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The increasing scale of the injection of renewable energy has brought about

great uncertainty to the operation of power grid. In this situation, probabilistic

power flow (PPF) calculation has been introduced tomitigate the low accuracy

of traditional deterministic power flow calculation in describing the operation

status and power flow distribution of power systems. Polynomial chaotic

expansion (PCE) method has become popular in PPF analysis due to its

high efficiency and accuracy, and sparse PCE has increased its capability of

tackling the issue of dimension disaster. In this paper, we propose a principal

component analysis-based compressive sensing (PCA-CS) algorithm solve the

PPF problem. The l1-optimization of CS is used to tackle the dimension disaster

of sparse PCE, and PCA is included to further increase the sparsity of expansion

coefficient matrix. Theoretical and numerical simulation results show that the

proposed method can effectively improve the efficiency of PPF calculation in

the case of random inputs with higher dimensions.

KEYWORDS

probabilistic power flow, principal component analysis, compressive sensing, renewable energy,

polynomial chaos expansion

1 Introduction

In face of the global energy crisis and environmental pollution issues, countries are
vigorously promoting the development and utilization of clean and renewable energy.
However, the power of renewable energy generation devices, such as photovoltaics
(PV) and wind turbines (WT), is usually affected by many uncertain factors, showing
strong randomness and intermittence (Hua et al., 2021).With the increasing scale of PVs
and WTs connected to the power grid, the uncertainty encountered by power systems
will also increase Hua et al. (2022b). As a result, the deterministic power flow analysis
methods used to determine the operation status of interconnected power networks will
no longer be applicable, and probabilistic power flow (PPF) emerge as the times require
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(Dalton et al., 2021). By effectively considering various uncertain
factors of the energy system, PPF calculation is of great
significance to help with system fault diagnosis, maintain system
stability, and ensure system safety.

The essence of PPF is to obtain the statistical characteristics
satisfied by the state variables of a power system by solving
stochastic equations with random variables input. At present,
mature methods of solving PPF equations mainly include
simulation method, analytical method, approximation method,
and polynomial chaotic expansion (PCE)method. Seeing the fact
that analyticalmethod and approximationmethodhave difficulty
in ensuring the calculation accuracy when the fluctuation of
random inputs is large (Liang et al., 2021), we only provide
details of simulation method and PCE method here:

• Simulation method stands for Monte Carlo (MC) method,
as well as its improved versions (Constante-Flores
and Illindala, 2019). It works as follows. First, a fairly
large sample of input variables is obtained. Then, the
corresponding solution is calculated based on the sample.
Finally, subsequent statistical analysis on the solution is
performed. Although this method has simple principle and
convenient operation, it has low computational efficiency
due to large amount of sampling, slow convergence speed
and low computational efficiency (Liang et al., 2022).
• Recently, PCEmethod has been extensively adopted to solve
PPF due to its great importance in uncertain quantization
theory (Shen et al., 2020). Its first step is to expand random
variables under a set of standard orthogonal basis made
up by random polynomial functions. It then obtain the
expansion coefficients and random variables by solving
equations. The efficiency and accuracy of PCE method are
relatively higher compared to other methods, but it needs
to solve large-scale equations. Therefore, it is affected by
the dimension disaster and is not satisfactory when solving
problems with higher dimensions.

Sparse PCE is a commonmethod to overcome the dimension
disaster of traditional PCE method by reducing the number
of bases in the polynomial expansion. In the calculation of
probabilistic load flow, (Ma et al., 2021), proposes a sparse PCE
method that reduces the number of basis functions of polynomial
expansion by only preserving significant polynomial bases. To
reduce the computational complexity of wideband configuration
for periodic-grating wideband filters applied in optical devices
under uncertain conditions, Papadopoulos et al. (2019) develops
a sparse PCEmethod based on orthogonalmatching pursuit.The
principle of the proposed method is derived from compressive
sensing (CS), which is very popular in the field of signal
and image processing (Blanco-Solano et al., 2021). When the
PCE coefficients are sparse, combined with the principle of
compressive sensing, the expression of random state variables

by constructing the information matrix can be accurately
reconstructed with the number of samples far lower than that of
MCmethod. A similar idea is adopted in (Sun et al., 2019) when
analyzing system sensitivity by solving PPF equations. Although
PCE method is formally applied, PCE coefficients are solved
by sampling to avoid solving large complicated equations, thus
mitigating the issue of dimension disaster. At the same time, this
method significantly reduces the sample size and enhances the
operation efficiency compared with the traditional MC method.

