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Measuring the nitrogen oxides concentration accurately at the inlet of the

selective catalytic reduction denitrification system plays an important role in

controlling the nitrogen oxides concentration for coal-fired power plants, and a

coupling relationship exists between nitrogen oxides concentration and

multiple operational variables. Here, a modeling method based on feature

fusion and long short-term memory network is proposed to mine the spatial

and temporal coupling relationship between input variables for improving the

prediction accuracy. First, the collected data were converted to image-like

sequences. Then, the high-dimensional features of image-like sequences were

fused by a convolutional neural network, and the spatial coupling features

among the variables were mined. Finally, the constructed fusion features were

input into the long short-term memory network to further explore the time

coupling characteristics among the variables and complete the prediction of

nitrogen oxides concentration at the inlet of the selective catalytic reduction

denitrification system. The simulation results show that the prediction error of

nitrogen oxides concentration at the inlet of selective catalytic reduction

denitrification system based on CNN-LSTM model is 15.15% lower than that

of traditional LSTM model.
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Introduction

Carbon peaking and carbon neutrality goals can be realized by continuously increasing

the installed capacity of renewable energy power in China, but thermal power units need to

participate in long-term flexible regulation to curb the impact of renewable energy power on

the stable operation of grids (Meysam et al., 2017; Kang et al., 2020; Shahbaz et al., 2020;

Zhang et al., 2021; Tan et al., 2022). Conditions change frequently during the flexible

operation of thermal power units (Zeng et al., 2019; Wang et al., 2020a), resulting in large

changes in the NOx concentration at the entrance of selective catalytic reduction (SCR)

denitrification systems. This scenario hinders the effective control of denitrification systems

of thermal power units. Establishing an accurate prediction model of NOx concentration at

the inlet of the SCR denitrification system can provide a model basis for the optimization of

boiler combustion and the optimal control of the denitrification process, which has certain

engineering significance (Adams et al., 2020; Huang et al., 2022).
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In recent years, with the development of machine learning

algorithms, data-driven modeling methods have shown a strong

ability to deal with this problem. Adams et al. (2020) proposed a

deep neural network model with a modified early stopping

algorithm and least square support vector machine to predict

NOx emission concentration. However, the traditional neural

network model still has the problem of easily falling into local

convergence, which causes its prediction accuracy to be limited

(Tang et al., 2022).

Boiler combustion in a power station is a typical large inertia

delay system, and a certain degree of lag manifests between the

change in operating parameters and the change in NOx

concentration at the inlet of the SCR denitrification system

(Xie et al., 2021). Therefore, the prediction of NOx

concentration at the inlet of the SCR denitrification system is

a prediction problem based on a time series (Wang et al., 2020b).

Long short-term memory (LSTM) neural networks can carry out

long-term memory of data and have the unique advantage of

temporal data processing. Tan et al. (2019), proposed a deep

learning algorithm referred to as long short-term memory to

predict the dynamics of NOx emission in a 660 MW tangentially

coal-fired boiler. Han et al. (2019) proposes a production capacity

analysis and energy saving model using long short-term memory

based on attention mechanism. Yang et al. (2020b)) focuses on

the application of LSTM neural network with principal

component analysis method in modeling the relationship

between operational parameters and NOx emission of a

660 MW boiler. Furthermore, the LSTM model presented

certain limitations. For instance, while the temporal

characteristics of the data could be mined, it was not the case

for input variables with interaction coupling relationships (Xie

et al., 2020). Therefore, input features should be sufficiently

constructed to establish LSTM network models that can

predict the NOx concentration at the inlet of the

SCR denitrification system (Rumelhart et al., 1986; You et al.,

2013).

The NOx concentration at the inlet of the SCR

denitrification system is affected by many factors, and the

correlation is high among these variables (Lv et al., 2018;

SaifUl Allah et al., 2022; Lv et al., 2022). When constructing

the input features of the model based on prior knowledge, the

complete features of the object cannot be guaranteed. Neurons

of the convolutional neural network (CNN) have learnable

weights and bias parameters, and specific feature mapping

rules can be established via supervised learning while reducing

the dimension of input feature variables (Yang et al., 2020a).

