set up, as shown in

Supplementary Appendix B2, and the grid value was set

according to the empirical value.

4.1.2 The construction of the actual transformer
early fault experimental platform

A wiring diagram of the actual experimental platform system is

shown in the Figure 4. Infinite power E � 380V, with no internal

resistance, passes through the high-voltage bus via the boost

transformer. The test transformer was a three-phase, three-

winding transformer. Primary and secondary windings with a

Y-shaped connection were used for the experiment. Secondary

windings with angular connections were unloaded. The structural

and electrical parameters of the transformer are listed in

Supplementary Appendix A2. The rated load parameter is

ZL � 159.98 + j1.35Ω. The load adjustment ranges were

ZLmin � 107.89 + j0.858Ω, ZLmax � 212.08 + j2.02.Ω.

4.1.3 Transformer leakage magnetic field
measurement platform

Wedeveloped a fiber optic leakagemagnetic field sensor based on

a magneto-optical crystal to collect the actual transformer magnetic

field leakage waveform according to the Faraday magneto-optical

effect. A sensor probe was installed on the transformer winding. The

laser emitter emitted a light signal through the optical signal polarizer

and Faraday rotator, and the other end detected the deflection angle of

the optical signal through the optical signal receiver and converted it to

leakage magnetic field intensity. A leakage magnetic field

measurement platform was built on an actual transformer

experimental platform, as displayed in Figure 5.

4.2 Generation and processing of leakage
magnetic field experimental data

4.2.1 Training sample generation
During the normal operation of the transformer, several

groups of normal operation state data of the transformer were

generated according to the different load values, and several

groups of data were generated by changing the number of turns,

the position, and the load of the primary and secondary side

winding short circuits, respectively. The minimum number of

short-circuit turns is two, and the maximum is 40 turns. In the

simulation of the winding axial deformation fault, the axial

deformation degree of the upper or double ends of the

primary and secondary side windings were changed, the axial

FIGURE 7
Lissajous figure before and after load normalization. (A) Before normalization. (B) After normalization.
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compression ratio ranged from 1% to 40%, and several groups of

data were generated by changing the load. In the fault simulation

of the radial deformation of the winding, the proportion of the

radial deformation of the primary- and secondary-side windings

changes from 3% to 25%. Different training data were generated

according to different radial deformation ratios, the position of

the radial deformation line cake, and the load. Each state type of

the simulation model generated 125 groups of sample data and a

total of 1,125 groups of training sample data.

4.2.2 Test sample generation
The test samples were generated by the actual transformer,

and several groups of data for normal operation under

different loads were generated by the actual transformer. In

the inter-turn short-circuit test of the primary and secondary

windings, the minimum is 6 turns and the maximum is

24 turns, and several groups of data were obtained under

different loads. Winding deformation test on transformer to

change the degree of axial and radial deformation of the

primary and secondary windings to form training samples.

Each state type generated 20 groups of sample data with

180 groups of test-data waveforms.

4.2.3 Comparison between simulation model
and actual transformer normal operation and
inter-turn short circuit

A sampling frequency of 1 kHz was used for all samples in

this study. Except for the actual measured waveforms, the data

were filtered. A comparison of the measured and simulated

waveforms of the transformer leakage field is shown in Figure 6.

It can be observed from Figure 6, the amplitude and phase

angle of the leakage field at our selected measurement points

change to different degrees when the transformer is in normal

condition and a fault occurs. We use the Lissajous curve

proposed in Section 3.2 to extract the changes in the

characteristic quantities at the time of the fault as input to the

CNN and use artificial intelligence techniques to analyze the

differences for transformer winding fault classification.

Meanwhile, there is still a gap between the simulation

waveform and the actual waveform difference. DSAN realizes

domain adaptation by aligning its distribution difference and

FIGURE 8
Effect of different number of simulation sample data and load
normalized on detection accuracy.

TABLE 1 Effect of different characteristic quantity on detection
accuracy.

Number of features Rm/% F1/% Ac/%

0 92.19 91.79 92.22

1 93.24 88.12 90.00

2 91.59 91.15 91.11

3 92.60 92.59 92.78

4 94.37 94.30 94.44

5 96.84 96.59 96.67

6 98.94 98.87 98.89

TABLE 2 Effect of different regularizer layers on accuracy.

Add MK-MMD regularizer layers Rm/% F1/% Ac/%

CNN only 89.78 84.93 85.56

A layer of MK-LMMD regularizer 94.92 94.91 95.00

Two layer MK-LMMD regularizer 96.28 96.03 96.11

Three layer MK-LMMD regularizer 98.94 98.87 98.89

FIGURE 9
Transfer learning training correct rate curve.
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achieves the ability to diagnose actual transformer faults using

simulation data.

