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The uncertainty and fluctuation are the major challenges casted by the large

penetration of wind power (WP). As one of the most important solutions for

tackling these issues, accurate forecasting is able to enhance the wind energy

consumption and improve the penetration rate ofWP. In this paper, we propose

a deep learning model-transformer based wind power forecasting (WPF)

model. The transformer is a neural network architecture based on the

attention mechanism, which is clearly different from other deep learning

models such as CNN or RNN. The basic unit of the transformer network

consists of residual structure, self-attention mechanism and feedforward

network. The overall multilayer encoder to decoder structure enables the

network to complete modeling of sequential data. By comparing the

forecasting results with other four deep learning models, such as LSTM, the

accuracy and efficiency of transformer have been validated. Furthermore, the

migration learning experiments show that transformer can also provide good

migration performance.
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1 Introduction

Wind energy is an economical, efficient and environment friendly renewable energy

source that plays an important role in reducing global carbon emissions (Lin and Liu,

2020). According to Global Wind Report 2022, total installed WP capacity had reached

837 GW by the end of 2021 (Council, 2022). As the proportion of installed wind turbines

(WTs) increases year by year, the strong randomness, volatility and intermittency of WP

lead to the contradiction between the safe operation of the power grid and the efficient

consumption of WP (Yang et al., 2022). Accurate forecasting can reduce the uncertainty

and increase the penetration rate of WP.

The WPF mentioned in this paper refers to the forecasting of specific point values of

future wind speed or WP. It is called the deterministic forecasting model, which mainly

includes physical forecasting models, statistical forecasting models and hybrid forecasting

models (Hanifi et al., 2020; Sun et al., 2021).

Physical forecasting modeling obtains wind speed forecasting information based on

numerical weather forecast data with mathematical models, and then predicts WP with

the help of relevant WP curves using the wind speed forecasts (Li et al., 2013). Therefore
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improving the accuracy of the NWP model directly affects the

forecasting accuracy of the physical model (Cassola and

Burlando, 2012).

Statistical forecasting modeling is establishing a mapping

relationship between historical data and forecasted data.

Statistical models can be classified into traditional statistical

models, time series models, traditional machine learning

models and deep learning models. The persistence method,

known as the most classical traditional statistical method, uses

the wind power at the current moment as the forecasted value.

This method is simple but limited to the use of ultra-short-term

forecasting (Wu and Hong, 2007). Commonly used time series

models include AutoreGressive (AR) (Poggi et al., 2003), Auto

Regression Moving Average (ARMA) (Huang et al., 2012),

Autoregressive Integrated Moving Average (ARIMA) (Hodge

et al., 2011), etc. Time series models are difficult to explore the

non-linear relationship in the data. So such models are only

suitable for static data analysis. Traditional machine learning

models can predict future wind power value adaptively based on

historical WP data. Machine learning models are widely used in

wind power forecasting and related fields. The popular methods

include artificial neuro network (ANN) (Hu et al., 2016), support

vector machine (SVM) (Li et al., 2020), Piecewise support vector

machine (PSVM) (Liu et al., 2009), Least Square support vector

machine (LSSVM) (Chen et al., 2016), Random Forest (RF)

(Lahouar and Slama, 2017), Bayesian Additive

RegressionTrees (Alipour et al., 2019), K-Nearest-Neighbors

(KNN) (Yesilbudak et al., 2017), etc. These machine learning

models require additional time to extract features from

multidimensional data with good accuracy and relevance.

Optimization algorithms can effectively solve this problem

(Shahid et al., 2021). Li et al. (2021) proposed a hybrid

improved cuckoo search algorithm to optimize the

hyperparameters of support vector machines for short-term

wind power forecasting.

In recent years, deep learning models have provided

promising performance in natural language processing

(NLP), computer vision and other fields, while related

techniques are also applied to wind power forecasting.

Among them, two recurrent neural networks (RNN), Long

Short Term Memory (LSTM) and Gated Recurrent Unit

(GRU), are mainly utilized for wind power forecasting

research (Lu et al., 2018; Deng et al., 2020; Wang et al.,

2020). used wavelet decomposition to reduce the volatility

of the original series. They transformed non-stationary time

series into stable and predictable series to forecast by LSTM

Liu et al. (2020). enhanced the effect of forgetting gate in

LSTM, optimized the convergence speed, and filtered the

feature data within a certain distance based on correlation.