Song et al. (2022) proposes a SCR inlet NOx concentration

prediction algorithm based on BMIFS-LSTM to filter out the

auxiliary variables with maximum correlation and minimum

redundancy with NOx concentration. He et al. (2020)

proposed a deep learning architecture formed by integrating

CNN and LSTM with CNN layers extracting features among

several variables and LSTM layers learning time series

dependencies for predicting NOx emissions However, the

temporal characteristics of the data were destroyed in the

process of using CNN or other feature processing algorithms

for feature extraction, and errors appeared in the subsequent

process of using the LSTM network to learn fused features. In

this study, the class image structure is introduced and then the

sequence folding and expansion operations are used to

improve the feature extraction process. In this manner, the

time sequence invariance of the data in the process of feature

fusion can be ensured.

Therefore, the paper focused on an algorithm based on

feature fusion and the LSTM network. In this algorithm, CNN

is used as the feature fusion unit to extract the coupling

interaction features among many variables related to NOx

concentration. Then, the LSTM network structure is used to

learn the time series features. This method involves an explicit

learning process of identifying the variable coupling relations,

and more directly, the mining of variable interaction

information, which is helpful in further improving the

prediction accuracy of the model. The results show that the

CNN–LSTM model has a higher accuracy for predicting NOx

concentration at the inlet of the SCR denitrification system

compared with the traditional LSTM network prediction

model.

High-dimensional feature fusion
based on convolutional neural
network

Basic theory of convolutional neural
network

CNN is a kind of neural network that uses convolution and

has a multilayer structure, which mainly includes a

convolutional layer, a canonical layer, and a fully connected

layer. Neurons in CNN have the characteristics of local

connection and weight sharing, enabling the network to

compile specific feature mapping rules into the convolution

structure. Thereafter, feature dimension reduction can be

achieved, and the fusion of high-dimensional input features

can be completed in the modeling process of NOx

concentration at the entrance of the SCR denitrification

system.

The convolutional layer network in CNN is composed of

several convolution kernels w ∈ Rd×d with the same size, where

d is the size of the convolution kernel. The parameters in the

convolution kernel correspond to the weights of CNN

neurons. The features are generated by sliding the

convolution kernel on the input data ~x∈ RH×H, where H is

the size of the input data. The mathematical expression of the

CNN’s network input ~x and convolution kernel w operation is

shown in Eq. 1
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Pi,j � f⎛⎝∑d
u�1

∑d
v�1
wu,v ⊙ ~xi+u−1,j+v−1′ + b⎞⎠ (1)

where Pi,j is the element in the output feature, ~xi+u−1,j+v−1 is the
input the ~x element, wu,v is the weight parameter w in the

convolution kernel, b is the bias parameter, and f is a linear

rectification function (ReLu).

Input feature extraction of the NOx
prediction model

According to the operation of the unit, 25 indices

(i.e., load, total air volume, and coal supply) are selected as

input variables, whereas NOx concentration at the inlet of the

SCR denitrification system is selected as the output variable.

Assume that the sample collected is x ∈ Rp, where p is the

number of input variables (p � 25), and the NOx

concentration at the inlet of the SCR denitrification system

corresponding to its time is y. The collected sample data x is

converted to class image data ~x∈ RH×H, where H � 5. The

arrangement of the class image data is shown in Table 1.

Compared with the data before processing, the kind of image

data presented above has additional spatial features that can

be easily fused by CNN.

After the class image data are input into the CNN, their

respective features ~x are extracted by a convolution operation, as

shown in Eq. 1. The convolution layer ~x contains several different

convolution kernels, each representing different feature rules.

Features P can be obtained after the convolution operation.

Furthermore, as the CNN contains multiple convolutional

layers, the obtained features P are sent as input to the next

convolutional layer for convolution operation. Passing through

several convolutional layers causes the data dimension to be

continuously reduced and the final features ~P to be fused. With ~P

as the input of the subsequent model, the CNN subsequently

participates in the training together with the prediction model

and realizes the fusion of the input features. The CNN’s process

of fusing the high-dimensional input features is shown in

Figure 1.

Establishment of the NOx
concentration prediction model
based on the long short-term
memory network

Long short-term memory modeling
theory

The special structure of the LSTM network lies in the

introduction of a gating mechanism to control the learning

degree of the time series data, allowing the network to retain

historical information for a long time. The logical unit in the

LSTM neural network is shown in Figure 2.