4.2.4 Lissajous figure comparison before and
after load normalization

The measured radial leakage magnetic fields at 1, 3 are

plotted as Lissajous figures under the rated load, respectively,

as shown in Figure 7A. It is evident that the Lissajous figures

change with the change in load, which adversely affects the

classification accuracy. Figure 7B illustrates the Lissajous

figures of measuring points 1, 3 after load normalization. It is

evident that after load normalization, the change of Lissajous

figure caused by the change of transformer load is eliminated,

and the characteristic quantity of leakage magnetic field is not

affected by the load.

4.2.5 Lissajous figure feature extraction and gray
image generation

The characteristic quantity of the Lissajous figure formed by

the leakage magnetic field was extracted, and the data were

transformed into gray image data of 6 × 6. The gray image

formed by the characteristic quantity of the transformer winding

is shown in Supplementary Appendix B3, B4.

4.3 Example analysis

The transfer neural network prepared in this study is based

on Python 3.6 version and Pytorch version 1.2.0. CPU training

was then performed. The CPU of the computer was an AMD

Ryzen 7 4800 H, and the main frequency was 2.90 GHz. A batch

FIGURE 10
Comparison of T-SNE scatter plots under different training models. (A) CNN T-SNE dimension. (B) A layer of MK-LMMD regularizer T-SNE
dimension. (C) Tow layer of MK-LMMD regularizer T-SNE dimension. (D) Three layer of MK-LMMD regularizer T-SNE dimension.
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of 10 sets of data, initial learning rate 0.4, training 100 Epohs,

MK-LMMD regularizer penalty factor initial value λ � 1. The

transformer states in this paper are divided into normal

operation, winding deformation and inter-turn short circuit.

The inter-turn short circuit is subdivided into primary

winding inter-turn short circuit and secondary winding inter-

turn short circuit. The winding deformation is subdivided into

nine states, namely, the axial deformation at the upper end of

primary and secondary side winding, the axial deformation at the

two ends of primary and secondary side winding, and the radial

deformation of primary and secondary side winding. The

operation state of the transformer is coded as shown in

Supplementary Appendix A3.

4.3.1 Load normalization and simulation sample
number experiments

To test the influence of load balances and the number of

simulation samples participating in training on transformer fault

diagnosis, we also generated gray images for training and testing

the data without load normalization. Simultaneously, to detect

the influence of the number of simulation samples on the

detection effect, different numbers of simulation samples were

selected for offline training. To ensure that the data of the offline

training test set were unchanged, a certain number of simulation

samples were randomly selected as the training set, and samples

without and after load normalization were tested. The accuracy

results are presented in Figure 8.

It is evident from the above diagram that load

normalization has a significant impact on overall accuracy.

Load normalization can significantly improve the transformer

detection accuracy. Compared with the unnormalized load

data, the highest accuracy increased by 28.33%.

Simultaneously, the number of training sets also affects the

detection accuracy. Increasing the number of simulation

samples did not always improve the accuracy of the test.

When the number of simulation samples is too large,

the model focuses on the detection of simulation samples,

which reduces the accuracy of the actual transformer

FIGURE 11
DSAN error curve of self-attentive mechanism.

TABLE 3 Identification accuracy of different transfer methods in case
of transformer faults.

Transfer method Rm/% F1/% Ac/%

DAN 91.34 91.06 91.11

Deep-CORAL 95.62 95.55 95.56

GAN 96.21 96.12 96.11

DSAN 96.84 96.66 96.67

Model in this paper 98.94 98.87 98.89
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FIGURE 12
Comparison of diagnostic results of four different transfer models. (A) DAN transfer learning model diagnosis result graph. (B) CORAL transfer
learning model diagnosis result graph. (C) GAN transfer learning model diagnosis result graph. (D) DSAN transfer learning model diagnosis result
graph. (E) Diagram of the diagnostic results of the model in this paper.
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detection. When the number of simulation samples was 80 in

each state, the accuracy was the highest, and the accuracy did

not increase again when the number of training samples

increased.

4.3.2 Experiment on the quantity of
characteristic quantities of magnetic field
leakages

To test the influence of the leakage magnetic field

characteristics on the accuracy of the transformer fault

diagnosis, different quantities of characteristics were selected

for training and testing, and the accuracy of classification was

compared. For the experimental group without feature

parameters, we directly used the amplitude and phase angle

data of the six measuring points to load balance and convert

them into gray images for testing. Recall rate Rm, stability

comprehensive index F1, and accuracy Ac were used as

evaluation indexes. Table 1 presents the results.

