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Extreme learning Kalman filter
for short-term wind speed
prediction
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Accurate prediction of wind speed is critical for realizing optimal operation

of a wind farm in real-time. Prediction is challenging due to a high level

of uncertainty surrounding wind speed. This article describes use of a novel

Extreme Learning Kalman Filter (ELKF) that integrates the sigma-point Kalman

filter with the extreme learning machine algorithm to accurately forecast

wind speed sequence using an Artificial Neural Network (ANN)-based state-

space model. In the proposed ELKF method, ANNs are used to construct

the state equation of the state-space model. The sigma-point Kalman filter

is used to address the recursive state estimation problem. Experimental data

validations have been implemented to compare the proposed ELKF method

with autoregressive (AR) neural networks and ANNs for short-termwind speed

forecasting, and the results demonstrated better prediction performance with

the proposed ELKF method.

KEYWORDS

wind speed prediction, Kalman filter, uncertain dynamical systems, extreme learning machine,

neural networks

1 Introduction

To support environmental sustainability, wind energy is the best green energy
source to replace high-carbon power generation. The use of wind power has increased
dramatically, particularly in the past decade. It is challenging to control wind turbines
and implement optimal wind farm operations for reliable wind power supplementation
due to the stochastic nature of wind speed (Evans and Lio, 2022). It is crucial to obtain
precise wind speed predictions for optimal control of wind turbines, using methods such
as models of predictive control in stabilizing wind turbines (Hur and Leithead, 2022), to
ensure stable supply of wind power. Predicting wind speed, especially in the short-term,
is critical for improving power generation efficiency and extending the life span of a wind
turbine (Bossanyi, 2003; Lio et al., 2017; Liew et al., 2022).

The existing methods for wind speed prediction in the short term represent two
different classes. The first class includes physical model-based methods (Cassolaa and
Burlando, 2012; Xu et al., 2020; Chen et al., 2021; Li et al., 2022). One physical model-
based method is the numerical weather prediction method, in which predictions are
based on physical models that include parameters characterizing the properties of the
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weather, such as atmospheric pressure, surface roughness,
temperature, and many others (Lynch, 2008; Chen et al., 2021).
However, the performance of the numerical weather prediction
method deteriorates dramatically when the uncertainty of
weather conditions is high. To address the uncertain nature of
wind speed, statistical modeling has become more and more
popular compared to models of the physical mechanism of wind
speed. In the statistical approach, statistical methods are applied
to model the temporal causality of wind speed (Shen et al., 2021;
Ouyang et al., 2017). Currently, wind speed prediction often uses
time series models or artificial neural network (ANN) models
(Giorgi et al., 2011). Among time series model-based methods,
autoregressive moving average (ARMA) models, with variants
such as simplified autoregressive (AR) models and others,
have been well-applied in forecasting wind speed sequence
(Prema and Rao, 2015; Torres et al., 2005; Hanoon et al., 2022).
However, the ARMA classmethods need to increasemodel order
to model causality in a time series, especially considering the
stochastic variations ofwind speed.Moreover, ARMAmodels are
essentially linear models, which are not able to capture nonlinear
features of the causality of wind speed. Therefore, ANNs are
used to describe the nonlinear features of temporal causality
in wind speed (Başaran and Filik, 2017; Kadhem et al., 2017;
Malik et al., 2022). Although ANNs can handle the nonlinearity
in wind speed dynamics, they cannot independently capture the
dynamical nature of wind speed time series; therefore, a high-
order model is necessary, which increases the complexity of the
model.

State-space models are naturally suitable for describing the
temporal causality of a dynamical system (Shen et al., 2020).
Kalman filters can be used to identify the state-space models and
infer the hidden state variables (Kitagawa, 1996; Kitagawa, 1987).
Kalman filtering has been widely used in estimation problems,
such as battery capacity estimation (Plett, 2004a; Plett, 2004b;
Plett, 2004c; Plett, 2006a; Plett, 2006b). For nonlinear models,
use of a sigma-point Kalman filter (SPKF) is an effective
way to conduct the state estimation (Plett, 2006a; Plett, 2006b).
However, accuracy of the SPKF relies on the goodness-of-fit of
the model. Therefore, in this article, we propose the Extreme
Learning Kalman Filter (ELKF), a novel method that combines
SPKF and ANN to give accurate short-term predictions of wind
speed. Our data indicate that the state-space model for wind
speed can be obtained using noisy measurements of wind speed.
With an ANN-based state-space model for dynamics of wind
speed, we conduct SPKFmodeling to obtain estimates of current
wind speed, then use the estimation and an ANN-based state
equation to further predict wind speed. The effectiveness of the
proposed ELKFmodel has been validated using an experimental
data set.