The forecasting permance was futher improved by clustering

Yu et al. (2019). used variable mode decomposition to stratify

wind power sequences according to different frequencies.

Then similar fluctuating patterns were identified in each

layer by K-means clustering algorithm. Furthermore, the

unstable features were captured in each set by LSTM Sun

et al. (2019). To address the overfitting problem, employed

multi-level residual networks and DenseNet to improve the

overall performance Ko et al. (2020). introduced the attention

mechanism into the GRU to obtain a novel sequence-to-

sequence model Niu et al. (2020). The combination of

multiple deep learning models can also improve the

accuracy of WPF. proposed a novel spatio-temporal

correlation model (STCM) for ultra-short-term wind power

forecasting Wu et al. (2021). proposed a hybrid deep learning

algorithm, which consists of GRU, LSTM, and fully connected

neural networks, to accurately predict ultra-short-term wind

power generation at the Boco Rock wind farm in Australia,

Hossain et al. (2020). The RNN model is unable to capture the

long periods temporal correlation due to the gradient

disappearance problem. To address this problem, Lai et al.

(2018) developed an RNN-skip structure with time-hopping

connections to extend the time span of the information flow.

RNN also suffers from the inability of recursive computation

to parallelize problem. The transformer is the first sequence

transcription model based solely on the attention mechanism,

which has been proved that it can solve the aforementioned

problems (Vaswani et al., 2017). The transformer was first

proposed in NLP. BERT (Devlin et al., 2018), GPT-2 (Radford

et al., 2019), RoBERTa (Liu et al., 2019), T5 (Raffel et al., 2020)

and BART (Lewis et al., 2019) based on transformer have

made a huge impact in the NLP field. Recently, almost all

advanced NLP models have been adapted from one of above

basic models (Bommasani et al., 2021). Transformer made a

big splash in the field of computer visiona along with the

publication of the VIT (Dosovitskiy et al., 2020), CvT (Wu

et al., 2021), CaiT (Touvron et al., 2021), DETR (Carion et al.,

2020), and Swin Transformer (Liu et al., 2021). Transformer

was also applied to the field of power system time series

forecasting. Lin et al. employed the Spring DWT attention

layer to measure the similarity of query-key pairs of sequences

(Lin et al., 2020). Santos et al. and Phan et al. employed the

transformer-based time series forecasting model to predict the

PV power generation for each hour (López Santos et al., 2022;

Phan et al., 2022). L’Heureux et al. proposed a transformer-

based architecture for load forecasting (L’Heureux et al.,

2022).

Transformer architecture has become a mainstream

technology in NLP which performs better than RNN or

Seq2Seq algorithms. For this reason, this paper used the

transformer as the basic model for wind power forecasting

research.

The remainder of the paper is organized as follows. Section 2

presents the forecasting problem. Section 3 introduces Data-

driven model of wind power forecasting. Section 4 shows the

analysis and discussion of the numerical simulation results.

Section 5 concludes this paper.
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2 Problem description

In this paper, wind power forecasting refers to making

speculations about the possible levels of wind power in several

future periods.

Suppose D � D1, D2,/, Dn{ } is the historical information

collected from WPAPs, where n is the number of WPAPs. Di �
Pi, Fi{ } is the historical information of i thWPAP, where Pi. is the

power output of the i th WPAP and Fi is other characteristic

information of the i thWPAP. For each Pt
i in Pi � P1

i , P
2
i ,/, Pt

i{ }
is the power outputs of the i thWPAP at timestamp t. For eachFt

i,j

in Fi � F1
i,1, F

2
i,1,/, Ft

i,1, F
1
i,2, F

2
i,2,/, Ft

i,2,/, F1
i,j, F

2
i,j,/, Ft

i,j{ } is

the j th feature data of the i th WPAP at timestamp t. Common

characteristics are wind speed and WPAP ambient temperature,

etc. The one-step ahead wind power sequence forecasting model f

can be denoted as:

Ppre
i � f Di( ), i ∈ 0, n[ ]

Where Ppre
i denotes the power forecasting sequence of the i

th WPAP.

3 Deep learning model for wind
power forecasting

In this paper, the transformer is chosen as the basic deep

learning model for wind power forecasting because it is

considered to use a broader inductive bias compared to

RNN, allowing it to handle more generalized information.