Each logic unit has three types of gates: a forget gate, an

input gate, and an output gate. The forgetting gate uses the

activation function to conditionally control and select the

memorized information and subsequently obtain the

information needed by the logic unit. The input gate also

applies this process to the new input information to retain

the valid information in the input. The whole process is given by

Eq. 2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
f t � σ(W f · [ht−1, St] + bf )
it � σ(W i · [ht−1, St] + bi)

mt � tanh(Wc · [ht−1, St] + bc)
ot � σ(Wo · [ht−1, St] + bo)
ct � f t ⊙ ct−1 + St ⊙ mt

ht � ot ⊙ tanh (ct)

(2)

where σ(·) is an activation function, W and b are the weight

matrix and corresponding deviation of each gate, ft is the

forgetting gate, it is the input gate, ot is the output gate, ct−1
is the state value at the last moment, ct is the state value at

the current moment, ht−1 is the input at the last moment, ht
is the output at the current moment, St is the input at the

TABLE 1 Arrangement of type image data.

Unit load Burnout
damper opening A

Secondary damper
opening
degree A

Perimeter
damper opening A

Furnace temperature

Total air volume Burnout damper
opening B

Secondary damper opening
degree B

Perimeter damper
opening B

Flue gas temperature of air preheater

For coal Burnout damper
opening C

Secondary damper opening
degree C

Perimeter damper
opening C

Primary air temperature at air preheater
outlet

Main feedwater
temperature

Burnout damper
opening D

Secondary damper opening
degree D

Perimeter damper
opening D

Secondary air temperature at air preheater
outlet

Main steam pressure Burnout damper
opening E

Secondary damper opening
degree E

Perimeter damper
opening E

NOx concentration at SCR inlet (last
moment)
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current time, K is the sequence data of length, and ⊙ is for

Hadama.

Construction of the NOx prediction model

Most variables related to NOx concentration at the inlet of

the SCR denitrification system have delay characteristics, and the

LSTM network is used to introduce delay information of the

input variables in the modeling process (Lv et al., 2020). The

LSTM network performs effectively in obtaining the long-term

correlation of variable series, but it cannot establish an effective

model for discontinuous data. Therefore, a sequence folding layer

and a sequence unfolding layer are added to the neural network.

Then, multiple groups of continuous-time image-like data are

taken as the input of the CNN. In this manner, the temporal

features of the data can be preserved while fusing the high-

dimensional features, further ensuring the effectiveness of the

model input.

The elements in the initial input sample set

{x1, x2,/, xt,/, xn} are transformed into image-like data

{~x1, ~x2,/, ~xt,/, ~xn} by the arrangement shown in Table 1

and then input into the CNN. After performing several

convolution operations as described in Eq. 1, the sample

fusion feature set {~P1, ~P2,/, ~Pt,/, ~Pn} can be obtained. For

the sample fusion feature set, the input of the LSTM model

{S1, S2,/, St,/, Sn−K−1} is constructed by the sliding window.

The method of constructing the input–output structure by the

sliding window is shown in Figure 3. The relationship between St
and sample fusion features is shown in Eq. 3.

St � [~Pt, ~Pt+1,/, ~Pt+K−1]T (3)

where K is the input sequence length of the LSTM model.

After the fusion feature sample sequence St is input to the

LSTM network model, Equation 2 model is calculated to predict

the NOx concentration of SCR denitration system entry. Then,

the corresponding real output for the moment of the sample

sequence of the SCR denitration system’s inlet corresponding to

the next-moment NOx concentration yt+K are determined to

build the LSTM training model.

The mathematical expression of the NOx concentration

prediction model for the inlet of the SCR denitrification

system is shown in Eq. 4.

yt+1 � F(xt, xt−1 . . . xt−K+1) (4)

where F is the constructed CNN–LSTM network model.

The CNN–LSTM network’s structural design and model

hyperparameter setting are shown in Table 2. K is the step

size in the process of convolution kernel movement in the

CNN, and Drop is the neuron drop rate in each layer of the

LSTM network (Lv et al., 2015).

FIGURE 1
Schematic diagram of high-dimensional feature fusion based on CNN.

FIGURE 2
Structural diagram of the LSTM unit.

Frontiers in Energy Research frontiersin.org04

Yin et al. 10.3389/fenrg.2022.1054427

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1054427


Figure 4 shows the structural diagram of the CNN–LSTM

network model. CNN is used to merge the input features. Then, a

three-layer LSTM neural network is used to predict the NOx

concentration at the entrance of the SCR denitrification system.

At the same time, the “dropout” layer is used in each layer of the

LSTM network to reduce the interaction between the hidden

layer nodes during training, allowing the generalization ability of

the model to be enhanced.

