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As an important branch of the Internet of Things, the smart grid has become

a crucial field of modern information technology. It realizes the two-way

information flow and power flow by integrating the advanced metering

infrastructure (AMI) and distributed energy resources, which greatly improves

users’ participation. However, owing to smart meters, the most critical

components of AMI, are deployed in an open network environment, AMI

is a potential target for data integrity attacks. Among various attack types,

the scaling attack is the most typical one, because it can be used as a

general expression for most of other ones. By launching a scaling attack,

adversaries can randomly reduce hourly reported values in smart meters,

thereby causing economic losses. A number of research efforts have been

devoted to detecting data integrity attacks. Nonetheless, most of the existing

investigations focus on all attack types, and little attention has been paid to

a detection strategy specially designed for scaling attacks. Our contribution

addresses this issue in this paper and hence, developing a detection model of

scaling attacks considering consumption pattern diversity (SA2CPD), to ensure

that scaling attacks can be effectively detected when users have multiple

consumption patterns. To be specific, we leverage Kmeans to distinguish

different consumption patterns, and then the consumption intervals can be

extracted to binarize the data. We divide time periods in every day into two

categories based on the binarization values, and use one of them with the

greatest information gain to construct a decision tree for judgment. Both

theoretical and simulation results based on the GEFCom2012 dataset show

that our SA2CPD model has a higher F1 score than the decision tree model

without considering consumption pattern diversity, the KNN model and the

Naive Bayes model.
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1 Introduction

The traditional power grid has a history of more than
100 years. Owing to its disadvantages of one-way information
flow, low user participation, etc., it has gradually been unable
to adapt to the modern society. As a consequence, the smart
grid emerges as the times require, which not only incorporates
renewable energy resources such as solar energy and wind
energy to support multiple energy supply, but also integrates the
advanced metering infrastructure (AMI) to control the power
layer, realizing the two-way flow of information and power
(Zanetti et al., 2019; Rouzbahani et al., 2020; Choi et al., 2021;
Sarenche et al., 2021; Chaudhry et al., 2022; Huang et al., 2022;
Park et al., 2022). Specifically, smart meters which play a vital
role in AMI are deployed in demand sides, i.e., users, to
collect and upload information about power consumption
and supply to the utility. The utility then makes decisions
on real-time pricing, and energy scheduling, among others,
based on the uploaded information, and then feeds back
the decisions to guide users supply and consume electricity
smartly (Singh et al., 2017; Zheng et al., 2018; Choi et al., 2021;
Chaudhry et al., 2022; Huang et al., 2022; Park et al., 2022;
Verma et al., 2022). However, as smart meters are deployed
in an open network environment, they are vulnerable to
data integrity attacks, by launching which an adversary
can seriously endanger the safe operation of the smart
grid through tampering with the information in smart
meters (Jokar et al., 2016; Hu et al., 2019; Jakaria et al., 2019;
Yao et al., 2019; Zheng et al., 2019; Rouzbahani et al., 2020;
Tehrani et al., 2020; Bhattacharjee and Das, 2021; Singh
and Mahajan, 2021; Sun et al., 2021; Yan and Wen, 2021;
Chaudhry et al., 2022; Mudgal et al., 2022; Verma et al., 2022).
Therefore, the research on data integrity attacks detection is of
significant importance and has become a research hotspot in
the field of the smart grid (Jokar et al., 2016; Zheng et al., 2019;
Tehrani et al., 2020; Ibrahem et al., 2021).

Recently, much work has been conducted on the
detection for data integrity attacks in AMI, which is
mainly divided into three categories (Jiang et al., 2014;
Jokar et al., 2016; Yao et al., 2019), including state-
based (Huang et al., 2013; Salinas et al., 2014; Leite and
Mantovani, 2018; Lo and Ansari, 2013; McLaughlin et al., 2013;
Aziz et al., 2020; Bhattacharjee et al., 2021b,a), game
theory-based (Cardenas et al., 2012; Yang et al., 2016;
Wei et al., 2018, 2017; Paul et al., 2020) and classification-
based (Jokar et al., 2016; Singh et al., 2017; Ismail et al., 2018;
Yeckle and Tang, 2018; Zheng et al., 2018; Fernandes et al., 2019;
Jakaria et al., 2019; Punmiya and Choe, 2019; Zheng et al., 2019;
Rouzbahani et al., 2020; Tehrani et al., 2020; Yan and
Wen, 2021). As a result of the popularity of artificial intelligence
technologies, the feasibility of machine learning to detect
attacks in AMI has attracted much attention of a large number

of researchers. Therefore, classification-based detection has
gradually become a mainstream technology. For example,
Jokar et al. (Jokar et al., 2016) proposed a data integrity attacks
detection model based on SVM. They compared the reported
total consumption value with the actual total consumption value
to find out the suspicious area, and then used the historical
data and synthetic attack data to train SVM. Tehrani et al.
(Tehrani et al., 2020) took sampling values of 24 h and their
mean, standard deviation, minimum and maximum values as
features. Firstly, they used Kmeans for clustering, and then
generated false data according to the synthetic attack method
proposed in the literature (Jokar et al., 2016) to construct a
complete dataset for training and testing the decision tree,
random forest and gradient boosting. Nevertheless, the existing
studies all have the problem of dealing with different attack
types indiscriminately, but different attacks have different
characteristics, and there is currently no algorithm that can
contrapuntally detect scaling attacks. Thus, it is vital to design a
detection model specially for scaling attacks.

To fill this gap, in this paper we propose a detection model
of scaling attacks considering consumption pattern diversity in
AMI (SA2CPD). Compared with existing schemes which deal
with all attack types indiscriminately, our SA2CPDmodel focuses
on the scaling attack only, as the scaling attack is a typical data
integrity attack. The reason is that the scaling attack can not
be easily judged by manual methods, and can be used as a
generalization of several other attack types. In addition, we also
consider consumption pattern diversity of users caused by living
conditions, work and rest habits, etc. Specifically, we first leverage
the clustering technology to differentiate different consumption
patterns and extract consumption intervals. Then the data are
discretized by binarization on the basis of consumption intervals,
which can distinguish normal data from false data. Finally, the
discretized data are used as the input of the decision tree. In this
step, we divide the 24 time periods of a day into two categories,
and the decision tree makes judgement in accordance with one
of the two corresponding to the time periods with the greatest
information gain, to successfully detect the false data injected by
scaling attacks.