This article is organized into four sections. Section 2 includes
a formal description of the problem. In Section 3, the proposed
algorithm is presented after a brief introduction to the Extreme

Learning Machine (ELM) based training algorithm for ANNs
and SPKF. The results of experimental data-based validations
are presented in Section 4, and the study conclusion appears in
Section 5.

2 Problem formulation

Let t = 0,1,2,… define the discrete time index. Let st ∈ ℝ be
the wind speed at t. The following assumption holds throughout
this article.

Assumption 1: The stochastic process st is a Markov process.
Namely, the following holds.

Pr{st+1 = S
′
|st = S, st−1 = St−1,…, s0 = S0}

= Pr{st+1 = S
′
|st = S} . (1)

Due toAssumption 1, we can use the state-space equation to
describe the dynamical evolution of st , which is written by

st+1 = fws (st,ωt) , (2)

where ωt ∈ ℝ is a random variable for system noise, and fws:ℝ×
ℝ→ℝ is an unknown nonlinear function that describes the
causality relationship between st and st+1. The measurement
of wind speed zt is perturbed by st due to the existence of
measurement noise νt . The observation function is thus written
by

zt = st + νt. (3)

We hold the following assumptions regarding ωt and νt .

Assumption 2: The system noise ωt and measurement noise νt
are both identically independently distributed Gaussian noises.

The problem that needs to be addressed is summarized as
follows.

Problem 1. With data set Zt = {z0,…,zt}, this study aims to
predict ̂st′ of st′ for a t′ > t. The prediction ̂st′ is expected to
satisfy

𝔼{ ̂st′ − st′} = 0, (4)

and

𝔼{( ̂st′ − st′)
2} = 𝔼{ν2t } . (5)

To achieve the task, the following two sub-problems need to be
addressed:

• construction of the approximate model ̂fws(⋅) of fws(⋅);
• design of filtering and prediction algorithms to estimate ̂st
and prediction of ̂st′ .
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FIGURE 1
Essentials of the ELM algorithm: activation function mapping.

3 Proposed method

3.1 ELM for training ANNs

ELM is an effective algorithm for training single-layer ANNs.
Single-layer ANNs can be well trained to approximate standard
multilayer ANNs. In a single-layer ANN, there are nonlinear
activation functions as hidden nodes. For example, there are
N samples (ui,oi), where oi = [oi,1,…,oi,m]T ∈ ℝm represents the
output variable andui = [ui,1,…,ui,n]T ∈ ℝn is the input. A single-
layer ANN denoted by h(u) with S activation function φ(⋅)
describes the input-to-output causality by

ôi = h(ui)⩵
S

∑
j=1

βjφ(ω
T
j ui + bj) , i = 1,…,N (6)

where ωj = [ωj,1,…,ωj,n]T and βj = [βj,1,…,βj,m]
T are vectors,

and bj is a constant scalar in the jth node. If we consider the
relationship between o and u, it is described by o = h(u) and is
nonlinear, as shown in the left part of Figure 1. On the other
hand, if we consider o and φ(⋅), the causality becomes linear
after activation function mapping, as shown in the right part of
Figure 1.

