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State estimation of active distribution network (ADN) plays an important role in

distribution energy management system. The increase penetration of

distributed generations, especially the distributed photovoltaic (PV), in ADN

leads to high uncertainty of ADN’s operation and the state of the ADN varies

with the variation of the PV output power. For the uncertainty of PV power

output, an interval dynamic state estimation (IDSE)method, which estimates the

interval of ADN state variables is proposed in this paper. Firstly, considering the

slow computation speed of the Unscented Kalman Filter (UKF), the square root

UKF is used to predict the real-time operating level of the state variables.

Secondly, since the power output of PV has features of the variation randomly,

the neural network-based prediction intervals is employed to predict the power

output interval of PV. Finally, the normal fluctuation range of ADN state is

modelled as a bilevel non-linear programming problem to perform IDSE, which

in turn monitors the operating state of ADN. The proposed method is evaluated

on the IEEE 33-node and IEEE 123-node systems, respectively. The test results

demonstrate that the dynamic status of the ADN can be tracked accurately

using the proposed method.
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1 Introduction

State estimation (SE) is the basis for operation and control of active distribution

network (ADN), providing a reliable foundation for advanced applications such as voltage

control, security assessment, reactive power optimization, etc. The weighted least squares

(WLS) method is the most used algorithm for traditional static state estimation (SSE).

However, the large number of distributed generators (DG) such as photovoltaics (PV)

connected to ADN highlights the non-linearity problem in ADN. Traditional SSE cannot

satisfy real-time requirements, especially in capturing dynamic characteristics, the
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dynamic state estimation (DSE) needs to be studied to support

the efficient operation of ADN (Zhao et al., 2019).

The DSE could not only estimate the current state but also

predict the state of the near future (Zhao et al., 2021), which is

benefit for the timely problem detection and control of ADN,

such as voltage exceeding limits. The traditional DSE method

mainly includes Kalman Filter (KF) (Julier and Uhlmann,

2004, 2004; Valverde and Terzija, 2011; Karimipour and

Dinavahi, 2015; Massignan et al., 2020). The Kalman-based

DSE method, such as Extended Kalman Filter (EKF), is

implemented on the assumption that the noise follows

Gaussian distribution (Massignan et al., 2020). Unscented

Kalman Filter (UKF) achieves higher accuracy than EKF

due to unscented transformation, it propagates the mean

and covariance through unscented transformation while

capturing their nature to third order [6]. However, the

accuracy of the UKF is dependent on the selection of initial

values and the algorithm is too time consuming (Zhao et al.,

2017), so it needs further improvement. Meanwhile, the large-

scale grid integration of PV to ADN makes the results of SE

need to consider more uncertainty factors, and how to

consider the impact of uncertainty on SE is an urgent

problem (Sihag and Tajer, 2018).

In general, the main methods of modelling uncertainty

variables in ADN are probabilistic models (Valverde et al.,

2013; Aien et al., 2014), fuzzy number models (AL-Othman,

2009) and interval number models (Rakpenthai et al., 2012). In

(Valverde et al., 2013), the Gaussian mixture models are used to

obtain the probability density function of DG and load, the

result of Gaussian mixture models is introduced as input

variables in state estimation of ADN. In (Aien et al., 2014),

an analytical probabilistic-possibilistic tool based on the

evidence theory and joint propagation of possibilistic and

probabilistic uncertainties is proposed for the power flow

uncertainty assessment. In (AL-Othman, 2009), the

affiliation functions for loads and different DG outputs are

established based on plausibility measures, and linear SE is

performed by means of fuzzy analysis methods. The above

methods can achieve good results, but the DSE methods based

on probabilistic models and fuzzy number models need to

obtain a priori probability density functions of uncertain

variables in advance, which leads to an increase in the

complexity of algorithm. In addition, the probability

distribution of conventional electrical loads can be obtained

from historical data in a real ADN, while the complete

probability density function of PV power output is difficult

to obtain. In most cases, only the upper and lower boundaries of

its PV power fluctuations are known (Quan et al., 2014).

In contrast, the use of interval number model to describe

uncertainty problems in SE is of greater application. Interval

number model does not need to obtain specific distributions of

variables, it only focuses on information about the upper and

lower bounds of each uncertain variable (Khosravi et al., 2011).