Model valuation criteria

The prediction accuracy of the model was evaluated more

accurately by introducing the root mean square error (RMSE)

and normalized root mean square error

(NRMSE). The expressions of RMSE and NRMSE are

shown in Eqs 5, 6:

RMSE �
������������
1
n
∑n
i�1
(ŷt − yt)2√

(5)

NRMSE � 1
�y

������������
1
n
∑n
i�1
(ŷt − yt)2√

× 100% (6)

where yt represents the actual measured value, ŷt represents the

predicted value of the model, and �y represents the average value

of the actual measured value

Data acquisition and model
construction

In this study, a 300 MW coal-fired thermal power unit was

taken as the research object. The supporting boiler of the unit is a

naturally circulating single furnace with a π-type arrangement

and solid slag discharge boiler adopting the four-angle cut-round

combustion method and positive-pressure direct-blowing

pulverizing system. The SCR denitrification system adopts the

high-temperature and high-ash arrangement in the flue after the

furnace operation. The system consists of two parts: a catalytic

reaction zone and an ammonia zone. It is also composed of a

FIGURE 3
Structure of input and output in sliding window.

FIGURE 4
Structural diagram of the LSTM network model based
on CNN.
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2+1-layer cellular catalyst, dilution fan, ammonia spraying grid,

and soot blower.

Data samples of the abovementioned variables were collected

from the Supervisory Information System’s operation database at

the factory level over a period of 1 week, with a sampling interval

of 30 s. These variables include three categories: basic operating

parameters of the boiler (such as unit load, coal feed, etc.), which

can represent the current operating conditions of the unit;

Operating parameters and sensor measurement parameters

that affect or reflect furnace flame and boiler outlet flue gas

temperature (such as secondary air valve opening, air preheater

flue gas temperature, etc.), these variables can characterize the

combustion state in the furnace, which also affects the generation

of NOx to a considerable extent; NOx concentration at SCR inlet

at the last moment, this variable is mainly used to improve the

prediction accuracy of the model by using the characteristics of

LSTM network. According to field experience, the reaction

process inside the boiler is usually completed within 6 min.

Thus, the length of the input sequence of the LSTM model is

set as K = 12. The data were preprocessed (i.e., outlier processing

and normalization processing), and 41,500 sets of data samples

were obtained during the continuous operation. The data timing

data were kept to the first 40,000 sets of the data after processing,

and they were used as the training set to establish the NOx

concentration prediction model for the inlet of the SCR

denitrification system. Meanwhile, the last 1,500 sets of data

were used as the test set to verify the generalization ability of the

prediction model.

The mini-batch gradient descent strategy was adopted in the

training of the network model. The number of samples in each

mini-batch was 192, and the data were completely traversed for

10 rounds in the training. The mean square error (MSE) was used

as the loss function. The expression of MSE is shown in Eq. 7:2

emse � 1
n
∑n
i�1
(yt − ŷt)2

(7)

where n is the number of samples, yt is the actual measured value,

and ŷt is the predicted value.

Experimental results and analysis

Model training results

The generalization ability of CNN–LSTM model was

determined and then compared with that of the constructed

traditional LSTM model. The same input samples were used to

construct the prediction model. Figure 5 shows the training

results of the prediction model of NOx concentration at the inlet

of the SCR denitrification system based on CNN–LSTM

network and traditional LSTM network. The predicted

RMSE and NRMSE of the CNN-LSTM model used in this

paper for training set samples are 1.66 mg/m3 and 5.3%,

compared with 1.92 mg/m3 and 6.2% of the traditional

LSTM model, and the fitting ability has been improved by

13.54%. The CNN-LSTM model has a higher fitting ability to

the NOx concentration at the inlet of SCR denitrification

system, which shows that the processing of input variables

by CNN network is conducive to improving the overall

expression ability of the model.

TABLE 2 Model structure and hyper parameter setting.

Network layer structure Network layer name Parameter

Sequential input layer Input Input data dimension (5,5,1)

Sequence folding layer Fold No

Two-dimensional convolutional layer Conv1 d = 2, q = 1, Stride = 1

Specification layer Batchnorm1 No

The activation layer ReLu1 No

Two-dimensional convolutional layer Conv2 d = 2, q = 1, Stride = 1

Specification layer Batchnorm2 No

The activation layer ReLu2 No

Sequence unfolding layer Unfold No

Flat layer Flatten No

LSTM layer Hidden1 Number of hidden layers 200

School layer Dropout1 Drop = 0.6

LSTM layer Hidden2 Number of hidden layers 240

School layer Dropout2 Drop = 0.6

LSTM layer Hidden3 Number of hidden layers 280

School layer Dropout3 Drop = 0.6

Connection layer Full connect Number of hidden layers 1
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Figure 6 shows the prediction results of the CNN–LSTMmodel

and traditional LSTMmodel on the test set, and Table 3 presents the

prediction errors of the model. The predicted value of the CNN-

LSTM model is highly consistent with the actual measured value,

and the maximum deviation does not exceed 3.82 mg/m3.