A single-layer ANN with S activation function φ(⋅) can
approximate these N samples in the sense of zero means written
by

N

∑
i=1

ei =
N

∑
i=1
(oi − ôi) = 0, (7)

then, by the theoretical result in Huang (2003), ∃S ≤ N,bj,ωj,βj
such that

oi =
S

∑
j=1

βjφ(ω
T
j ui + bj) , i = 1,…,N. (8)

where the activation function adopts the same function denoted
by φ(⋅). More generally, by defining

H = [[

[

φ(ωT
1u1 + b1) … φ(ωT

N̄u1 + bN̄)
⋮ … ⋮

φ(ωT
N̄uN + b1) … φ(ωT

N̄uN + bN̄)

]]

]

, (9)

β = [[

[

βT1
⋮
βTN̄

]]

]

, (10)

and

O = [[

[

oT1
⋮
oTN̄

]]

]

, (11)

the above equation is equivalent to

O =Hβ. (12)

We call H the output matrix of the hidden layer or the hidden
layer output matrix. The ith column of H represents the ith
hidden node output computed from the inputs u1,u2,… ,uN .
Generally, the values of β,ω1,…,ωN̄,b1,…,bN̄ can be trained by
using a gradient descent algorithm.However, the ELM algorithm
proposed in Huang (2003) provides a simpler and more efficient
way to obtain good estimations of β,ω1,…,ωN̄,b1,…,bN̄ in the
sense of zero means.

Let U = [u1,u2,… ,uN] be the input matrix and O be
the output matrix. The ELM algorithm for training single-
layer ANNs is summarized in Algorithm 1. Note that HM

represents the generalized inverse of H, called the Moore-
Penrose generalized inverse, which is defined in Rao and
Mitra (1972) and is calculated as

HM = (HTH)−1HT. (13)

Thus, we calculate the estimation of β by

β = (HTH)−1HTO. (14)
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Input: U,O,S

Output: bj,ωj,β,j = 1,2, ...,S

Step 1: Generate bj and ωj, j = 1, ..., ̄N by random

algorithm (uniform distribution);

Step 2: Compute H;

Step 3: Compute β= HMO

Algorithm 1. Original ELM for single-layer ANNs.

The effectiveness of Algorithm 1 is theoretically proven in
Tamura and Tateishi (1997) when we assume thatH is invertible,
φ(⋅) is infinitely differentiable, and ‖Hβ−O‖ = 0.

A sequential version can also be derived by way of the
recursive least squares (RLS) algorithm (Chong and Zak, 2001),
which is summarized as

3.2 Brief introduction to SPKF

SPKF is a generalized Kalman filter for estimating the state of
nonlinear dynamical systems described by

xt+1 = f (xt,wt) , (15)

yt = g(xt,vt) , (16)

where xt ∈ ℝnx denotes the state variable, yt ∈ ℝ
m is the

observation, and wt ,vt are noises. Instead of using Taylor-series
expansion-based approximations of the covariance matrices of
the state and output as in the extended Kalman filter (EKF)
(Plett, 2004a; Plett, 2004b; Plett, 2004c), several functions are
evaluated to calculate the approximations of the covariance
matrices. SPKF does not require the differentiability of the
original functions in state-space models and can achieve better
approximations of covariance matrices, which improves state
estimation accuracy. Additionally, in SPKF, the derivatives of
the functions in the state-space models are not required, which
also reduces the computational complexity of implementing
SPKF.

In SPKF, several sigma points are selected to be the input of
the nonlinear function. Note that themean and covariance of the
sigma points can be weighted to the values that are equal to the
those of the a priori state estimation. These points are directed
to a set of points output by the nonlinear function, which can
be used to obtain the approximate mean and covariance of the
a posteriori estimated state. In the state estimation problem for a
system described by (Eqs 15, 16), the required number of sigma
points is p+ 1 = 2nx + 1. The generated set is defined by

Xt,i = {x̄t,i, x̄t,i + γ√Σxt , x̄t,i − γ√Σxt} , i = 0,…,p, (17)

where thematrix square rootB = √A is the result ofA = BBT, x̄t is
themean of xt , and Σxt is the covariance of xt . It can find a specific

set of {γ,α(m),α(c)} such that the weighted mean and covariance
of Xt,i equal the original mean and covariance of xt , which are
written by

x̄ =
p

∑
i=0

α(m)i Xt,i, (18)

Σxt =
p

∑
i=0

α(c)i (Xt,i − x̄)(Xt,i − x̄)
T. (19)

Note that ∑pi=0α
(m)
i = 1 and ∑

p
i=0α
(c)
i = 1.