At present, interval state estimator (ISE) has been initially

investigated in ADN. In (Al-Othman and Irving, 2005), an

optimization model is proposed for the interval SE that the

measurement function is linearized as constrained

formulations to estimate the upper and lower bounds on the

states. In (Wang et al., 2018), an optimal solution method for

interval SE is proposed to detect abnormal measurements. In

(Huang et al., 2019), an optimization model of interval SE is

combined with bad data identification to enhance the robustness

of interval SE. In (Ngo and Wu, 2021), nonlinear measurement

equation is transformed into dual inequality linear equations by

mean value theorem to ensure the reliability of estimated

intervals. However, the current ISE methods focus on interval

static SE and there is little research on interval dynamic state

estimator (IDSE).

In addition to the influence of uncertainty factors, the lack of

real-time measurements limits the effective application of SE.

Establishing accurate pseudo-measurement models can improve

data redundancy and make the SE results of ADN more accurate

(Schlösser et al., 2014). The data-driven method can mine the

features of high-dimensional complex data and is highly superior

in improving the accuracy of pseudo-measurement models

(Massaoudi et al., 2021). In (Manitsas et al., 2012; Abdel-

Majeed et al., 2014), the artificial neural networks are used for

pseudo-measurement modelling, but to determine the model

weights, the error distribution needs to be obtained in advance. In

(Zhang et al., 2019), a deep recurrent neural network based

pseudo-measurement postulating module is used to learn

complex nonlinear functions to improve the accuracy of

measurements. However, the modelling of pseudo-

measurements is also subject to uncertainty factors that leads

to reduced accuracy. Inspired by (Khosravi et al., 2011; Quan

et al., 2014), pseudo-measurements can be modelled using

interval models.

To deal with the uncertainty factors and lack of real-time

measurements in ADN, an IDSE method is proposed for ADN

integrated with PVs in this paper.

(1) In order to increase the calculation speed of the UKF without

reducing accuracy, the square root of the covariance matrix is

used instead of the covariance matrix in UKF and the

improved UKF is used to determine the operating median

values of all state variables.

(2) Neural network based prediction interval method is used to

model the uncertainty of both pseudo-measurement of node

injected power and real-time measurement in the system.

(3) The normal fluctuation range of ADN state is modelled as a

bilevel non-linear programming problem to obtain the upper

and lower bounds.

The simulations are carried out on IEEE 33-node and IEEE

123-node systems to evaluate the effectiveness of the proposed

DSE method.
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2 Dynamic state estimation based on
square root unscented Kalman filter

2.1 Dynamic state estimation model

The state and measurement model of the nonlinear ADN can

be written as follows (Zhao, 2018):

{xk � f(xk−1) + qk−1
zk � h(xk) + rk,

(1)

{ q ~ N(0, Q)
r ~ N(0, R), (2)

where, xk is the n-dimensional state vector, sate variables are

chosen as the voltage magnitude and phase angle for each bus,

xk � [vk1 , vk2 , . . . , vkn,φk
1 ,φ

k
2 , . . . ,φ

k
n]; zk is the m-dimensional

measurement vector, measurement variables are chosen as

active and reactive power injections for each bus,

zk � [Pk
1 , P

k
2 , . . . , P

k
n, Q

k
1 , Q

k
2 , . . . , Q

k
n]; f(·) is the state

transition function at k-1 time interval; h(·) is the

measurement function; qk is the system error; rk is the

measurement error, which is usually assumed to be

uncorrelated Gaussian noise as Eq. 2; Q and R are system

noise variance and measurement noise variance, respectively.

2.2 Square root unscented Kalman filter

2.2.1 Unscented Kalman filter
UKF is based on the basic steps of the Kalman filter,

introducing the unscented transform as a sampling method to

approximate the nonlinearity. The basic principle of UKF is to

construct the Sigma point set with variance as the variance of the

state variable around the mean point of the state variable, then

perform a nonlinear transformation on each point in this point

set, and finally weight the sum to obtain the state variable and

variance after the nonlinear transformation, this method can

achieve at least second order accuracy.

Unscented transform process: x is a random variable with

mean �x and covariance Px. Construct a Sigma point set {χi} that
satisfies:

�x � ∑L

i�1W
m
i χi, (3)

Px � ∑L

i�1W
c
i(χi − �x)(χi − �x)T. (4)

Perform a nonlinear transformation y � f(x) on all Sigma

points to obtain the transformed point set {ξi}. Once UKF has

determined the sampling strategy, it also determines the number

of sampling points L and weights Wm and Wc for mean and

variance.