Principal component analysis (PCA) method is widely used
in the field of data dimensionality reduction by extracting
the main features of data. By retaining only the principal
components that contain most of the variance of the original
data, PCA preserves the important information in the original
data and reduces the components of redundancy or noise
(Jaramillo et al., 2020). There have been some existing works
that use PCA in PPF analysis. To deal with the limitation
of PPF calculation using traditional point estimation method,
Li et al. (2020) uses PCA to reduce the correlation of original
input random variables and improve the efficiency of the
point estimate method. Considering the uncertainty in users’
consumption behavior, the PPF analysis in (Memon et al., 2020)
combines PCA method and PCE method to compress the
number of output variables in the surrogate models of the least-
squares support vector machine. In addition, the PPF calculation
in (Le et al., 2021) also uses PCA to reduce the dimensionality of
the dataset before it is partitioned into clusters by particle swarm
optimization.

This paper extends the work of our previous conference
paper (Liang et al., 2021). In a power grid with loads, PVs, and
WTs that causes power flow fluctuation, this paper proposes a
PPF calculation algorithm called Principal ComponentAnalysis-
based Compressive Sensing (PCA-CS). First, PCA-CS integrates
the PCA theory in the decomposition of the covariancematrix of
random state variables, and obtains a set of standard orthogonal
bases composed of eigenvectors. Then, it transforms the PCE
coefficients of random state variables to obtain a sparser
expansion coefficient matrix. Moreover, we test our PCA-CS
method on IEEE 118-bus system to show that PCA-CS has
significantly improved the solution accuracy and computational
efficiency compared with the original CS method and the
traditional MC method. Compared with existing works, this
paper adopt the idea of CS that reduces the number of
expansion basis functions via l1-optimization to overcome the
dimensionality issue of PCE method. In addition, this paper
theoretically proves that the expansion coefficient matrix is
sparser after performing PCA-CS. According to the error theory
of compressive sensing (Candes and Wakin, 2008), the sparser
the expansion coefficient matrix is, the fewer samples are
required to restore to the same accuracy. Therefore, our PCA-
CS method can largely enhance the efficiency of PPF calculation
while preserving the accuracy.
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The remainder of this paper is arranged as follows: Section 2
explains in detail the PPFmodel of the power grid systemwe look
into; Section 3 first introduces the traditional CS algorithm and
then proposes the improved version, PCA-CS, with a detailed
algorithm workflow; Section 4 provides numerical results and
correlation analysis by simulation; Finally, Section 5 summarizes
this paper and describes our future work plans.

2 Model of probabilistic power flow

In this paper, we consider a power grid systems containing
load nodes, PVnodes, andWTnodes, which are themain origins
of the fluctuation in the power flow. This section describes the
probabilistic models of loads, PVs, WTs, and the corresponding
PPF equations.

2.1 Load power fluctuation model

Due to many unpredictable factors such as geographical
environment, time, and user behavior, the power fluctuation of
load nodes could bring randomness to the power grid. This
randomness is usually described by normal distribution, and its
probability density function is as follows (Liu et al., 2017):

{{{{{{{
{{{{{{{
{

f (PL) =
1
√2πσPL

exp
{
{
{
−
(PL − μPL)

2

2σ2PL

}
}
}
,

f (QL) =
1
√2πσQL

exp
{
{
{
−
(QL − μQL

)2

2σ2QL

}
}
}
,

(1)

where:

• PL is the load active power,
• μPL is the expectation of PL,
• σPL is the stadard deviation of PL,
• QL is the load reactive power,
• μQL

is the expectation of QL,
• σQL

is the standard deviation of QL.