The inductive bias of a learning algorithm is the set of

assumptions that the learner uses to predict outputs of

given inputs that it has not encountered. For example, the

loop structure and gate structure are the inductive bias of

RNNs. The transformer model mainly includes self-attentive

mechanisms, position-wise feed-forward networks and

residual connections. These three neural network structures

do not rely on strong assumptions on the objective function.

Furthermore, they do not have the inductive bias as

translation invariance or the time invariance. So, a much

more general form makes the transformer model applicable

to more subjects. In this section, we introduce the structure of

the transformer.

3.1 Encoder to decoder structure

Numerous wind power sequence forecasting models

follow the encoder to decoder structure (Lu et al., 2018;

Niu et al., 2020; Li and Armandpour, 2022), which is

illustrated in Figure 1. The encoder maps the WPAP

historical sequence data D � D1, D2,/, Dn{ } to the hidden

state H � H1,H2,/,Hn{ }. The decoder then outputs the

forecasted power sequence Ppre � Ppre
1 , Ppre

2 ,/, Ppre
n{ }

based on the hidden state H. As shown in Figure 2,

transformer architecture also follows this architecture and

uses stacked self-attentive mechanisms, pointwise fully

connected layers and the RetNet structure (He et al., 2016)

to build the decoder and encoder. Encoder consist of a self-

defined number of identical encoder layers stacked on top of

each other. Each encoder layer has two sub-layers: multi-head

self-attention mechanism and position-wise fully connected

feed-forward network. Each sub-layer uses a residual

structure and then the output data is layer-normalized

which can be expressed as:

Osub � LN x + SL x( )( )
Where Osub is the output of sub-layer, x is the input of the sub-

layer, LN is the layer normalization function, SL is the function

employed in the sub-layer.

To facilitate residual connectivity, outputs produced from all

sublayers in the model as well as the embedding layer have the

same self-defined dimension dmodel.

The decoder has the same number of stack layers as the

encoder. each decoder layer consists of three sub-layers. The first

sublayer is the Masked Multi-head attention layer, whose main

function is to ensure that the forecasting of position i only

depends on the known outputs of positions smaller than i.

The last two layers use the same sub-layers as the encoder

layer. Each sub-layer has a residual architecture and layer

normalization of the output.

3.2 Self-attentive mechanism

The attention mechanism (AM) is a resource allocation scheme

that allocates computational resources to more important tasks

while solving the information overload problem in the presence

FIGURE 1
Encoder to decoder structure.
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of limited computational power. The input information of AM can

be represented by key vector -value vector pairs

[(k1, v1), (k2, v2), . . . , (km, vm)]. The target value information

can be represented by query vector. The weight of the value

vectors are calculated based on the similarity of query vector and

key vector. And then, the final attention value can be obtained by

weighted summation of value vector. The core idea of the attention

mechanism can be expressed as the following equation.

Satt � W × V
W � func Q , K( )

Where Satt is the attention value, V is the value vector of key-

value pairs, K is the key vector of key-value pairs, Q is the query

vector, W is the corresponding weight of V and func is the weight

transformation function.

The self-attentive mechanism (SAM) uses three learnable

parameter matrices Wq, Wk and Wv to transform the input

sequence X into the query vector Qs, key vector Ks and value

vector Vs. The model uses a SoftMax function as the weight

transformation function. The weights of the Vs are obtained by

calculating the dot product of Qs and Ks divided by
��
dk

√
. The

output of SAM is obtained by weighted summation of Vs, as

depicted in Figure 3.

Qs � WQX ∈ Rdk×N

Ks � WKX ∈ Rdk×N

Vs � WVX ∈ Rdv×N

Attention Q,K,V( ) � sof tmax
QKT��
dk

√( )V
Where dk is the dimension of Ks.

FIGURE 2
Encoder and decoder stacks of transformer.

FIGURE 3
Self-attention with masking function.
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3.3 Multi-head attention and masked
multi-head attention

Multi-head attention mechanism uses different weight matrices

to project the single attention head input sequence into different

subspaces, which allows the model to focus on different aspects of

information. The different weight matrices WQ
i , W

K
i and WV

i

transform the vectors Q, K and V of dimension dmodel into h

vectors Qi, Ki and Vi of dimensiond dmodel/h and input them into

the corresponding parallel attention layers, where h is the number of

parallel layers. Then the outputs of each layer are concatenated and

the results output via the linear layer, as depicted in Figure 4.