UKF consists of two main steps: time update and

measurement update.

Step 1: time update

xk is state variable at time k, Pk is the covariance of state

variable at time k, the Sigma point set {χik} can be used to predict

the state variable and variance in one step:

χik+1|k � f(χik) + qk, (5)
xk+1 � ∑L

i�1 W
m
i χ

i
k+1|k (6)

Pk+1 � ∑L

i�1 W
c
i (χik+1|k − xk+1)(χik+1|k − xk+1)T + Qk, (7)
γik+1 � h(χik+1|k) + rk, (8)
yk+1 � ∑L

i�1 W
m
i γ

i
k+1, (9)

Step 2: measurement update

Pyk+1 ,yk+1 � ∑L

i�1 W
c
i(γik+1 − yk+1)(γik+1 − yk+1)T + Rk+1, (10)

Pxk+1 ,yk+1 � ∑L

i�1W
c
i (χik+1|k − xk+1)(γik+1 − yk+1)T, (11)

Kk+1 � Pxk+1 ,yk+1
Pyk+1 ,yk+1

, (12)

x̂k+1 � xk+1 +Kk+1(zk+1 − �yk+1), (13)
Pk+1 � Pk+1 −Kk+1Pyk+1 ,yk+1K

T
k+1. (14)

The detailed steps and derivation process of UKF can be

found in [6]. The traditional UKF algorithm needs to perform a

non-linear transformation on each sampling point, which is a

quite complex calculation and has obvious numerical errors. As a

result, it will affect the non-negative characterization and

symmetry of error covariance, which will affect convergence

speed and stability. To improve the efficiency and accuracy of

filtering algorithm, the square root of covariance matrix can be

used instead of covariance matrix in traditional UKF algorithm

during recursive operation process.

2.2.2 Steps of square root unscented Kalman
filter

The basic idea of square root UKF (SR-UKF) is to perform a

QR decomposition of state variance matrix Pk in the UKF

process, so that it satisfies Pk � AkpAT
k � �RT

kp
�Rk, where �Rk is

the upper triangular part of R in AT � QR. The UKF filtering

process is implemented by updating �Rk instead of Pk.

Thus, Eq. 7 in time update step is modified as follows:

S−k+1 � qr{[ 



Wc

1

√ (χik+1|k − xk+1), 


Q

√ ]}, (15)
S−k+1 � cholupdate{S−k+1, χ0k+1|k − xk+1,Wc

0}. (16)

Eq. 10 in measurement update step is modified as follows:

Syk+1 ,yk+1 � qr{[ 



Wc

1

√ (γik+1 − yk+1), 


R

√ ]}, (17)
Syk+1 ,yk+1 � cholupdate{Syk+1 ,yk+1, γik+1 − yk+1,Wc

0}, (18)

Eq. 12 and Eq. 14 are modified as follows respectively:
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Kk+1 �
(Pxk+1 ,yk+1/STyk+1 ,yk+1)

Syk+1 ,yk+1
, (19)

Sk+1 � cholupdate{S−k+1, Kk+1Syk+1 ,yk+1,−1}, (20)

where, qr(·) is QR decomposition, cholupdate(·) is Cholesky

first-order update (Jafarzadeh et al., 2011). x̂k+1 represents the

estimated optimal values for all state variables, including bus

voltage magnitudes and phase angles. These values will be later

used as inputs for IDSE in ADN.

3 Interval dynamic state estimator

In this section, a new generalized interval state estimator

is proposed for ADN. It consists of three parts: SR-UKF,

neural network (NN) and state uncertainty evaluation. SR-

UKF is applied to obtain the operating states xk+1 of ADN (in

Section 2). NN is mainly used for modeling the forecasting

uncertainties of PV and load to obtain the upper and lower

bounds of power. The purpose of state uncertainty

evaluation is to quantify the upper and lower bounds of

state fluctuation in ADN, the normal fluctuation range of

ADN state is modelled as a bilevel non-linear programming

problem to perform IDSE. The output parameters of the

proposed state estimator are the normal fluctuation intervals

for all state variables, The overall framework of IDSE is

shown in Figure 1. The details of each part of the IDSE

are given as follows.