It can be observed from Table 1 that the method of using the

characteristic quantity has a positive effect on enhancing the

accuracy of transformer diagnosis. Compared with the method of

using only the amplitude and phase angle of the leakage magnetic

field to diagnose faults, the accuracy of this method was

improved by 6.67%.

4.3.3 MK-LMMD regularizer layer experiment
The data of the 80 simulation groups for each fault state

were used as training samples, and the measured waveform

was used as the test sample. To test the effect of adding

different numbers of MK-LMMD regularizers on the test

results, the training results of adding MK-LMMD

regularizers in the last layer, last two layers, and three

layers of the full connection layer were tested and

compared with the results of the CNN classification

model without transfer learning. The results are as follows.

Table 2 presents that the accuracy curve of the classification

model with different numbers of MK-LMMD regularizer

layers increases with the number of iterations, as shown in

Figure 9.

Table 2 indicates that the difference between the simulation

data and the actual transformer data cannot be overcome when

the non-transfer CNN fault classification model is directly used

for actual transformer detection, resulting in unsatisfactory

accuracy of the actual transformer fault classification. As

shown in Figure 9, the classification model with three-layer

MK-LMMD regularization has the highest accuracy and

fastest convergence rate, which is 13.33% higher than that

with only CNN.

The transformer fault features extracted from the model with

MK-LMMD regularizers of different layers were reduced to 2D

visualization by T-SNE, as shown in Figure 10.

In high-dimensional spatial data, the points with closer

distances remain close when they are projected to 2D by

T-SNE dimension reduction. The farther the distance of

each cluster, the greater the difference and the better the

classification effect. The results in Figure 10 reveal that the

transfer learning model using three-layer MK-LMMD

regularization has a better discrimination for different fault

types of the actual transformer, indicating that increasing the

adaptability of the high-order feature layer can effectively

improve the transfer effect.

4.3.4 Self-attention mechanism deep
subdomain adaptive network experiment

To verify the effect of the DSAN network with the self-

attention mechanism, the data from 80 simulation groups for

each fault state were used as training samples, and the

measured waveform was used as the test sample. The error

iteration curve obtained using training is illustrated in

Figure 11.

Figure 11 shows that in the training process without

giving training samples self-attention weights, some

samples deviate too much from the test sample, resulting

in large transfer error of MK-LMMD regularization,

resulting in oscillation of error curve. The self-attention

DSAN proposed in this paper can speed up the network

training speed, reduce the error level, has good stability and

reduce the training loss.

4.4 Comparative experiments with other
transfer networks

To compare the proposed method with other transfer

neural networks, the existing DAN transfer learning (Long

and Wang, 2015), CORAL transfer learning (Sun and Saenko,

2016), GAN transfer learning (Hu et al., 2021), and traditional

DSAN models are used for comparison (Zhu et al., 2021). In

the experiments, the data of 80 simulation groups for each

fault state were used as the simulation samples. The test results

for the 20 groups of experimental samples in each group are

listed in Table 3. The classification of the test samples is

depicted in Figure 12. In Figure 12, the black solid line

represents the true value of the fault type and the red circle

represents the diagnostic value of the model for the fault.

When the red circle coincides with the black line, it indicates

that the diagnosis is correct; otherwise, the diagnosis is

incorrect.

Figure 12 illustrates that the method used in this study has

the best classification effect. In addition to the misjudgment of

the upper end winding deformation of the secondary side, the

classification effect of the fault is superior. Compared with the

other three transfer models, the MK-LMMD regularization and

self-attention mechanism used in the proposed transfer model

effectively reduced the distribution distance between the

simulated transformer data and the actual transformer data,
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and realized the transfer from the simulated transformer to the

actual transformer with high accuracy.

5 Conclusion

This paper eliminates the effect of transformer load variations

on leakage field measurements by negative normalization and

improves the utilization rate of the leakage magnetic field

information. Meanwhile, transfer learning to reduce the

difference between the simulation model and the actual

transformer data and realizes the fault classification model

trained by the simulation data to early diagnosis of actual

transformer faults. The influence of load change in transformer

leakage magnetic field detection is eliminated, and the characteristic

quantity of the leakage magnetic field is extracted to diagnose

transformer faults, which improves the utilization rate of the

leakage magnetic field information. The accuracy of the method

proposed in this paper reaches 98.89%, which is suitable for

detecting and diagnosing the internal faults of transformer

windings promptly via real-time acquisition of transformer faults

and provides a reference for reasonable periodic shutdown

maintenance of transformers. However, only one structure of

transformer transfer learning ability is studied in this paper, for

other structures of transformer simulation and transfer learning

between actual transformers and mutual transfer between the

different structure of transformers is our next research direction.
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