The RMSE and NRMSE of the CNN–LSTM model on the

training and test set samples are smaller than those of the

traditional LSTM model. For the test set samples, the RMSE

and NRMSE predicted by the CNN–LSTMmodel are 2.09 mg/

m3 and 6.7%, respectively; by contrast, the corresponding

values of the traditional LSTM model are 2.46 mg/m3 and

7.9%, indicating a reduction in prediction error by 15.15%.

The traditional LSTM model and CNN–LSTM model both

have high approximation ability, but the generalization ability

of the latter is better than that of the former. The difference

can be attributed to the eliminated redundant information

after the CNN has integrated the high-dimensional features,

allowing the generalization ability of the model to be

improved.

Comparative test

The necessity of integrating high-dimensional features based on

CNN was further verified by comparing the established

CNN–LSTM model with the LSTM model that was established

by empirically selecting ten features as the input for the same dataset

(Han et al., 2019). The characteristics include unit load, coal feed,

total air volume, four-layer secondary damper opening, two-layer

burnout damper opening, and inlet NOx concentration of the SCR

denitrification system over historical time.

According to the analysis of the prediction accuracy of the

model shown in Figure 7, the RMSE and NRMSE of the

aforementioned LSTM model are 2.92 mg/m3 and 9.0%,

FIGURE 5
Comparison of training results between the CNN–LSTM
model and traditional LSTM model.

FIGURE 6
Comparison of prediction results between the CNN–LSTM
model and traditional LSTM model.

TABLE 3 Comparison of prediction errors between the CNN–LSTM model and traditional LSTM model.

Model Training set Test set

RMSE (mg/m3) NRMSE (%) RMSE (mg/m3) NRMSE (%)

LSTM 1.92 6.2 2.46 7.9

CNN–LSTM 1.66 5.3 2.09 6.7

FIGURE 7
Comparison of prediction results between the CNN–LSTM
and LSTM model.
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respectively. Comparing this result with the error data in Table 3,

it can be found that the LSTM model established after manually

filtering variables has obviously insufficient prediction accuracy

due to filtering out too much information. From the setting of

CNN network parameters in the CNN-LSTM model structure

provided in Table 2 and the convolution calculation process of

Eq. 1, it can be seen that the CNN-LSTM model constructed in

this paper only has 9-dimensional data input into the LSTM

network. However, compared with the LSTM model with

10 variables selected by experience as input, the prediction

accuracy has been improved by 28.42%, which shows that the

input variable processing method provided in this paper is of

reference value for LSTM network model.

Conclusion

A prediction method for determining nitrogen oxides

concentration at the inlet of the selective catalytic

reduction denitrification system based on feature fusion

and deep learning has been proposed. On the basis of the

collected data, the deep features in the high-dimensional data

were extracted by the convolutional neural network, then the

deep features were modeled by the long short-term memory

network to predict the nitrogen oxides concentration at the

inlet of the selective catalytic reduction denitrification system,

and the CNN–LSTM model was established. The CNN–LSTM

model used in this study can further improve the prediction

accuracy of the model with respect to the traditional long

short-term memory network model. The root mean square

error and normalized root mean square error of the

CNN–LSTM model on the test set were 2.09 mg/m3 and

6.7%, respectively. These results indicate the shortcomings

of the prediction model of nitrogen oxides concentration at

the inlet of the selective catalytic reduction denitrification

system based on the manual selection of auxiliary variables.

The feature fusion method based on the convolutional neural

network enables the long short-term memory network model

to be more generalized.
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Glossary

SCR selective-catalytic-reduction

RBF radial basis function

LSTM long short term memory

CNN convolutional-neural-networks

SIS supervisory information system

RMSE root mean square error

NRMSE normalized root mean square error

Symbols

W several convolution kernels

D size of the convolution kernel

H size of the input data

Pi,j element in the output feature

~xi+u−1,j+v−1 input element

wu,v the weight parameter w

b bias parameter

f linear rectification function

P Features

~P final features

σ(·) activation function

W weight matrix

b corresponding deviation

ft forgetting gate

it input gate

ot output gate

ct state value at the current moment

ht output at the current moment

St input at the current time

K sequence data of length

yt actual measured value

ŷt predicted value
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