3.1 Prediction interval of measurements

Commonly used indicators for prediction interval assessment

are prediction interval coverage probability (PICP), prediction

interval normalized average width (PINAW) and prediction

interval normalized root-mean-square width (PINRW):

PICP � 1
n
∑n

i�1εi, (21)

where, n is the number of samples, εi � 1 if target value

yi ∈ [Li, Ui], otherwise εi � 0. Li and Ui are the lower and

upper bounds of the i-th prediction interval. PICP represents

the probability that target value will fall within a prediction

interval.

PINAW � 1
nR

∑n

i�1(Ui − Li), (22)

where, R is the range of the underlying target (maximum minus

minimum), which ensures that PINAW is normalized to the

interval [0,1]. Too wide interval leads to increased uncertainty in

prediction results, reducing the predictability of the results for

system scheduling. PINRW gives greater weight to wider

intervals than PINAW, and practical results show that

PINRW is more beneficial than PINAW for obtaining high

quality intervals predictions [13].

PINRW � 1
R
















1
n
∑n

i�1(Ui − Li)2
√

. (23)

The lower and upper boundary estimation (LUBE) theory

[14] is based on a multi-layer perceptron neural network

structure, which tunes the single node structure of the output

layer of the back propagation neural network into a dual output

node structure with lower and upper boundary values of

prediction interval. Compared with traditional prediction

interval schemes, LUBE avoids the limitations of data

FIGURE 1
The overall structure of Interval dynamic state estimator.

FIGURE 2
Prediction Interval model based on LUBE.
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distribution assumptions and complex calculations. The

prediction interval model based on LUBE is shown in

Figure 2, the number of layers and the number of nodes in

each layer of neural network in LUBE can be adjusted according

to actual situation.

For PV, the factors affecting the PV power output include

solar radiation S, temperature T and humidity H. The inputs to

the model at time i is:

Xi � [ Si Ti Hi ]T (24).

The output after forward propagation is:

Yi � [ Li Ui ]T
� g(WXi), (25)

where, g(·) is activation function. As the output prediction

interval of PV is related to several influencing factors, an

optimization function needs to be constructed by

comprehensively evaluating the interval coverage and interval

width, thus transforming multi-objective optimization into

single-objective optimization. The integrated evaluation

function for prediction interval (loss function) selected in this

paper is as follows:

J �
⎧⎪⎨⎪⎩ f � PINRW(1 + γ(PICP)e−η(PICP−μ))

γ � { 0, PICP≥ μ
1, PICP< μ

, (26)

where, μ is confidence level and can be set to 1 − α, η is the

parameter for f and usually η ∈ [50, 100]. Unlike traditional back
propagation (BP) neural networks which use BP to obtain

network parameters, LUBE can not use BP due to the lack of

targets (observations of lower and upper bound). Therefore,

optimization algorithms such as particle swarm optimization

(PSO) can be used to obtain the parameters of LUBEmodel. Load

can also be modelled using LUBE method.

3.2 Operating state uncertainty evaluation

To better reflect the influence of system uncertainties on

ADN state estimation results, all bus measurements in the

IDSE model established in this paper are objectively quantified

and described as interval numbers, resulting in the solved

system state variables are also interval numbers, which can

provide effective system state boundary information for

dispatchers.

The interval number [a] is defined as a non-empty real

number set satisfying [a] � {a| a ≤ a≤ �a} where �a and a

represent the upper and lower boundaries of the interval

number [a], specifically, when a � �a, interval number

degenerates to real number. Thus, the measurement vector z

and state vector x can be expressed as:

{ [z] � {[Pi], [Qi], [Pik], [Qik]}T i, k � 1, 2, . . . , n,
[x] � {[Ui], [θi]}T (28)

where, n is the number of buses, active power P and reactive

power Q are measurements, voltage magnitude U and phase

angle θ are the state variables.

IDSE is to determine the state variable information of ADN

based on the upper and lower bound information of

measurement vector and non-linear mapping equation

z � h(x), which can be expressed as:

X(M, z, �z) ≔ {x ∈ Rn: h(x) ∈ Z(M, z, �z)}, (29)

where, X(·) is the uncertainty set of system state variables, M is

the set of system measurement, Z(·) is the uncertainty set of

system measurement vector:

Z(M, z, �z) ≔ {ẑ∈ Rm: zj ≤ zj ≤ zj, j � 1, 2, 3, . . . , m}, (30)

where, ẑ is an actual measurement vector, m is the cardinality of

the system measurements setM. As the measurement vector has

more dimensions than the state variable, and there is a nonlinear

mapping relationship h(·), the geometry of the state set X(·) is
complex, as shown in Figure 3.