To further validate the effectiveness and efficiency of our
SA2CPDmodel, we conduct a performance simulation based on
the GEFCom2012 dataset (Hong, 2014). The consumer in our
experimental scenario has three different consumption patterns,
and each pattern has 1,586 data. We use the widely adopted
criteria as comparison metrics including the False Positive Rate
(FPR), False Negative Rate (FNR) and F1 score, which can
comprehensivelymeasure the recall and the precision.We design
two experiments. In the first experiment, we test the performance
of our model when the proportion of false data in the test set is
varied from 10% to 80%. The result verifies the effectiveness of
our detection model and is accord with our theoretical analysis.
In the second experiment, through the comparative experiments
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with the decision tree model without considering consumption
pattern diversity, the KNN model and the Naive Bayes model,
the results show that our model is more efficient. For example,
when the attack proportion is 50%, our FPR and FNR are 0.2%
and 6.78%, and the F1 score is 96.38%, while those of the Naive
Bayes model are 0.18%, 11% and 94% respectively, and those of
the KNNmodel are 0.02%, 13% and 92.96%.

The remainder of the paper is organized as follows: In
Section 2, we present the network and threat models, and then
briefly describe the related machine learning algorithms. In
Section 3, we present the detailed design of our SA2DCPmodel.
In Section 4, we describe the metrics and conduct performance
analysis in comparison with the decision tree model without
considering consumption pattern diversity, the KNN model and
the Naive Bayes model. In Section 5, we show experimental
results to validate the effectiveness and efficiency of SA2CPD
model. In Section 6, we discuss other related issues. Related
literature is reviewed in Section 7. Finally, we conclude the paper
in Section 8.

2 Preliminary

In this section, we first present the network and threatmodels
and then briefly introduce the Kmeans and decision tree model
used in SA2CPD.

2.1 Network models

AMI plays a crucial role in the smart grid and greatly
promotes the intelligence of the power grid. As shown in
Figure 1, AMI consists of smart meters, i.e., SM1-SM4, data
concentrators (DC), the utility and communication networks
between them (Jiang et al., 2014; Huang et al., 2022). The
communication networks in AMI enable the smart grid to realize
the two-way flow of information. Specifically, the smart meter,
domestic appliances and distributed renewable equipments
in a user’s home form a home area network (HAN). The
smart meter is responsible for collecting the consumption
and supply information of domestic appliances and renewable
equipments. A neighborhood area network (NAN) consists
of a data concentrator and adjacent smart meters. The DC
collects the information from all smart meters in the NAN over
wireless networks, and then forwards it to the utility through
wired networks such as optic fiber in the wide area networks
(WAN). Based on the received information, the utility makes
decisions such as the time-of-use price, the optimal electricity
plan which are conducive to the operation of the smart grid,
and finally feeds back the decisions to users. Users can view
the feedback information through smart meters and conduct
corresponding power supply or consumption. For example, a

supply-user determines his optimal power supply according to
the decision information and a demand-user decides when to
use electricity to save money according to the real-time price.

2.2 Threat models

Data integrity attacks in AMI mainly include six
types (Jokar et al., 2016; Hu et al., 2019; Zanetti et al., 2019;
Zheng et al., 2019; Yan andWen, 2021) from h1 to h6 formalized
as

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

h1 (xt) = αxt,α = random (0.1,0.8)

h2 (xt) = βtxt

βt = {
0
1
start_time < t < end_time

else

start_time = random (0,24)

end_time = random (start_time,24)

h3 (xt) = γtxt,γt = random (0.1,0.8)

h4 (xt) = γtmean (x) ,γt = random (0.1,0.8)

h5 (xt) =mean (x)

h6 (xt) = x24−t

. (1)

h1 represents contaminating the hourly reported value of meters
through multiplying by a same random number. h2 represents
that adversaries control a smart meter to report its measured
values as 0 for a certain duration. h3 represents manipulating
the hourly reported value of meters through multiplying by a
different randomnumber. h5 expresses reporting values ofmeters
as the mean value of a day. h4 multiplies each reported value by
a different random number on the basis of h5. h6 reverses the
order of reported values of the meter in a day. We divide these
six attack types into two categories, Category 1 and Category 2.
Category 1 is that the damage is caused by the reduction of the
reported total consumption including h1 − h4, and Category 2 is
that the total amount remains unchanged including h5 and h6.
Because the majority of the attack types are caused by changing
the reported total consumption, we focus on Category 1, namely
h1 − h4. Furthermore, the damage of h2 is extremely obvious and
the effects of h1 and h4 can be represented by h3. Therefore, we
focus on h3 and name it the scaling attacks.

2.3 Kmeans

Kmeans is one of the most commonly used methods in
clustering, which can achieve the best distinction between classes
based on the similarity of distances between points (Jain, 2010).
The goal of the Kmeans is to divide a dataset into k classes, so
that each point is closest to the center of the class it belonged to.
After all points are divided once, the class center is recalculated
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FIGURE 1
The architecture of AMI.

according to points within each class, and then iteratively assign
points and update the class center until it no longer changes.

2.4 Decision tree

Thedecision tree is a popular algorithm often used to classify
or regress data, which learns a large number of training samples
to construct a tree and judges the selected features in the tree
in turn, so as to determine the label of samples (Safavian and
Landgrebe, 1991). Adecision tree consists of a root node, internal
nodes and leaf nodes. The predictions for all samples are judged
sequentially from the root node. After a series of judgments in
internal nodes, the marked results can be obtained at the leaf
node. The judgement from the root node to the leaf node is a
process in which the uncertainty of information is continuously
reduced.

It is how to select the most appropriate features to make use
of the least judgment to draw a conclusion, so as to avoid the
decision tree being too large, that is the most important thing
in the process of constructing a decision tree. Decision trees use
information gain to minimize the uncertainty of information
(i.e., information entropy) in each judgment, which can be
formalized as

g (D,A) =H (D) −H (D|A) . (2)

In Eq 2, g(D,A) is the information gain of feature A to datasetD,
H(D) is the information entropy of dataset D before judgment,
and H (D|A) is the empirical conditional entropy of D when the
feature A is given. All notations used in this paper are defined in

Table 1. It is worth noting that the tth time period represents the
(t− 1)th hour to the tth hour.