Let xat = [(xt)
T, wt,vt]

T be an augmented random variable.
With xat , we implemented SPKF as follows.

1) Update of the a priori state estimation. First, there is
augmentation of a posteriori state estimation of the last time
step,

x̂a,+t−1 = [(x̂
+
t )

T, w̄t, v̄t]
T, (20)

and then augmentation of a posteriori covariance estimation,

Σa,+
xt−1 = diag(Σ

+
xt−1 ,Σw,Σv) . (21)

Based on (Eqs 20, 21), we can generate p+ 1 sigma points

X a,+
t−1,i = {x̄

a,+
t−1,i, x̄

a,+
t−1,i + γ√Σ

a,+
xt−1 , x̄

a,+
t−1,i − γ√Σ

a,+
xt−1}

, i = 0,…,p. (22)

InX a,+
t−1,i, we extract the state portionX

x,+
t−1,i and the measurement

noise portion X w,+
t−1,i to evaluate the state equation to calculate

the a priori sigma points X x,−
t,i for time step t, which is

written as

X x,−
t,i = f (X

a,+
t−1,i,X

w,+
t−1,i) . (23)

The a priori state estimation at time step t is calculated as

x̂−t = 𝔼{ f (xt−1,wt−1) |𝕐t−1} ,

≈
p

∑
i=0

α(m)i f (X a,+
t−1,i,X

w,+
t−1,i) =

p

∑
i=0

α(m)i X x,−
t,i . (24)

2) Update of the error covariance. The a priori covariance
estimation is obtained from the a priori sigma points
X x,−

t,i , i = 0,1,…,p. That is

Σ−xt =
p

∑
i=0

α(c)i (X
x,−
t,i − x̂

−
t )(X

x,−
t,i − x̂

−
t )

T. (25)

3) Estimation of the system output. The estimation of system
output is computed from sigma points by using the
observation equation. First, we calculate the estimated points

Yt,i = g(X
x,−
t,i ,X

v,−
t,i ) . (26)

The output prediction is then given by

ŷt = 𝔼{h(xt,vt) |𝕐t−1} ,

≈
(m)

∑
i
h(X x,−

t,i ,X
v,−
t,i ) =

p

∑
i=0

α(m)i Yt,i. (27)
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TRAIN( ̂fws(⋅))

Measure the data set ZT

choose activation function ϕ(⋅)

set the number of activation functions S

Implement Algorithm 1 and obtain ̂fws(⋅)

return ̂fws(⋅)

PREDICT( ̂st′)

Update ̂fws(⋅) with new data zt via Algorithm 2

Implement SPKF to obtain ̂s+t based on ̂fws(⋅)

Calculate ̂s−t′ based on ̂fws(⋅) and ŝ+t

return ̂s−t′

Algorithm 2. Algorithm for the proposed ELKFmethod.

4) Determination of the estimated gain matrix. To calculate the
estimated gain matrix, the required covariance matrices are
first be computed by

Σyt
= Σp

i=0α
(c)
i (Yt,i − ŷt)(Yt,i − ŷt)

T, (28)

Σ−xt,yt = Σ
p
i=0α
(c)
i (X

x,−
t,i − x̂

−
t )(Yt,i − ŷt)

T. (29)

Then, we simply compute Lt = Σ−xt,ytΣ
−
yt
.

5) Update of the a posteriori state estimation. The a posteriori
state estimation is

x̂+t = x̂
−
t + Lt (yt − ŷt) . (30)

6) Computation of error covariance. We compute the
covariance matrix of error by

Σ+xt = Σ
−
xt − LtΣŷt

LTt . (31)

3.3 Proposed algorithm

The framework of the ELKF method for predicting wind
speed is illustrated in Figure 2 and the proposed algorithm is
summarized in Algorithm 2.