It is difficult to establish uniform analytical expressions and

standard analytical methods (Wang et al., 2013). However, based on

the theory of unknown-but-bounded error (UBBE), the original

problem can be transformed into two optimization problems

containing non-linear interval constraints, where the upper and

lower bounds on the variables to be solved are obtained separately

(Bargiela et al., 2003). Thus, the interval state estimation model

developed in this paper is expressed as follows:

Objectives:

xi � minxi,
�xi � maxxi.

(31)

FIGURE 3
The relationship between the uncertainty sets X( ) and Z( ).
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s.t.

Pi + ΔPG
i � Vi∑n

j�1Vj(Gij cos θij + Bij sin θij), (32)
Qi + ΔQi � Vi∑n

j�1Vj(Gij sin θij − Bij cos θij), (33)

ΔPG
i � {ΔPRE

i , i ∈ ΩRE,
ΔPL

i , i ∈ ΩL,
(34)

ΔPτ,RE
i,low ≤ΔP

RE
i ≤ΔPτ,RE

i,up , (35)
ΔPτ

i,low ≤ΔPL
i ≤ΔPτ

i,up, (36)
ΔQτ

i,low ≤ΔQi ≤ΔQτ
i,up, (37)

where, [xi, �xi] is the interval value of state variable of node i,

including voltage magnitude V and phase angle θ, Pi and Qi are

the active and reactive power of node i,Gij and Bij are admittance

of branch ij, ΔPRE
i is PV forecasting power output interval with

lower bounds ΔPτ,RE
i,low and upper bounds ΔPτ,RE

i,up , ΔPL
i and ΔQi are

load forecasting active and reactive power interval.

The estimation of individual state variable is independent of

each other, as shown in Eq. 32, subject to the same equality and

inequality constraints. The equality constraint contains active

and reactive power balance constraints Eqs 33–35. Inequality

constraints include PV forecasting uncertainty constraints Eq. 36

and load forecasting uncertainty constraints Eqs 37, 38. The

upper and lower bounds of the forecasting uncertainty are

updated in real time according to NN based LUBE.

4 Case study

In order to further verify the effectiveness and feasibility of

the proposed IDSE method, a simulation study on IEEE 123-bus

distribution system is carried out. The test system has a rated

voltage of 4.16 kV and a total load of 3620 + j1324 kVA, with

individual load capacities and network branch parameters

detailed in (Chai et al., 2018). 12 PV units are installed at

12 nodes, whose capabilities and locations are listed in

Table 1. In addition, some nodes are selected to arrange real-

time measurement devices, whose real-time measured power

value is obtained from the power flow calculation of IEEE

123-bus system, and measurement error of ± 0.5% is

superimposed on the rated value, the extended IEEE 123-bus

distribution system is shown in Figure 4.

4.1 Prediction interval of measurements

(1) For PV power output, the ambient temperature, direct

radiation, scattered radiation, and total radiation around

the PV plant at various time sections during a week in a

certain region are used as a source for PV power output

prediction interval. The parameters of the LUBE are listed

in Table 2. The resulting PV power output prediction

interval based on LUBE estimates the PV power output

curve at different time sections on a typical day is shown in

Figure 5.

(2) For load, historical load data from AEMO (2006–2010) in

New South Wales, Australia (Qiu et al., 2018) was used as a

sample for load prediction interval. The resulting load

prediction interval estimates the load curve at different

times sections on a typical day is shown in Figure 6.

4.2 Interval dynamic state estimation

In order to make comparison of the results of IDSE for ADN,

the PV power output interval [0, 0.1] kW at 01:00 a.m. and [302,

345] kW at 13:00 p.m. are selected for the test, based on which the

EKF and UKF are used for the IDSE analysis with SR-UKF

proposed in this paper. Figures 7, 8 show the results of IDSE in

ADN based on these three methods.