3 The detection model of scaling
attacks considering consumption
pattern diversity in AMI

In this section, we first present the basic idea of the proposed
detection model of scaling attacks considering consumption
pattern diversity in AMI (SA2CPD).Then, we show details of the
SA2CPD.

3.1 Basic idea

Recall that adversaries will randomly inject reduced values
into original data when launching scaling attacks, so we can
distinguish normal data from false data as long as we find
power consumption intervals of the original normal data and use
these intervals as the boundary. Moreover, due to the differences
in living conditions, work and rest habits, etc., each user has
different electricity consumption patterns, so clustering need
to be performed before classification to find multiple normal
intervals of the original data. After that, we use intervals to
binarize the data so that all values are 0 or 1. Finally, the binarized
data is involved in training and classification judgment. Based
on the above statement, our SA2CPD consists of the following
three steps. First, find out k consumption patterns by clustering
and then extract consumption intervals. Second, generate false
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TABLE 1 Notations.

h(⋅): Type of data integrity attacks.
α: The attack parameter, which is a random fixed number from 0.1 to 0.8.
βt : The flag to represent whether h2 attack is launched or not in the tth time period. If launched, the value is 0, otherwise it is 1.
λt : The scaling attack parameter in the tth time period, which is a random number from 0.1 to 0.8.
g (D,A): The information gain of feature A to dataset D.
H(D): The information entropy of dataset D.
H(D|A): The empirical conditional entropy of dataset D when feature A is given.
cj: The power consumption vector on the jth day.
cj−h: Power consumption in the hth time period on the jth day.
sum: Total collection days of user data.
K/k: The number of consumption patterns/the order number of consumption patterns.
nmv: The number of missing values in a consumption vector.
ccenter−k: The center vector of the kth consumption pattern.
chcenter−k: Power consumption in the hth time period in the ccenter−k.
ljk: The distance between cj and ccenter−k.
lcj1cj2 : The distance between the power consumption vectors cj1 and cj2.
Ck: The set of power consumption data corresponding to the kth consumption pattern.
Ik: The consumption interval of the kth consumption pattern.
mink: The minimum power consumption per unit time period in the kth consumption pattern.
maxk: The maximum power consumption per unit time period in the kth consumption pattern.
φ: The set of time period features of consumption data.
Th: The hth time period of consumption data.
Tin/Tout : The set of time periods in which values of most consumption data in this time period are within or outside the normal interval after the attack is launched.
Th−in/Th−out : The consumption data set in which consumption values in the hth time period are within or outside the normal interval.

data on the basis of the scaling attack model, h3 (xt), described
in Section 2.2, and then discretize the data. Finally, use the
discretized data as the input of the classifier for detection.

In order to achieve better performance, we leverage Kmeans
for clustering and the decision tree for classification, and propose
a detection model of scaling attacks considering consumption
pattern diversity in AMI (SA2CPD). Algorithm 1 shows the
specific implementation process, which consists of four steps:
i) data preprocessing; ii) distinguishing different consumption
patterns and extracting consumption intervals; iii) binarization
and iv) classification.

3.2 Our method

3.2.1 Data preprocessing
This step corresponds to lines 1–12 in Algorithm 1. Power

consumption collected by the smart meter deployed on the
user side can be represented as a matrix c = [c1,c2…cj…csum]T,
where sum indicates total collection days and cj represents
the power consumption vector on the jth (j ∈ [1, sum])
day. cj = [cj−1,cj−2cj−hcj−24], in which cj−h represents power
consumption in the hth time period on the jth day. Assume the
number of missing values is nmv in a consumption vector. When
the number of missing values is no more than 6 (nmv ≤ 6), if
missing values are not consecutive, we take the mean of power
consumption of the previous time period and the next time
period to fill each missing value (Jakaria et al., 2019), and the
average value of the consumption vector instead to fill them

if there are consecutive missing values. When the number of
missing values exceeds a quarter (nmv > 6), the consumption
vector is denoted as unavailable (Tehrani et al., 2020).

3.2.2 Distinguish consumption patterns

This step corresponds to lines 13–14 in Algorithm 1.
Affected by personal habits, holidays and other factors, each
user has different power consumption patterns, and the power
consumption patterns of different users are also different from
each other. Therefore, it is necessary to cluster the power
consumption data before classification to reduce the false
negative rate. There are various methods that can be used
to distinguish power consumption patterns, here we use the
Kmeansmethod, which is themost commonly used in clustering
(Jokar et al., 2016; Tehrani et al., 2020).

The implementation of Kmeans clustering is an iterative
process including three steps. First step, K vectors are randomly
selected from c as centers of initial consumption pattern sets
ccenter = [ccenter−1,ccenter−2 ccenter−k ccenter−K]. Second step, for each
cj, calculate the distance between it and each ccenter−k as

ljk = ‖cj − ccenter−k‖22

= √(cj−1 − c1center−k)
2 +⋯+(cj−h − chcenter−k)

2
, (3)

where ccenter−k represents the center of the kth consumption
pattern, chcenter−k represents power consumption in the hth time
period in ccenter−k, and ljk represents the distance between cj and
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Input: User's consumption data c =
[[[[

[

c1_1 c1_h … c1_24
c2_1 c2_h … c2_24
… … … …
cj_1 cj_h … cj_24

]]]]

]

,

the time periods vector φ= [T1T2…Th…T24], the set of time

periods Tin and Tout
Output: The label for new data cj

1: for j = 1 to sum do

2: if the number of missing values in the cj is nmv ≤ 6
then

3: if there are consecutive missing values in the cj
then

4: Each missing value cj−h is expressed as the

average of the cj
5: else

6: For each missing value cj−h =
cj−(h−1)%24+cj−(h+1)%24

2

7: end if

8: end if

9: if nmv > 6 then

10: The cj is denoted as unavailable

11: end if

12: end for

13: Cluster the dataset into K sets as C = [C1,C2…Ck…CK]
14: Extract consumption intervals Ik = [mink,maxk] from each