MultiHead Q,K,V( ) � Concat head1, . . . , headh( )WO

where headi� Attention Qi, Ki, Vi( )
Qi � QWQ

i

Ki � KWK
i

Vi � VWV
i

i � 1, 2, . . . , h

Where WQ
i ∈ Rdmodel ×dk , WK

i ∈ Rdmodel ×dk , WV
i ∈ Rdmodel ×dv ,

WO ∈ Rhdv×dmodel , and dk � dv � dmodel/h

Masked multi-head attention mechanism is proposed to

prevent the decoder from seeing future information. An upper

triangular matrix with all values of "-inf” is added to the dot

product matrix before it is softmaxed, as depicted in Figure 3.

3.4 Position-wise feed-forward networks
and positional encoding

Each encoder and decoder layer contains a position-wise

feed-forward networks, which is composed of two linear

transformations and uses the ReLu function as the

activation function. Due to the existence of two linear

transformations, the inner layer dimension can be adjusted

while the input and output dimensions are guaranteed to be

equal to dmodel. The formula is as follows.

FFN x( ) � ReLu xW1 + b1( )W2 + b2
whereReLu x( ) � max 0, x( )

whereW1 andW2 are the two linear transformation matrixes, b1
and b2 are biases of the two linear transformations and x is the

input data.

Since transformer architecture does not contain recursion

and there is no relative or absolute position information of

each value in the inputs of the transformer, it is necessary to

there is no relative or absolute position information of each

value in the inputs of the transformer so that the model can

make use of the sequential information. Transformer uses sine

and cosine functions of different frequencies.

PE pos,2id( ) � sin pos/100002id/dmodel( )
PE pos,2id+1( ) � cos pos/100002id/dmodel( )

where pos is the position and id is the dimension.

FIGURE 4
Multi-head attention.

FIGURE 5
Data input.

FIGURE 6
Data subset allocation ratio.
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3.5 Power forecasting and model
migration

In this paper, transformer is used as the power prediction

model. The historical feature data needs to be processed before

it can be input into transformer. The transformation of

historical data into feature vectors and positional encoding

are shown in the Figure 5. The feature vector at each

timestamp consists of different WPAP feature values in the

specified order. Each encoder layer extracts features from the

input data using the multi-head attention mechanism,

position-wise feed-forward networks, normalization layer

and residual structure. The last encoder layer passes the

feature information to each decoder layer. The first sub-

layer of each decoder layer extracts the sequence feature

information from the predicted data. Finally, the predicted

data of the specified length is processed by the fully-connected

layer and output.

Migrating the trained model parameters to another model

for a related task can effectively speed up the model

convergence and reduce the overfitting problem. The data

between different WPAPs has some similarity. This paper

proposes to train untrained WPAP prediction models which

we migrate the trained WPAP power prediction model

parameters to.

4 Experimental results and discussion

To verify the effectiveness of transformer for wind power

forecasting, we conducted a case study using areal-world wind

farm operation dataset.

4.1 Dataset preparation

In this paper, experiments are conducted by using the Spatial

Dynamic Wind Power Forecasting (SDWPF) dataset, which is

constructed based on real-world wind farm data from Longyuan

Power Group Corp. Ltd. (Zhou et al., 2022). SDWPF contains

134WPAPs output power, wind speed, ambient temperature and

other characteristic information, which is sampled at 10-min

intervals and covers 245 days of data. From them, we selected the

power, wind speed and ambient temperature of eight WPAPs

data as the feature information used for single turbine one-step

ahead wind power prediction. Three data subsets are used in the

evaluation: training set, validation set, and test set, and the three

subsets are assigned in the ratio of 6:2:2 as shown in Figure 6. The

training set is used to update the model parameters. First, the

results of the forward calculation are stored for each parameter.

Then, the partial derivatives of each parameter can be calculated

through loss function based on the chain rule subsequently. At

last, the partial derivatives are multiplied with the learning rate to

obtain the optimized values of the parameters. The validation set

is used for hyperparameter tuning during the model training, and

the test set is used to evaluate the generalization ability of the

model.