As can be seen from the IDSE results shown in Figures 7, 8,

the interval fluctuations in injected power of node cause the

voltage magnitude and phase angle to fluctuate within a certain

range, and the access to PV in ADNwill increase the voltage level

of the system. The comparison analysis shows that at any node of

the ADN, the result interval of the IDSE method used in this

paper is smaller than that of the EKF and closer to the result

interval of the UKF, demonstrating that the conservativeness of

the uncertain DSE solution can be effectively reduced by using

the DSE algorithm with high accuracy. The EKF linearizes the

system through Jacobian matrix calculation, which ignore higher

order terms, making the state estimation of EKF less accurate and

therefore the interval range obtained through the EKF is larger.

The UKF approximates the non-linear system by unscented

transformation, which can be approximated to at least second

order for non-Gaussian inputs. Therefore, the UKF is more

accurate than the EKF and has a smaller interval range than

EKF. SR-UKF reduces computational errors and improves

computational efficiency by propagating the SR of matrix

instead of the matrix itself, its accuracy is slightly better than

that of the UKF. SR-UKF has almost the same interval range

as UKF.

In order to compare the conservativeness of the above three

methods more intuitively, a comparative analysis of the interval

width of IDSE for node voltage magnitude and phase angle is

carried out, using two indicators to assess the conservativeness:

TABLE 1 Capacity and location of PV units.

PV location PV capacity (MVA)

15, 46, 114 0.6

61, 88, 105 0.8

25, 68, 80 1.0

35, 98, 121 1.2
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⎧⎪⎪⎨⎪⎪⎩ ω1 � 1
n
∑n
i�1
(�xi − xi), i � 1, 2, . . . , n,

ω2 � max(�xi − xi)
(38)

FIGURE 4
Topology of the extended IEEE-123 bus distribution system.

TABLE 2 LUBE parameters setting.

Number of net layers Number of neurons per
layer

η μ

2 64 70 0.7

FIGURE 5
Prediction interval curve of PV power output on a typical day.

FIGURE 6
Prediction interval curve of load on a typical day.
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where, ω1 is the average interval width, ω2 is the maximum

interval width. Larger ω1 and ω2 means higher conservativeness,

the results are shown in Tables 3, 4.

The above results show that the SR-UKF method used

for IDSE in this paper has a narrower solution interval width

compared to EKF and UKF, is less comparative and has a higher

reliability of the estimation results. Meanwhile, comparing the

results for t = 1 h and t = 13 h shows that the PV output increases

as the light intensity becomes stronger, making the uncertainty

also increasing, so that the interval width at t = 13 h is wider than

that at t = 1 h.

FIGURE 7
Estimation of node voltage amplitude and phase angle at
t = 1 h. FIGURE 8

Estimation of node voltage amplitude and phase angle at
t = 13 h.

TABLE 3 Comparison bounds of node at t = 1 h

Method Voltage
magnitude

Phase angle

ω1 ω2 ω1 ω2

EKF 0.0185 0.0239 0.0050 0.0071

UKF 0.0115 0.0147 0.0034 0.0046

SR-UKF 0.0110 0.0131 0.0030 0.0041

TABLE 4 Comparison bounds of node at t = 13 h

Method Voltage
magnitude

Phase angle

ω1 ω2 ω1 ω2

EKF 0.0215 0.0284 0.0079 0.0113

UKF 0.0168 0.0221 0.0051 0.0072

SR-UKF 0.0162 0.0202 0.0044 0.0061
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Next, the computing efficiency of the three methods is

compared and analyzed, are shown in Table 5. From the

comparison results, it can be seen that the SR-UKF method

used in this paper has much better computing efficiency than

EKF and UKF, and it is suitable for large-scale networks, thus

making it suitable for online applications.

5 Conclusion

An interval dynamic state estimation considering the

uncertainty of PV and load has been proposed in this paper.

(1) SR-UKF is used to determine the operating median values of

all state variables to improve computing efficiency.

(2) The interval is used to analyze the measurement uncertainty

of ADN, the NN based LUBE theory is used to predict the PV

power output interval and the active and reactive power

interval of unmeasured load.

(3) The interval state estimation is modelled as a bilevel non-

linear programming problem to obtain the upper and lower

bounds. The modified test case demonstrates the feasibility

and effectiveness of the proposed IDSE method.

The next step of the research will be to study the analysis of

system measurement outliers (bad data), zero injection power

node constraints and other factors to improve the online

application of IDSE method for ADN.
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