Ck

15: Generate false data for each group of normal data

16: for j = 1 to sum do

17: for h = 1 to 24 do

18: if cj−h ∈ Ik then

19: cj−h=0

20: Tj−h ∈ Th−in
21: |Th−in| = |Th−in| +1
22: else

23: cj−h=1

24: Tj−h ∈ Th−out
25: |Th−out| = |Th−out| +1
26: end if

27: end for

28: end for

29: if |Th−in| ≫ |Th−out| then
30: Th ∈ Tin
31: Calculate the empirical conditional entropy of this

time period to get H(D|Th) ≈ 1
32: else

33: Th ∈ Tout
34: Calculate the empirical conditional entropy of this

time period to get H(D|Th) ≈ 0
35: end if

36: while new user's consumption data cj is collected do

37: The decision tree preferentially selects the time

period Th ∈ Tout as the judgment condition, and then

judges

38: if any Th ∈ Tout, the value is 1 then

39: The label of cj is normal data

40: else

41: The label of cj is false data

42: end if

43: end while

44: Return the label of cj

Algorithm 1. The detection model of scaling attacks considering

consumption pattern diversity in AMI(SA2CPD).

ccenter−k. Third step, cj is classified into the Ck corresponding to
the smallest ljk, where Ck represents the kth consumption pattern
set. Then recalculate the new center of Ck as

ccenter−k =

∑
cj∈Ck

cj

|Ck|
, (4)

where |Ck| represents the number of power consumption
vectors in the kth consumption pattern set. The iteration stops

until centers do not change, meaning that the clustering
is finished, and we can obtain K consumption patterns set
C = [C1,C2…Ck…CK], where

Ck =
[[[[

[

ck1_1 ck1_h … ck1_24
ck2_1 ck2_h … ck2_24
… … … …
ckd_1 ckd_h … ckd_24

]]]]

]

, (5)

ckd_h represents power consumption of the hth time period on the
dth (d ≤ sum) day in the kth power consumption pattern.

Notice that the random selection of initial centers may result
in a local optimal solution rather than a global optimal solution.
Therefore, we take advantage of the characteristic that there is
no intersection between different consumption patterns to set
filter conditions to exclude local optimal solutions, which can be
formalized as

if

maxs <maxt
then

maxs <mint, (s, t ∈ [1,K] , s ≠ t)

. (6)

Here, mini (i = s, t) and maxi (i = s, t) represent the minimum
andmaximumvalues of power consumptionper unit timeperiod
in the ith consumption pattern.

3.2.3 Binarization

This step corresponds to lines 15–28 in Algorithm 1. When
detecting data integrity attacks, it is necessary to analyze the
difference between normal data and false data. Here, we leverage
the binarization method to transform fine granularities into
coarse granularities to make the difference of features larger to
improve detection efficiency.

We can extract K corresponding intervals of K consumption
patterns as I = [I1, I2…Ik…IK], where

Ik = [mink,maxk] . (7)

In Eq. 7, Ik represents the interval of the kth consumption pattern
set.

After extracting consumption intervals, false data is
generated through multiplying each ckd_h by a λt ∈ [0.1,0.8].
Then, use the interval Ik in I for binarization after mixing normal
data and generated false data as

{
ckd_h = 0,c

k
d_h ∈ I

ckd_h = 1,c
k
d_h ∉ I
. (8)

For each ckd_h, if it is within I, it is binarized to 0. Otherwise it is
binarized to 1.
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FIGURE 2
False data vs. normal data.

3.2.4 Classification

This step corresponds to lines 29–43 in Algorithm 1. Let
φ = [T1,T2…Th…T24] represents 24 time periods of a power
consumption vector. For normal data, values of all 24 time
periods are within I, so all values are binarized to 0. For false
data, although there are some values within I, most of values are
outside I, as shown in Figure 2.

Figure 2 shows the comparison between normal data and
false data. It can be seen that only values in eight time periods in
false data including 7, 15, 16, 17, 18, 19, 20 and 23 are greater than
theminimumvalue of normal data. LetTin andTout represent the
set of time periods in which most values in this period in power
consumption vectors are within or without I after the attack is
launched. For the decision tree, the empirical conditional entropy
of time period Th to dataset D is denoted as

H(D|Th) =
1

∑
i=0

|Di|
|D|

H(Di)

= −
1

∑
i=0

|Di|
|D|

1

∑
l=0

|Dil|
|Di|

log2
|Dil|
|Di|

, (9)

where i indicates the value of power consumption after
binarization in the time period T which is 0 or 1, l is a flag
representing whether the power consumption vector is normal
(denoted as 0) or false (denoted as 1), Di is the set of power
consumption vector when its value in the time period T is i, Dil
is the set of power consumption vector when its value in the
time period T is i and the flag is l, |.| represents the quantity of
power consumption vectors in a set. The object of constructing
a decision tree is to find the time period with the greatest
information gain, which can be formalized as

maxg(D,Th) =H (D) −H(D|Th) . (10)

FIGURE 3
Decision tree generated by consumption data.

It is also equivalent to

min{H(D|Th)} . (11)

For the time period in Tin, as the number of power
consumption data (vectors) increases, we have

|Di=1| → 0

|Di=0| → |D|
. (12)

If the dataset is balanced, we can derive that

|Di=0, l=0| ≈ |Di=0, l=1| ≈
1
2
|Di=0| . (13)

Hence, on the basis of Eqs 9, 12, 13, when Th ∈ Tin, we can
obtain that

H(D|Th) ≈ 1. (14)

For the time period in Tout , as the number of power
consumption data (vectors) increases, we have

|Di=0| ≈ |Di=1| ≈
1
2
|D| . (15)

If the dataset is balanced, we can derive that

|Di=0, l=0| ≈ |Di=1, l=1| ≈ |Di=0| ≈ |Di=1|

|Di=0, l=1| ≈ |Di=1, l=0| ≈ 0
. (16)

Hence, on the basis of Eqs 9, 15, 16, when Th ∈ Tout , we can
obtain that

H(D|Th) ≈ 0. (17)

Therefore, from Eqs 11, 14, 17, we know that a decision
tree should be constructed based on power consumption during
time periods in Tout and those of time periods in Tin will not
be adopted, which can maximize information gain and avoid
the decision tree being too large. For example, after the scaling
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attack is launched, power consumption in time periods 1–6 are
outside Iwith the greatest probability, because these time periods
usually belong to valley time periods for many users. Therefore,
time periods 1–6 belong to Tout , based on which the decision
tree shown in Figure 3 can be constructed. When a new power
consumption vector is collected, the judgement will be made
from the root node to a leaf node. For example, if binarization
values in time periods 1–6 are [0,1,0,0,1,0], it will be detected as
false data after judgements in Step 1, Step 2 and Step 3.