2.2 Photovoltaic power fluctuation
model

PV power mainly depends on the intensity of solar
irradiation, and its distribution roughly follows the beta
distribution. Therefore, we use the beta distribution to describe
the fluctuation of PV power, and the corresponding probability
density function is (Rawat and Vadhera, 2018):

f(rPV) =
Γ (α+ β)
Γ (α)Γ (β)

rα−1PV (1− rPV)
β−1, (2)

where:

• rPV is the ratio of PPV , the PV active output, to Pmax
PV , the

maximum active power of PV power,
• Γ(⋅) is the gamma function,
• α and β are parameters of the beta distribution.

Generally speaking, PVs are connected to the power grid by
means of constant power factor control. In other words, if we use
φPV to represent the PV phase angle, then the power factor of PV
cosφPV can be regarded as a constant.ThenQPV , the PV reactive
power, is therefore calculated by:

QPV = PPV  tanφPV. (3)

2.3 Wind turbine power fluctuation
model

Similar to PV power, the randomness of WT power is
mainly affected by wind speed, which is usually described by 2-
parameter Weibull distribution. The corresponding probability
density function is as follows (Gugliani et al., 2021):

f (v) = k
c
(v
c
)
k−1
exp{−(v

c
)}, (4)

where:

• v is the wind speed,
• k is the shape parameter of Weibull distribution,
• c is the scale parameter of Weibull distribution.

According to the technical principle of WT power
generation, when the wind speed is less than a certain value
or greater than a certain threshold, the WT power generation
is zero. Therefore, the WT can work normally only within a
reasonable wind speed range. Specifically, the active power
and wind speed of wind power generation meet the following
piecewise function relationship:

PWT (v) =

{{{{{{
{{{{{{
{

0 v < vci
Pr (v− vci)
vr − vci

vci ≤ v ≤ vr

Pr vr ≤ v ≤ vco
0 v ≥ vco

(5)

where

• PWT(v) is the active power when the wind speed is v,
• Pr is the rated power of the WT,
• vci is the cut-in wind speed,
• vr is the rated wind speed,
• vco is the cut-out wind speed.
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By substituting (5) into (4), the probability distribution of
PWT can be obtained by:

f(PWT) =

{{{{{{{
{{{{{{{
{

1− exp{−(
vci
c
)
k
}+ exp{−(

vco
c
)
k
} PWT = 0

k
k1c
(
PWT − k2

k1c
)
k−1
exp{−(

PWT − k2
k1c
)
k
} 0 ≤ PWT ≤ Pr

exp{−(
vr
c
)
k
}+ exp{−(

vco
c
)
k
} PWT = Pr

(6)

where k1 and k2 can be calculated as follows:

k1 =
Pr

vr − vci
(7)

k2 = −k1vci. (8)

Similar to PV power generation, the reactive power of WT
power generation QWT can be obtained by:

QWT = PWT  tanφWT, (9)

where φWT represents the phase angle of WT power generation.
Since WTs are also connected to the power grid by constant
power factor control, the power factor of WT power generation
cosφWT is a constant as well.

2.4 Probabilistic power flow model

Maintaining power balance at all times is fundamental for
the normal operation of the power grid, which requires the
power of each node i (= 1,2,… ,m, where m represents the
total number of grid nodes) to meet the following power flow
equation (Li et al., 2020):

{{{{
{{{{
{

Pi = Vi

m

∑
j=1

Vj (Gij  cos δij +Bij  sin δij)

Qi = Vi

m

∑
j=1

Vj (Gij  sin δij +Bij  cos δij)
(10)

where:

• i can be a load, PV, or WT node,
• Pi is the active power of node i,
• Qi is the reactive power of node i,
• Vi is the voltage amplitude of node i
• δij represents the phase difference between node i and
adjacent node j,
• Gij and Bij are parameters related to the transmission line
that connects node i and node j.