4.2 Data processing

The input variables used in this study are normalized in order

to speed up the gradient descent for optimal solutions and to

improve the accuracy of the model after training. The feature

information is scaled to the range (0, 1) by min-max

normalization, and the model output is denormalized.

FIGURE 7
One-step power forecasting experimental results of NO.1-NO.8 WPAP.
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xinp
′ � normal xinp( )

normal xinp( ) � xinp −max xinp( )
max xinp( ) −min xinp( )

Where xinp
′ is the normalized output of the model input data xinp

xout
′ � denormal xout( )

denormal xout( ) � xout −max xin( )
max xin( ) −min xin( )

Where xout
′ is the denormalized output of the model output

data xout

TABLE 1 Each prediction model corresponds to the performance index of each WPAP.

Model Number MSE MAE RMSE r2score

Transformer WPAP 1 17.85 2.79 4.22 0.9927

WPAP 2 81.79 5.28 9.04 0.9873

WPAP 3 22.18 3.11 4.71 0.9916

WPAP 4 31.35 3.11 5.60 0.9917

WPAP 5 34.81 3.56 5.90 0.9907

WPAP 6 349.80 10.96 18.70 0.9708

WPAP 7 1854.07 12.75 43.06 0.9659

WPAP 8 43.18 3.82 6.57 0.9888

LSTM WPAP 1 30,054.43 102.95 173.36 0.7670

WPAP 2 19,369.12 80.15 139.17 0.7914

WPAP 3 24,852.67 95.47 157.65 0.7419

WPAP 4 33,919.56 110.45 184.17 0.7033

WPAP 5 41,330.30 122.23 203.30 0.6806

WPAP 6 22,473.57 86.20 149.91 0.7702

WPAP 7 38,449.08 118.99 196.08 0.6815

WPAP 8 19,042.41 79.31 138.00 0.7676

LSTM (encoder-decoder) WPAP 1 25,685.14 92.67 160.27 0.7762

WPAP 2 26,958.49 99.14 164.19 0.7135

WPAP 3 24,751.02 93.21 157.32 0.7166

WPAP 4 24,181.57 93.14 155.50 0.7207

WPAP 5 25,359.76 94.54 159.25 0.7282

WPAP 6 25,101.07 94.25 158.43 0.7171

WPAP 7 30,025.81 105.08 173.28 0.6911

WPAP 8 31,325.91 105.32 176.99 0.6667

GRU WPAP 1 19,987.32 85.33 141.38 0.8069

WPAP 2 21,242.36 86.55 145.75 0.7747

WPAP 3 19,528.68 85.69 139.75 0.7684

WPAP 4 20,628.77 85.88 143.63 0.7693

WPAP 5 19,067.65 80.58 138.09 0.7894

WPAP 6 28,290.43 99.28 168.20 0.7353

WPAP 7 25,172.07 95.83 158.66 0.7435

WPAP 8 17,800.28 77.21 133.42 0.7737

GRU (encoder-decoder) WPAP 1 27,126.60 92.52 164.70 0.7766

WPAP 2 22,599.75 85.18 150.33 0.7538

WPAP 3 23,005.86 89.85 151.68 0.7268

WPAP 4 21,207.50 80.54 145.63 0.7585

WPAP 5 21,693.08 82.02 147.29 0.7642

WPAP 6 25,015.56 88.84 158.16 0.7334

WPAP 7 24,351.19 93.96 156.05 0.7238

WPAP 8 27,082.16 94.26 164.57 0.7017
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4.3 Performance evaluation

In this paper, we use four metrics to evaluate the prediction

performance of transformer, namely mean squared error (MSE),

mean absolute error (MAE), mean square root error (RMSE),

r2score, and explained variance (EV). They can be expressed

mathematically as:

MSE � 1
l
∑l
i�1

p − p̂( )2
MAE � 1

l
∑l
i�1

p − p̂
∣∣∣∣ ∣∣∣∣

RMSE �
�����������
1
l
∑l
i�1

p − p̂( )2√√
r2score � 1 − ∑ p − p̂

∣∣∣∣ ∣∣∣∣∑ p − p′
∣∣∣∣ ∣∣∣∣

Where p denotes the original power, p̂ denotes the forecasted

power, l denotes the length of the forecast series and p′ denotes
the mean value of original power.