4 Detection performance analysis

In this section, we first introduce metrics of detection
performance, and then show comparison analysis with other
models.

4.1 Metrics

We use the FPR, the FNR and the F1 score as metrics to
compare with other algorithms (Amara korba and El Islem
karabadji, 2019; Jakaria et al., 2019; Rouzbahani et al., 2020).
The higher the F1 score is, the lower the FPR and FNR are, the
better the performance is. Relevant notations are given below.

(1) TP/TN/FP/FN : False data is detected as false data/normal
data is detected as normal data/normal data is detected as false
data/false data is detected as normal data.

(2) Recall (Rec): The ratio of the number of false data being
detected as false data versus the total number of false data,
meaning that

Rec = TP
TP+ FN

. (18)

(3) FNR: The ratio of the number of false data being detected
as normal data versus the total number of false data,meaning that

FNR = FN
TP+ FN

= 1−Rec. (19)

(4) Precision (Pre): The ratio of the number of false data
being detected as false data versus the total number of data being
detected as false data, meaning that

Pre = TP
TP+ FP

. (20)

(5) FPR: The ratio of the number of normal data being
detected as false data versus the total number of normal data,
meaning that

FPR = FP
FP+TN

. (21)

(6) F1 Score: The harmonic average of Precision and Recall,
which is

F1 = 2 ⋅
Pre ⋅Rec
Pre+Rec

. (22)

4.2 Comparison with other models

4.2.1 SA2CPD VS. models without considering
consumption pattern diversity

Different from our SA2CPD model in Section 3, in
which clustering is performed first to obtain multiple power
consumption patterns, and then consumption intervals can
be extracted as the basis for binarization. When consumption
pattern diversity is not considered, all power consumption data
of users are regarded as belonging to a single pattern, in which
case only a known value can be selected as the threshold. Here we
discuss twomodels with the minimum value and the mean value
as thresholds and we call them as B-MIN Model and B-MEAN
Model.

4.2.1.1 Binarization based on theminimum value (B-MIN

model)
Compared with the B-MIN model, performance of our

SA2CPD model is better in terms of the FNR and the F1 score,
as shown inTheorem 1.

Theorem 1. The F1 score of our SA2CPD model is greater
than that of the B-MIN model. The FNR of our SA2CPD
model is smaller than that of the B-MIN model. The FPR
of our SA2CPD model is larger than that of the B-MIN
model.

Proof: When using the B-MIN model, only false data in the
pattern the minimum value belonged to among all of the power
consumption patterns can be effectively detected, while hourly
collected values of the false data in the other patterns are likely
to remain greater than the minimum value so that these false
data will be detected as normal data, which will result in a lower
Recall and a higher FNR. Similarly, since only normal data in the
pattern the minimum value belonged to may be detected as false
data, we can obtain that FPmin < FPour so that the FPR of the B-
MIN is smaller than ours. Furthermore, there are few numbers
of FPmin, so the Precision of B-MIN is higher than ours. However,
since the number of FPour is also very small, the Precision of
SA2CPD is about equal to that of B-MIN. Take both Recall and
Precision into consideration, the F1 score of the B-MIN will be
lower than our SA2CPDmodel.The above analysis process can be
formalized as

FNmin > FNour⇒ FNRmin > FNRour

FPmin < FPour⇒ FPRmin < FPRour

{{
{{
{

Recallmin < Recallour
Precisionmin > Precisionour
▵ Recall≫▵ Precision

⇒ F1min
< F1our

. (23)
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4.2.1.2 Binarization based on theminimum value (B-MIN

model)
Compared with the B-MEAN model, performance of our

SA2CPD model is better in terms of the FPR, the FNR and the
F1 score, as shown inTheorem 2.

Theorem 2.The F1 score of our SA2CPDmodel is greater than
that of the B-MIN model. Either one or both of the FNR and the
FPR of our SA2CPD model are smaller than those of the B-MEAN
model.

Proof: When using the B-MEAN model, values greater than the
mean value are binarized to 0, otherwise 1.When a scaling attack
is launched, false data greater than the mean value will be falsely
detected as normal data and normal data less than the mean
value will be falsely regarded as false data.Therefore, FNmean and
FPmean are influenced by the mean value. Specifically, there are
three cases. When the mean value is small, there will be more
false data being detected as normal data, resulting in a greater
FNmean. When the mean value is large, there will be more normal
data being detected as false data, resulting in a greater FPmean.
When the mean value is the median, both FNmean and FPmean
will be larger. Thus, we can conclude that either one or both of
the FPR and FNR are larger, which can be formalized as

{
FNmean ≫ FNour
FPmean < FPour

⇒{
FNRmean ≫ FNRour
FPRmean < FPRour

or{
FNmean > FNour
FPmean > FPour

⇒{
FNRmean > FNRour
FPRmean > FPRour

or{
FNmean < FNour
FPmean ≫ FPour

⇒{
FNRmean < FNRour
FPRmean ≫ FPRour

. (24)

The derivation process of corresponding recall, precision and
F1 score is

{{{
{{{
{

Recallmean ≪ Recallour
Precisionmean > Precisionour
▵ Recall >▵ Precision

or{
Recallmean < Recallour

Precisionmean < Precisionour
⇒ F1mean

< F1our

or
{{
{{
{

Recallmean > Recallour
Precisionmean ≪ Precisionour
▵ Recall <▵ Precision

. (25)

4.2.2 Decision tree VS. Naive Bayes
The reason why we choose the decision tree as the classifier

is that the binarization can help the decision tree discretize
continuous values and can make a great difference between
normal data and false data. Similarly, Naive Bayes can also use
the binarization method to improve the detection efficiency.
However, it is only suitable to the situationwhere the distribution
of power consumption data of each pattern is concentrated.
When the distribution of power consumption data of each
pattern is scattered, compared with the Naive Bayes model,

performance of our SA2CPDmodel is better in terms of the FNR
and the F1 score, as shown inTheorem 3.