Since the injected power of system nodes includes the
randomness caused by loads, PV power generation, and WT
power generation, Pi and Qi are also regarded random variables.
Therefore, (10) is the required PPF equation. By specifying the

active and the reactive power of the node, it is possible to
obtain the statistics of the node voltage amplitude and the phase
angle, and then the corresponding line power flow is accordingly
obtained.

For the sake of convenience, (10) will be condensed as
follows:

X = F (Y) , (11)

where

• X consists of Pi and Qi for all i,
• Y contains Vi and δij for all i and j,
• F(⋅) is the function thatmapsX toY determined by (Eq. 10).

3 Principal component
analysis-based compressive sensing

The adoption of compressive sensing in PPF analysis aims to
expand the random state variables by PCE, and then compress
and restore them by using the sparsity of expansion coefficients.
The PCA-CS algorithm proposed in this paper is to obtain a
set of eigen-basis functions by decomposing the covariance of
random variables before compression reduction, so as to make
the random variables sparser under the expression of this set of
basis functions, and then compress and restore under this set
of basis functions. According to the error theory of compressive
sensing, improving the sparsity can reduce the number of sample
solutions required for restoration, and then improve the solution
efficiency.

To sum up, this section will describe the proposed algorithm
in detail from the following three parts:

1) Traditional PCE method of random variables in probability
space;

2) The covariance matrix of random variables is decomposed to
obtain the eigen-basis functions;

3) The sparse expression of random variables is obtained by
compression reduction under the expansion of eigen-basis
functions.

3.1 Traditional PCE method

Assume that the input variable Y = [y1,y2,… ,yd], the
power distribution of all nodes, is a d-dimensional variable
with all entries following independent normal distribution.
Otherwise, we can mitigate the correlation by Nataf transform
(see (Lin et al., 2020) for more details). Then, we expand (11)
with Hermite orthogonal polynomials:

X ≈ ∑
|I|≤p

sIψI (Y) , (12)

where:
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• multilevel index I = (i1, i2,…, id) ∈ ℕ
d
0 satisfies

|I| = i1 + i2 + ⋯ + id,
• p is the expansion order of polynomials,
• ψI is a multivariable orthogonal Hermite basis function
calculated by:

ψI (Y) = hi1 (y1)hi2 (y2)…hid (yd) , (13)

• hi(⋅) is a univariate Hermite functions.

Orthogonal polynomial ψI satisfies:

𝔼[ψI (Y)ψJ (Y)] = ∫ψI (Y)ψJ (Y)ρ (Y)dY = γIχIJ , (14)

where:

• χIJ is the Kronecker function (i.e., 1 at that time I = J and 0
in other cases),
• ρ(Y) is the joint probability density of Y ,
• γI is a constant.

The goal is to obtain the expansion coefficient sI in (Eq. 12),
and the number of terms in sI is:

P =
(p+ d)!
p!d!
. (15)

According to the Askey scheme, Hermite orthogonal basis
functions are efficient in approximating independent normal
random variables (Son and Du, 2021). Next, the moment and
probability distributions of random variables are calculated by
obtaining the expansion coefficients.

3.2 PCA for extracting eigen-basis
functions

At present, the existingmethods for solving the coefficients of
PCE, such as Garrerkin projection method (Wu et al., 2017) and
collocation point method (Tang et al., 2016), will face problems
such as complicated operation and dimension disaster. Because
the expansion of random variables is usually sparse, compressive
sensing algorithm can be used to restore the expansion
coefficients. By introducing PCA, PCA-CS further improves the
application of traditional compressive sensing algorithm in PPF
solution. It overcomes the dimensional problem of the PCE
method while inheriting the feature that the MC method is easy
to operate.

Inmore detail, PCAmethod is used tomap random variables
to their eigen-space, so that the expansion of random variables is
sparser in the expression of eigen-space.