In the training step, the history data set ZT is used to
train the approximate model ̂fws(⋅) of fws(⋅). The model is
written by

zt = ̂fws (zt−1) =
S

∑
j=1

βjφ(ω
T
j zt−1 + bj) , t = 1,…,T. (32)

By implementing Algorithm 1, we obtain βj,ω
T
j ,bj for

j = 1,… ,S with data set ZT. Here, zt is used instead of st . The

Step 1: Initialize β by β0 which is obtained

from history data by Algorithm 1

Step 2: Compute ht+1 based on new measurement

(ut+1,ot+1) according to Eq (9), k = 0,1,2, ...,i, ...

Step 3: Update βt+1 by

βt+1=βt +Mt+1ht+1(oTt+1 −h
T
t+1 βt) (33)

where Mt+1 is computed by

Mt+1 = Mt −
Mkht+1h

T
t+1Mt

1+hT
t+1Mtht+1

. (34)

Step 4: Set t = t+1

Algorithm 3. Sequential ELM algorithm.

following theorem states that we can use zt to get ̂fws(⋅) in the
sense of mean value.

Theorem 1. Assume that Assumption 2 holds. Then, if

𝔼{zt} = 𝔼{ ̂fws (zt−1)} t = 1,…,T, (35)

then the following equation holds

𝔼{st} = 𝔼{ ̂fws (st−1)} t = 1,…,T. (36)

Proof. Since Assumption 2 holds. We have

𝔼{zt} = 𝔼{st + νt} ,

= 𝔼{st} +𝔼{νt} ,

= 𝔼{st} . (37)

On the other hand,

𝔼{ ̂fws (zt−1)} = ̂fws (𝔼{zt−1}) ,

= ̂fws (𝔼{st−1 + νt−1}) ,

= ̂fws (𝔼{st−1} +𝔼{νt−1}) ,

= ̂fws (𝔼{st−1}) ,

= 𝔼{ ̂fws (st−1) . (38)

Thus, (36) holds.
In the implementation step, the estimated model ̂fws(⋅) is

updated with online data zt by Algorithm 3. Then, with ̂fws(⋅),
SPKF is implemented to obtain the a posteriori state estimation
̂s+t . With ̂s+t , the prediction at time step t′ > t is calculated by
iteratively implementing the following equation

̂s−tj+1 =
̂fws ( ̂s
−
tj) , j = 0,…,(t

′
− t) , (39)

where t0 = t.
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FIGURE 2
Framework of the ELKF method for predicting wind speed.

4 Validation

4.1 Methods for comparison and the
wind speed data set

Figure 3 illustrates the data set used in validation. The data
sampling time is 10 min. A total of 61,858 data points were
collected from a large wind farm located in Jiugongshan, Hubei,
China within 12 consecutive days. The wind speed profiles
exhibit similarity in time scale. We used the data from Day 1 to
Day 10 for training the model and the rest of the data as the test
set.

We compared the proposed ELKF method with the AR
model and the ANN model. The ANN model is as described
in Section 3. For n-step-ahead prediction, the addressed
output is zt′ and the input is [zt′−n,zt′−n−1,…,zt′−n−p+1]

T.
Here, p is the order. The regular AR model is
expressed by

zt′ = α1zt′−n +⋯+ αpzt′−n−p+1, (40)

where α1,… ,αp are regression coefficients.

4.2 Results and discussion

Figure 4 and Figure 5 show plots of the results of predictions
(one-step and five-step) for 200 samples using the AR model,
ANN model, and ELKF method. The proposed ELKF method
exhibits better performance compared to the AR model
and the ANN model for both prediction horizons, since
the predictions given by the AR and ANN models deviate
significantly from the actual values. The predictions given

FIGURE 3
Data set for validation.

by the proposed ELKF method are close to the actual
values. Additionally, histograms of prediction residuals for
both prediction horizons are shown in Figure 6. The proposed
method has the predicted residuals concentrated to zero
with relatively small fluctuation. The traditional methods
result in residuals with larger variation. Therefore, our data
suggest that the proposed ELKF method provides more reliable
predictions.

Furthermore, the correlations between the predictions and
the actual values of the samples in Figures 4 and 5 are plotted
in Figure 7 and Figure 8, respectively. Compared to the AR
and ANN models, the predictions given by the proposed ELKF
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FIGURE 4
Results of wind speed prediction (predictive horizon: one-step): AR, ANN, and ELKF.