Theorem 3. The F1 score of our SA2CPDmodel is greater than
that of the Naive Bayes model. The FNR of our SA2CPD model
is smaller than that of the Naive Bayes model. The FPR of our
SA2CPD model is higher than that of the Naive Bayes model.

Proof: Different from SA2CPD in which only power
consumption during time periods in Tout is used for detection,
power consumption in all time periods need be considered
in the Naive Bayes model. When the distribution of power
consumption data of each pattern is concentrated, most of the
values of false data will be outside normal intervals and binarized
to 1 in the training set, so that newly collected false data can be
correctly detected. Nevertheless, when the distribution of power
consumption data of each pattern is scattered, some values of
false data will be within normal intervals and then binarized to 0
in the training set, which will have an impact on the judgment of
newly collected data. Under these circumstances, the probability
of correctly detecting false data will be reduced, resulting in
a decrease of TPBayes and an increase of FNBayes. The more
dispersed the distribution is, the greater the impact is. As a
result, the FNR will be larger and the Recall will be smaller.
Furthermore, since all normal data can be binarized to 0, the
number of FP will be small so that the FPR will be slightly lower
than ours and the Precision will be approximately equal to ours.
Take both Recall and Precision into consideration, the F1 score
of the Naive Bayes model is smaller than that of our SA2CPD
model, which can be formalized as

{
FNBayes > FNour
FPBayes < FPour

⇒{
FNRBayes > FNRour
FPRBayes < FPRour

⇒{
RecallBayes < Recallour

PrecisionBayes ≈ Precisionour
⇒ F1Bayes < F1our

. (26)

4.2.3 Decision tree VS. KNN

After the adversary launches the scaling attack, values in
the power consumption vector will be reduced, resulting in
a distance between false data and normal data. Hence, KNN
can be used to detect scaling attacks whose classification is
according to the distance. However, compared with the KNN
model, performance of our SA2CPD model is better in terms of
the FNR and the F1 score, as shown inTheorem 4.

Theorem 4. The F1 score of our SA2CPDmodel is greater than
that of the KNN model. The FNR of our SA2CPD model is smaller
than that of the KNN model. The FPR of our SA2CPD model is
higher than that of the KNN model.

Proof: In some cases, scaling attacks may cause the distance
between false data and false data at the same feature, i.e., power
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consumption in the same time period, to be greater than that
between false data and normal data. Assume the values of two
false data c′1 and c′2 in time period h are obtained through
multiplying two similar normal data by λ1 and λ2 respectively and
if λ1 and λ2 satisfy

|λ1 − λ2| > |1− λi| , i = 1 or 2. (27)

When i is 1, the distance between c′1 and the original power
consumption vector c is

lc′1c = √(c
′
1−h − ch)

2 +⋯

= √(1− λ1)2c1−h2 +⋯
, (28)

the distance between c′1 and c′2 is

lc′1c′2−h = √(c
′
1−h − c′2−h)

2 +⋯

= √(λ2 − λ1)2c1−h2 +⋯
. (29)

When this situation also exists in many other time periods, we
can obtain that

lc′1c ≺ lc′1c′2 . (30)

Thus, c′1 will be detected as normal data and FN will be greater,
resulting in a larger FNR and a lower Recall. When i is 2, The
analysis process is the same. In terms of Precision, the majority
consumption data closest to normal data is normal data although
false datamay exist, so there is almost no FP and thePrecisionwill
be almost unaffected, and the FPR is lower than ours. Take both
Recall and Precision into consideration, the F1 score of the KNN
model is smaller than that of our SA2CPD model, which can be
formalized as

{
FNKNN ≫ FNour
FPKNN < FPour

⇒{
FNRKNN ≫ FNRour
FPRKNN < FPRour

⇒{
RecKNN ≪ Recour
PreKNN > Preour

&& ▵ FN≫▵ FP

⇒▵ Recall≫▵ Precision

⇒ F1KNN < F1our

. (31)

5 Performance evaluation

In this section, we first introduce the simulation setup. We
then show experimental results to validate the effectiveness and
efficiency of the SA2CPD.

5.1 Evaluation setup

In our evaluation, the GEFCom2012 dataset (Hong, 2014)
from the global energy forecasting competition was used to
carry out the performance validation of our SA2CPD model.
The dataset includes historical records of hourly collected power
consumption in 20 zones from 1 January 2004 to 30 June 2008.
Each record includes 28 columns.Thefirst column is zone_id, the
second to fourth columns are year,month andday, and the fifth to
28th columns are 24 hourly collected power consumption values.
There are no missing values in the dataset. By extracting three
zones with large power consumption differences, we simulate a
user with three power consumption patterns and there are 1,586
power consumption vectors in each consumption pattern. We
set the ratio of training set to test set as 7: 3 and 854 power
consumption vectors are taken from each consumption pattern
to generate false data for training. Hence, the size of the training
set is 5,124 and the size of the testing set is 2,196.

Based on the above simulation settings, we conduct two
experiments, each of which includes 500 random evaluation
cases. In the first experiment, we evaluate performance of our
SA2CPDmodel under different attack proportions. In the second
experiment, we conduct two groups of comparative experiments.
Firstly, our SA2CPD model is compared with the decision tree
without considering consumption pattern diversity. Then we
compare our SA2CPDmodel with the KNNmodel and the Naive
Bayes model mentioned in Section 4.

5.2 Effectiveness of our SA2CPD model

Figure 4 illustrates the FPR, the FNR and the F1 score of our
SA2CPDmodel under different attack proportions. As shown in
this figure, when the attack proportion in the testing set increases

FIGURE 4
Performance of SA2CPD under different attack proportions.
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FIGURE 5
The FPR of our SA2CPD model, the B-MIN model and the
B-MEAN model under different attack proportions.

from 10% to 80%, the F1 score are [ 95.7%, 96.23%, 96.32%,
96.4%, 96.38%, 96.41%, 96.46%, 96.52% ], the FPR are [ 0.18%,
0.20%, 0.18%, 0.20%, 0.20%, 0.19%, 0.19%, 0.20% ], and the FNR
are [ 6.69%, 6.51%, 6.69%, 6.63%, 6.78%, 6.79%, 6.75%, 6.67% ].
Hence, regardless of the attack proportion, our SA2CPD model
has a high F1 score, a low FPR and a low FNR, validating the
effectiveness of our SA2CPDmodel.