First, the eigen-basis function {ϕj}
m
j=1

is obtained by solving
the following eigen-decomposition problem:

C (X,XT)ϕj = μjϕj, (16)

where:

• C(X,XT) represents the covariance matrix of random
variableX andXT (the transpose ofX) that can be calculated
as follows:

C (X,XT) = 𝔼[(X −𝔼X)(XT −𝔼XT)] ; (17)

• {μj}
m
j=1

represents the eigenvalues corresponding to the
eigenvectors {ϕj}

m
j=1

.

During calculation, the eigenvalues are arranged in
descending order by default. Because the covariance matrix
is symmetric and positive definite, the eigenvalues {μj}

m
j=1

are
nonnegative real numbers.

After obtaining the eigen-basis function {ϕj}
m
j=1

, expand the
random variable X under this set of basis functions, then:

X ≈
P

∑
i=1

siψi ≈
P

∑
i=1

m

∑
j=1

Sijψiϕj. (18)

3.3 Improved compressive sensing
algorithm

After the expansion of X is obtained, the expansion
coefficient S = (Sij)P×m of X can be restored through the sparse
restoration algorithm of CS.

3.3.1 Solution flow of traditional compressive
sensing algorithm

Since the coefficient matrix S in expansion (12) is sparse,
according to the sparse reduction theory (Marques et al., 2019),
the expansion coefficient S can be restored by sampling. The
specific process is as follows: select H random sample points
[Y (1),Y (2),…,Y (H)] of Y , and then bring them into PPF Eq. 11
respectively to obtain corresponding sample solutions u =
[X(1),X(2),…,X(H)]T, which meet the equation:

u =Ψ ̄s, (19)

where Ψ is called the measurement matrix, which is obtained
by bringing multiple Hermite orthogonal polynomials from
random sample points [Y (1),Y (2),…,Y (H)], namely:

Ψ =
[[[[

[

ψ1 (Y
(1)) ψ2 (Y

(1)) ⋯ ψP (Y
(1))

ψ1 (Y
(2)) ψ2 (Y

(2)) ⋯ ψP (Y
(2))

⋮ ⋮ ⋱ ⋮
ψ1 (Y
(H)) ψ2 (Y

(H)) ⋯ ψP (Y
(H))

]]]]

]

, (20)

and ̄s = [s1, s2,…, sP]
T.

The dimension of Ψ is H× P. When P > H, the system
of (Eq. 19) is an underdetermined system of equations, and
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the coefficients ̄s have infinite solutions. Additional constraints
need to be imposed in order to guarantee the uniqueness of ̄s.
It is usually hoped to reduce the number of expansion terms
(and therefore increase the coefficient sparsity). Therefore, the
constraint on increasing sparsity becomes:

min‖ ̄s‖0 s.t. Ψ ̄s = u, (21)

where ‖ ⋅ ‖0 refers to the l0-norm, which is calculated as the
element count in ̄s that are not zero.

Seeing the fact that the l0-norm is discontinuous,
optimization problem (21) is NP hard to solve, so it needs
to be relaxed. Among them, l1-norm represents the sum of
the absolute values of all elements in the matrix and is the
most commonly used relaxation method. Thus, problem (21)
becomes:

min‖ ̄s‖1 s.t. Ψ ̄s = u, (22)

which is also called an l1-optimization problem.
It has been shown that the solution of problem (Eq. 21)

can be accurately approximated by solving problem (Eq. 22),
and the solution of l1-optimization problem is more convenient
(Wang et al., 2020). It can be solved by the orthogonal matching
pursuit (OMP) algorithm (Papadopoulos et al., 2019).

3.3.2 PCA-CS
The proposed PCA-CS algorithm is based on the traditional

CS algorithm. Through the PCA theory, the random variables
are transformed to make their expression coefficients sparser,
and then compressed and restored. According to (18), sample
solutions u = [X(1),X(2),…,X(H)]T are written by:

u ≈ΨSΦ, (23)

where:

• Ψ is the measurement matrix in the same form as (20),
• Φ is the eigen-matrix composed of eigen-basis function,
• S is the expansion coefficient to be solved.