The better the fit between the prediction structure and the

actual results, the better MSE, MAE and RMSE tend to 0 and

r2score tend to one

4.4 Experimental numerical results

In this paper, the experiments performed by all the models

use the historical wind power data of the 40 h to predict the wind

power value of the next 8 h.

First, we use transformer to perform a one-step power

forecasting on eight WPAPs datasets. A comparison of the

predicted and actual power curves for each WPAP is shown

in Figure 7. It can be seen that the predicted power of eachWPAP

can match the actual power well, and the two curves have similar

trends. This power comparison graph shows that transformer has

good prediction capability. Also, we perform the same

experiments using LSTM, GRU models and LSTM and GRU

models with encoder-decoder structure. The performance

indexes for each WPAP power forecasting using the five

models are shown in Table 1. It can be seen that the

forecasting performance of transformer on this dataset is

much better than the four models. The mean MSE, MAE and

RMSE of transformer prediction results are 304.38, 5.67 and

FIGURE 8
Transformer model migration based one-step power forecasting experimental results of NO.9-NO.20 WPAP.

TABLE 2 Performance indicators of WPAPs 9 to 20 and the distance of
relative location between each WPAP and WPAP one.

Number Distance MSE MAE RMSE r2score

WPAP 9 476.91 31.52 3.27 5.61 0.9914

WPAP 10 949.88 37.13 3.91 6.09 0.9895

WPAP 11 1448.69 49.21 3.99 7.01 0.9896

WPAP 12 2,373.70 38.76 4.77 6.23 0.9869

WPAP 13 3,251.40 29.15 3.61 5.40 0.9891

WPAP 14 3,863.73 107.50 5.00 10.37 0.9850

WPAP 15 4,162.78 23.67 3.23 4.87 0.9895

WPAP 16 4,326.15 23.61 3.10 4.86 0.9906

WPAP 17 5,228.90 14.42 2.22 3.80 0.9941

WPAP 18 5,697.92 6.04 1.39 2.46 0.9961

WPAP 19 6,173.15 46.62 3.63 6.83 0.9899

WPAP 20 6,648.17 10.76 2.04 3.28 0.9942
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12.23 respectively. They are small compared to the mean power

output value of 393.47 and the maximum value of 1552.76. The

mean r2score of transformer forecasting results is 0.9849, which

is 33.47%, 37.50%, 27.88% and 32.66% improvement compared

to 0.7379, 0.7163, 0.7702 and 0.7424 of the other four models. It

can be seen that transformer forecasts very accurately, thanks to

the structure of encoder-decoder, the design of multi-headed self-

attentiveness, the ability of masked multi-headed self-

attentiveness to extract sequence information and the

structure of residuals, etc.

Transformer has certain generalization performance, and we

randomly selected 12 WPAPs datasets, using the model

parameters already trained by WPAP 1, to train the model

and complete the prediction task. The experimental results are

shown in Figure 8, and the prediction performance indexes of

transformer migration learning on each t WPAP dataset and the

distance of relative location between each WPAP and

WPAP1 are shown in Table 2. The MSE, MAE and RMSE of

forecasting results are 34.87, 3.35 and 5.57, which are also small.

The r2score of 0.9904 is likewise very close to 1. Transformer has

a better model migration effect due to its minimal inductive bias.

It can be seen that other WPAPs within the same area can use the

trained transformer model parameters for model training and

achieve good prediction accuracy.

5 Conclusion

In this paper, we illustrate the principle of transformer with

powerful sequence modeling capabilities such as encoder to

decoder architecture, self-attentive mechanism, multi-headed

attention, and sequence modeling using masks, and use it for

WPAP power forecasting. We use 40 h of historical power data,

wind speed data and ambient temperature data to predict the

output power ofWPAPs for the next 8 h. Themean values ofMSE,

MAE and RMSE of the transformer model prediction results are

304.38, 5.67 and 12.23, respectively, which are relative small

compared to the mean power output value and the maximum

value. The r2score is 0.9849 which is very close to 1. We then use

the 12 WPAPs dataset for transformer’s migration learning

experiment. The predicted results show that the MSE, MAE

and RMSE are also small and the r2score is also very close to

1. The transformer can have good migration performance within

the same area.
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