5.3 Comparison with the B-MIN model
and the B-MEAN model

Figure 5 depicts the FPR of our SA2CPDmodel, the B-MIN
model and the B-MEAN model. It can be seen from the figure
that the FPR of the B-MIN is the lowest, followed by ourmethod.
Both of them are lower than 0.5% and the difference between
them is very small. However, the FPR of the B-MEAN is over
60%. Figure 6 depicts the FNR of our SA2CPD model, the B-
MIN model and the B-MEAN model. It can be seen that the
B-MEAN has the lowest FNR, followed by ourmethod. Similarly,
the difference between them is small. However, the FNR of the B-
MIN is over 80%. The above experimental results are consistent
with our analysis in 4.2.1.

Figure 7 shows F1 score of our SA2CPD model, the B-MIN
model and the B-MEAN model. As can be seen from figure,
the F1 score of the B-MIN model is less than 50%, and it is
almost unchanged with the increase of attack proportions. The
F1 score of the B-MEAN model under different attack ratios
are [24.8%, 42.83%, 56.10%, 66.72%, 74.82%, 81.58%, 87.41%,
92.25%], which increases significantly with the increase of attack
proportions.TheF1 score of ourmethod are all above 95% and are

FIGURE 6
The FNR of our SA2CPD model, the B-MIN model and the
B-MEAN model under different attack proportions.

FIGURE 7
The F1 score of our SA2CPD model, the B-MIN model and the
B-MEAN model under different attack proportions.

always greater than those of the B-MINmodel and the B-MEAN
model. The above experimental results verify the theoretical
analysis in 4.2.1.

5.4 Comparison with the Naive Bayes
model and the KNN model

Figure 8 displays the FPR of our SA2CPD model, the Naive
Bayes model and the KNNmodel. From the figure, performance
of the KNN model is the best and the highest FPR is only 0.06%
when the attack proportion is 60%.The performance of theNaive
Bayes model takes the second place, and its FPR does not exceed
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FIGURE 8
The FPR of our SA2CPD model, the Naive Bayes model and the
KNN model under different attack proportions.

FIGURE 9
The FNR of our SA2CPD model, the Naive Bayes model and the
KNN model under different attack proportions.

0.2%. Our SA2CPD model shows the worst performance, but
all FPR values are maintained at about 0.2%. Figure 9 displays
the FNR of our SA2CPD model, the Naive Bayes model and the
KNN model. It can be seen that the decision tree has the best
performance and all FNR values are slightly higher than 5%.
Nonetheless, the FNR of the Naive Bayes model is more than
10%, and the FNR of the KNN model is close to 15%. The above
experimental results verify the theoretical analysis in 4.2.2 and
4.2.3.

Figure 10 displays the F1 score of our SA2CPD model,
the Naive Bayes model and the KNN model. Although the
performance of our SA2CPD model on the FNR is much better
than the other two, the FPR is slightly higher, it can not be

FIGURE 10
The F1 score of our SA2CPD model, the Naive Bayes model and
the KNN model under different attack proportions.

concluded that the performance of our SA2CPD model is the
best. Hence, we further show the performance of these three
models in terms of F1 score in Figure 10. As we can see, no
matter what the attack proportion is, the F1 score of our SA2CPD
model are always greater than those of the Naive Bayes model
and the KNNmodel. Specifically, the F1 score of the KNNmodel
is slightly higher than 92%, and that of the Naive Bayes model
is slightly higher than 94%, while that of our SA2CPD model
is always higher than 96%. The above experimental results are
consistent with our theoretical analysis in 4.2.2 and 4.2.3.

6 Discussion

We now discuss the following problems and extensions
related to this paper: detection of scaling attacks by injecting
enlarged values, and detection of the h4 attack mentioned in
Section 2.

6.1 Dedection of scaling attacks by
injecting enlarged values

In this paper we investigate scaling attacks tampering
with reduced reported values in smart meters, which can
be represented as h3 (xt) = γtxt ,γt = random (0.1,0.8).
In fact, injecting enlarged data into smart meters also
belongs to the category of scaling attacks, which can be
formalized as h3 (xt) = γtxt ,γt = random (1,+ ∞). Classical
detection methods compare the total power supply and
the total power consumption of all users to detect scaling
attacks (Jokar et al., 2016). If these two values are close to
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each other, it is considered that no attack has occurred
(Bhattacharjee et al., 2021a,b). If the total power consumption
is less than the power supply, it is considered that an attack has
occurred. Hence, if an adversary launches scaling attacks by
injecting both reduced values and enlarged values and ensure
that the total power supply and the total power consumption are
close to each other, he can easily escape from these detection
methods. In contrast, SA2CPD can still detect this adversary
effectively.This is because, nomatter whether the data is reduced
or enlarged, as long as the false data falls outside the extracted
consumption intervals, it will be binarized to 1, which can be
detected by the decision tree.

6.2 Detection of the h4 attack

In the Section 2, we mentioned that the h4 attack can
be represented by the h3 attack. It is because h4 represents
manipulating the hourly reported value of smart meter as the
mean value of a day multiplying by a different random number.
Therefore, h4 = λt (h4) ⋅mean(x) = (λt (h4) ⋅

mean(x)
xt
) ⋅ xt so that

the h4 attack can be transformed to the h3 attack. Hence, we
can first transform h4 attacks into h3 attacks and then use
SA2CPD for detection. It is worth noting that SA2CPD can also
be directly used to detect h4 attacks. Compared to attacking xt
directly, the fake data value after attacking the mean may be
larger or smaller than xt . SA2CPD can effectively detect false
data in either case, the only difference is that the features in Tout
are different. When (λt (h4) ⋅

mean(x)
xt
) ≤ 1, including: i) mean(x)

xt
≤

1⇒ (λt (h4) ⋅
mean(x)

xt
) ≤ 1; ii)mean(x)

xt
> 1 and (λt (h4) ⋅

mean(x)
xt
) ≤

1, time period features in Tout increase or remain unchanged.
When mean(x)

xt
> 1 and (λt (h4) ⋅

mean(x)
xt
) > 1, time period features

in Tout decrease.