Furthermore, the coefficient S can be reduced through the
following l1-optimization problem:

min‖S‖1 s.t. ΨSΦ = u. (24)

The sparsity of S is given by the following theorem:
Theorem 1.The expansion coefficient S of X and eigenvalues
{μ}mj=1 satisfy the following relationship:

P

∑
i=2
|Sij|

2 ≈ μj, j = 1,2,…,m, (25)

where μj represents the jth eigenvalue of the eigen-decomposition
problem.

Proof of Theorem 1.Hermite polynomial ψi satisfies

𝔼(ψi) = {
1 i = 1
0 i ≠ 1

(26)

so

𝔼X ≈ 𝔼[
P

∑
i=1

m

∑
j=1

Sijψiϕj] =
m

∑
j=1

S1jϕj. (27)

Combining (27) and (17), we can get:

C (X,XT) = 𝔼[(X −𝔼X)(XT −𝔼XT)]

= (
P

∑
i=2

m

∑
j=1

Sijψiϕj)(
P

∑
i=2

m

∑
j′=1

Sij′ψiϕj′)

≈
P

∑
i=2
(

m

∑
j=1

Sijϕj)(
m

∑
j′=1

Sij′ϕj′) (28)

By introducing (28) into eigen-decomposition Eq. 16:

μjϕj ≈
P

∑
i=2
(

m

∑
j=1

Sijϕj)(
m

∑
j′=1

Sij′ϕj′)ϕj =
P

∑
i=2
|Sij|2ϕj. (29)

Then the theorem is proved.
Theorem 1 shows that the value of each column of

the expanded coefficient matrix of random variables can
be roughly controlled by the corresponding eigenvalue.
In addition, in practical application, the eigenvalues in
descending order decline very fast. Therefore, when the
eigenvalues tend to 0, the component element values of the
corresponding columns of the coefficient matrix tend to 0. In
other words, the faster the eigenvalue decreases, the sparser
the coefficient matrix is represented by this set of eigen-basis
functions. This will also be proved in the following numerical
examples.

To sum up, the whole PPF solution process is as follows:

1. Perform the PCE on input variable X according to (12);
2. Randomly select H sample points [Y (1),…,Y (H)] based on

normal distribution and obtain corresponding solutions u =
[X(1),…,X(H)]T according to the Newton-Raphson method
described in (Liu et al., 2020);

3. Solve the eigen-decomposition problem (Eq. 16) and obtain
eigen-basis functions {ϕj}

m
j=1

;
4. Under the expression of eigen-basis functions, construct the

compression reduction problem (Eq. 22);
5. Obtain the coefficient matrix S by OMP algorithm;
6. Bring the coefficient S back to the expansion (18) to

obtain the statistics of Y , the state variable, and then
analyze it.

4 Numerical analysis

In this section, the PCA-CS algorithm for PPF proposed
in Section 3 is verified on IEEE 118 node. We use MATLAB
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TABLE 1 Parameters of random loads.

Load μPL
(MW) μQL

(MW) σPL
(MW) σQL

(MW)

1 3.2 2.3 0.16 0.115
2 4.4 4.2 0.22 0.210
3 7.5 6.5 0.375 0.325
4 2.8 1.6 0.140 0.080
5 8.3 4.4 0.415 0.220
6 4.7 1.8 0.235 0.090
7 5.8 2.7 0.290 0.135
8 6.3 5.2 0.315 0.260

TABLE 2 Parameters of WTs.

WT Pr (MW) vci vr vco c k cosφWT

1 13 3 20 10 8 3 0.9
2 20 3 16 11 8 3 0.9
3 25 2.4 19 12.4 8 3 0.9
4 15 3.5 23 13.6 8 3 0.9
5 10 2 15 11.9 8 3 0.9
6 16 4 22 10.7 8 3 0.9

TABLE 3 Parameters of PVs.