FIGURE 5
Results of wind speed prediction (predictive horizon: five-step): AR, ANN, and ELKF.

method show smaller deviations and strong correlations between
the actual values and predictions.

The results of root mean square error (RMSE) of
performance of different methods from analysis of the full
test data are summarized in Table 1. The results of the mean
absolute error (MAE) calculation based on the performance

of different methods are summarized in Table 2. RMSE is
calculated by

RMSE = √ 1
T

T

∑
t=1
(yt − ŷt)

2. (41)

MAE is calculated by
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FIGURE 6
Probabilistic histograms of prediction residuals of AR, ANN, and ELKF.

FIGURE 7
Correlation plots of one-step-ahead predictions versus actual
values: AR, ANN, and ELKF.

MAE = 1
T

T

∑
t=1
|yt − ŷt|. (42)

Our data indicate that the proposed ELKF method outperforms
the AR and ANN models in different predictive horizons.
The prediction performance of all methods degrades when
the prediction horizon increases because the stochasticity

FIGURE 8
Correlation plots of five-steps-ahead predictions versus actual
values: AR, ANN, and ELKF.

become stronger when the prediction horizon becomes
longer.

The reason that the ARmodel does not give good predictions
is that it is a linear time-series model that does not account
for dynamic state update in wind speed sequence. The ANN
adopts a nonlinear model and is able to depict the nonlinear
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TABLE 1 Comparison of RMSE values (m/s) associated with values
predicted by AR, ANN, and ELKF.

Predicted horizon AR ANN ELKF

One-step-ahead 0.9918 0.7660 0.4210
Two-steps-ahead 1.1291 0.8936 0.5312
Three-steps-ahead 1.3076 1.1729 0.7819
Four-steps-ahead 1.4375 1.3393 0.9765
Five-steps-ahead 1.7627 1.5864 1.2271

TABLE 2 Comparison of MAE values (m/s) associated with values
predicted by AR, ANN, and ELKF.

Predicted horizon AR ANN ELKF

One-step-ahead 0.7491 0.5855 0.3267
Two-steps-ahead 0.8583 0.6878 0.4161
Three-steps-ahead 1.0054 0.9129 0.6096
Four-steps-ahead 1.1086 1.0493 0.7623
Five-steps-ahead 1.3823 1.2719 0.9589

TABLE 3 Comparison of AR, ANN, and ELKF computational loads.

Items AR ANN ELKF

Training time (s) 5.819 93.452 10.521
Online implementation (ms) 0.87 1.91 1.83

feature of causality in wind speed sequence. However, the feature
of dynamic state update remains unresolved. The proposed
ELKF method adopts an ANN model in the dynamic system
to address the nonlinear issue and uses SPKF to resolve
the feature of dynamic state update. Therefore, the proposed
ELKF method provides better performance in wind speed
prediction.

Table 3 summarizes and compares the computation loads
of the three methods. The online implementation time adopts
the mean computation time in every step. The proposed ELKF
has a slightly heavier computational load than AR in both the
training process and online implementation. When using an
ANN, the computation load dramatically increases during the
training process. This is due to adoption of the ELM algorithm
by the ELKF to train the single-layer ANN, which is more
efficient.

5 Conclusion

In this article, a novel ELKF method is presented for
predicting wind speed in the short term. The ELKF method
combines the state-space model integrated with the ANNmodel
and state estimation by SPKF. The ANN model is trained by
the ELM algorithm and can be updated by a sequential ELM

algorithm,which describes the nonlinearity of temporal causality
in the time series data. Additionally, by using SPKF for state
estimation, the proposed method can capture the dynamical
feature of state updates in wind speed time series data. The
proposed method can handle the high level of uncertainty of
wind speed and produce better predictions compared to the
traditional methods. Future work will focus on investigating
wind power prediction for various wind turbines and in
development of control methods for optimizing wind farm
operation. For the proposed ELKF method, all collected data are
assumed to be normal data. However, abnormal data may exist
in collected data sets. Future work will also focus on using the
clustering method to clean data sets to further improve wind
speed prediction accuracy.
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