PV Pmax
PV (MW) α β cosφPV

1 50 0.9 0.8 0.95
2 60 0.8 0.85 0.95
3 55 0.85 0.75 0.95
4 70 0.7 0.9 0.95
5 45 0.8 0.8 0.95
6 80 0.75 0.9 0.95

r2020 as the develop tool of our program, and we perform PPF
calculation on a laptop with Intel i7-8586u CPU with the help of
Matpower package.

4.1 Simulation settings

In this example, on the basic grid of IEEE 118 node, WTs are
connected at nodes 6, 15, 42, 60, 92, 115 respectively, PVs are
connected at nodes 2, 7, 27, 41, 58, 98, and nodes 3, 11, 23, 50,
57, 75, 84, 88, 93, 102 are selected as load nodes. The parameter
settings of loads,WTs, and PVs are listed inTable 1,Table 2, and
Table 3 respectively.

4.2 Simulation results

In order to verify the effectiveness of PCA-CS algorithm in
solving PPF equation, this section makes numerical analysis of
PCA-CS from the aspects of algorithm accuracy and calculation

TABLE 4 Relative errors of three methods with 30 sample points.

Method VĒ Vσ̄ δĒ δσ̄

PCA-CS 7.23× 10–8 5.29× 10–9 2.95× 10–4 2.61× 10–3

CS 8.45× 10–7 3.93× 10–9 1.13× 10–4 2.08× 10–3

MC 6.42× 10–3 5.27× 10–4 1.76× 10–2 9.34× 10–2

efficiency, and compares it with MC method and traditional
CS method. We use the results of traditional MC method
with a sampling scale of 100,000 times as the error reference
standard.

4.2.1 Algorithm accuracy
In order to evaluate the accuracy of PCA-CS, we need to

select performance indicators to measure the accuracy first.
Table 4 shows the relative error values of the mean (with
subscription Ē) and standard deviation (with subscription σ̄) of
V and δ obtained by PCA-CS, CS, and MC under 30 sample
points. We can see from the data in Table 4 that when the
number of samples is relatively small, the output state variables
of PPF obtained by PCA-CS and traditional CS algorithm
have higher accuracy, while the accuracy of MC method is
lower. This is because MC method is half-order convergent
and requires a large number of sample solutions to achieve
the corresponding accuracy, which is also the defect of MC
algorithm.

Specifically, three representative random nodes 50, 58, and
60 are selected here to visualize the probability distribution
of output state variables of random load, PV, and WT node
respectively. Figure 1 shows the probability density functions
of V and δ of nodes 50, 58, and 60 obtained by PCA-
CS algorithm and CS algorithm, and compares them with
the standard reference obtained by MC method with 100,000
sample solutions. It can be seen from the figure that the
distribution functions calculated by PCA-CS and CS algorithm
basically coincide with each other and are consistent with the
standard reference solution, which further shows the accuracy
of PCA-CS.

From the numerical analysis of accuracy, we can see that
although PCA-CS performs a basis function transformation
through principal component extraction based on the traditional
CS method, it does not affect the accuracy of the results. This
is because PCA-CS algorithm only obtains a set of orthogonal
eigen-basis functions through the eigen-decomposition of PCA,
but does not abandon the basis functions corresponding to small
eigenvalues when expanding random variables, thus ensuring
the accuracy of transformation to the greatest extent. On the
contrary, after the transformation, the sparsity of the expansion
is improved. According to the error theory of compressive
sensing (Candes and Wakin, 2008), the sparsity is improved and
the number of sample solutions required to achieve the same
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FIGURE 1
Probability density function (PDF) of node voltage amplitude V and phase angle δ.

accuracy is reduced.Therefore, compared with the traditional CS
method, PCA-CS can further improve the operation efficiency
under the same accuracy.

4.2.2 Computational efficiency
After verifying the accuracy, we further explains the

advantages of PCA-CS algorithm in computational efficiency
through experimental data. First, we introduce the concept of
sparse ratio λ that can be calculated as follows:

λ =
# {|S| ≥ τ}
P× 118

(30)

where:

• #{|S| ≥ τ} is the element counts in matrix S whose elements
are greater than or equal to the threshold τ,
• P represents the dimension equal to the random basis
function.

In other words, sparse ratio λ indicates the proportion of the
coefficients in S that are greater than or equal to a reference value
τ. The highest order of the truncated basis here is p = 2, and the
dimension of the random variable d = 40. The number of basis
is therefore calculated by:

P =
(p+ d)!
p!d!
=
(40+ 2)!
40!2!
= 881.

The dimension of the expansion coefficient S is 881× 118-
dimensional. The smaller the sparse ratio λ is, the sparser the
sparse matrix is.

Figure 2 and Figure 3 respectively show the visual display of
the sparsity of PCE coefficients ofV and δ of 118 nodes calculated
by PCA-CS and traditional CS algorithm and the value of total
sparsity ratio.

From Figure 2 and Figure 3, we can see the sparsity of V
and δ of each node under the Hermite orthogonal expansion.
The average sparsity of the two methods is less than 1%,
which shows the applicability of compressed sensing idea. By
comparison, after the introduction of principal component
analysis, the sparsity of the expansion coefficient of voltage
amplitude V decreases from 3.14% to 2.41%, the sparsity
increases by 23.2%, the sparsity of phase angle δ decreases
from 9.34% to 5.58%, and the sparsity increases by 40.3%. It
is proved that the sparsity of the results of PCA-CS algorithm
is significantly improved compared with CS algorithm, and the
results accord with the analysis of Theorem 1. Therefore, PCA-
CS algorithm can achieve the same calculation accuracy as CS
algorithm through a smaller number of sample solutions. The
error convergence comparison and calculation time comparison
data of the two methods are given in Figure 4 and Table 5
respectively.

According to Figure 4, the errors of both PCA-CS and CS
fall as the number of sample points increases at the beginning,
and then the errors are basically unchanged after the sample scale
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FIGURE 2
Sparsity of coefficient matrix of CS method.

FIGURE 3
Sparsity of coefficient matrix of PCA-CS method.
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FIGURE 4
Error estimation of PCA-CS and CS.

TABLE 5 Comparison of computational efficiency of PCA-CS, CS, andMCmethods.

Method VĒ Sample number Computation time (s)

PCA-CS 7.85× 10–7 15 10.43
CS 7.93× 10–7 40 20.69
MC 8.42× 10–7 10000 4328.47

reaches a certain level. However, at the same sample level, the
error of PCA-CS algorithm is lower than that of CS algorithm.
According to the data in Table 5, to reach the same accuracy
level, the running time of PCA-CS is roughly 10 s less than CS,
and the time consumption of the two methods is much less
than that of MC. Like MC, the PCA-CS uses sample solution in
PPF calculation to simplify the implementation process of the
algorithm.

To sum up, PCA-CS can significantly enhance the solution
efficiency with little compromise in accuracy.

5 Conclusion

In this paper, we study the PPF calculation problem with the
consideration of the input uncertainty caused by the injection

of PVs and WTs into the power grid system. We propose
a PCA-CS algorithm for PPF calculation uses the principle
of PCA to perform eigen-transformation on the result of
PCE expansion. This method is similar to the traditional CS
method and MC method. It inherits the advantage of simple
principle, easy implementation, and more suitable for practical
application. In our future research, we will consider continuing
to improve the PCA-CS algorithm by using the principles of
weighted l1-optimization in optimization theory to further
enhancing the solution efficiency (Sun et al., 2016). Moreover,
given the excellent performance of artificial intelligence (AI) in
dealing with dimensional disasters, we can also consider solving
PPF equations using AI-based methods (Hua et al., 2022a).
Based on PPF analysis, we can further consider studying
probabilistic stability control of microgrid systems
(Hua et al., 2019).
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