7 Related work

As we described in Section 1, existing research on data
integrity attacks detection in AMI falls into threemain categories
(Jiang et al., 2014; Jokar et al., 2016; Yao et al., 2019). The first
type is state-based. For example,Huang et al. (Huang et al., 2013)
used state estimation and analysis of variance (ANOVA)based on
customer metering data aggregated at distribution transformers
to detect contaminated meters and estimate the actual usage.
Salinas et al. (Salinas et al., 2014) studied data integrity attacks
in microgrids. They took values of stolen electricity as the
measurement bias and used the least square method to make
the optimal estimation, then the honest meter will show a zero
bias and the compromised meter will show a non-zero bias.
Leite et al. (Leite and Mantovani, 2018) used the data of meters
to detect the power loss based on the multivariate procedure
of monitoring and control. Through the combination with GIS

program, the geographical location of fraud can also be found.
Using power information and sensors placement, Lo et al. (Lo
and Ansari, 2013) developed a hybrid detection framework to
detect data integrity attacks by detecting abnormal activities
in the power grid. McLaughlin et al. (McLaughlin et al., 2013)
proposed a system that combines multiple technologies to detect
data integrity attacks. The system collects relevant evidence of
attacks from three different information sources to minimize the
number of false positives. Aziz et al. (Aziz et al., 2020) rely on
the results of state estimation in centralised aggregators, located
between smart meters and the control center, to aid in false
data detection. Bhattacharjee et al. (Bhattacharjee et al., 2021b)
embedded the appropriate unbiased mean, the median
absolute deviation, etc. to produce trust scores for smart
meters to classify compromised smart meters from normal
ones.

The second type is based on game theory, and the goal of
game theory-based methods is to find a balance between the
utility and adversaries (Cardenas et al., 2012; Yang et al., 2016;
Wei et al., 2018, 2017; Paul et al., 2020). For example, Yang et al.
(Yang et al., 2016) proposed a game theory model to deal with
the situation that multiple adversaries jointly launch attacks.
They introduced a penalty factor to represent the punishment
for adversaries when they were detected. When an adversary
decides to participate in a joint attack and succeed, the gain will
be distributed to each adversary. When the attack is detected
and fails, the adversaries participating in will be punished. The
more adversaries involved, the greater the probability of failure.
Based on the operational cost model of the utility, Cardenas et al.
(Cardenas et al., 2012) expressed the problem of attack detection
as a game between adversaries and the utility. Adversaries aim to
achieve the best benefit and not be found, while the utility want
to detect attacks as much as possible at a lower cost. Paul et al.
(Paul et al., 2020) formulated interactions between defenders
and adversaries as a repeated game, of which the solution is
designed based on the reinforcement learning algorithm. Wei
et al. (Wei et al., 2018) modeled interactions between defenders
and attackers as a resource allocation stochastic game and
introduce a novel learning algorithm to enable players to
reach their equilibrium. Wei et al. (Wei et al., 2017) leveraged
the Stackelberg game-theoretic model to model interactions
between a single defender and multiple attackers, and then
conduct a Likelihood Ratio Test (LRT) to detect malicious
meters.

The third category is based on classification
(Jokar et al., 2016; Singh et al., 2017; Ismail et al., 2018; Yeckle
and Tang, 2018; Zheng et al., 2018; Fernandes et al., 2019;
Jakaria et al., 2019; Punmiya and Choe, 2019; Zheng et al., 2019;
Rouzbahani et al., 2020; Tehrani et al., 2020; Yan and
Wen, 2021). For example, Singh et al. (Singh et al., 2017)
proposed a detection scheme based on the principal component
analysis (PCA) technology. The PCA was used to convert
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high-dimensional data to low-dimensional data, after which
anomaly scores were calculated and compared with predefined
thresholds to find out attacks. Yan et al. (Yan and Wen, 2021)
proposed a detection model based on the extreme gradient
boosting algorithm including two phases. In the training
phase, normal samples can be obtained after preprocessing,
and then malicious samples were generated from normal data
according to the attack type. After that, the normal andmalicious
samples were jointly trained in the classification model. In the
application phase, the trained classifier is used to determine
whether the new collected sample is normal or malicious. Jokar
et al. (Jokar et al., 2016) proposed a SVM-based data integrity
attack detection model. They compared the reported total
consumption value with the actual total consumption value
to find out the suspicious area. Then, the historical data and
synthetic attack data were used to train a multiclass SVM to
detect malicious data. Tehrani et al. (Tehrani et al., 2020) took
collected consumption values of 24 h and their mean, standard
deviation, minimum and maximum values as characteristics.
Firstly, they used Kmeans for clustering, and then generated
false data according to the synthetic attack method proposed in
the literature (Jokar et al., 2016) to construct a complete dataset
for training and testing the decision tree, random forest and
gradient boosting. Zheng et al. (Zheng et al., 2019) developed
a scheme combined the maximum information coefficient and
CFSFDP for detecting malicious behaviors. Yeckle et al. (Yeckle
andTang, 2018) used seven outlier detection algorithms to detect
anomalies. The same as literature (Tehrani et al., 2020), they
preprocessed the data by using kmeans, and conduct simulation
based on consumption of five customers, including seven
different attack types. The comprehensive experiment results
validate the effectiveness of data integrity attacks detection.

8 Conclusion

In this paper, we investigate a scaling attack detection model
in AMI that considers consumption pattern diversity (SA2CPD),
which can effectively distinguish normal data from false data.
Specifically, we first perform Kmeans clustering to find out
different power consumption patterns to avoid low detection
efficiency. After the clustering is completed, the interval of each
consumption pattern is used to binarize the power consumption
data, so that most values of false data are 1, and all values
in normal data are 0. Finally, 24 time periods are divided
into two categories, that is Tin and Tout . The decision tree is
constructed based on time periods in Tout and used as a classifier.
Experimental results show that our proposed SA2CPDmodel can
effectively detect false data. Compared with detection schemes

that do not consider power consumption pattern diversity and
other machine learning algorithms including the KNN model
and the Naive Bayes model, the evaluation results show that our
model has a higher F1 score, indicating that our approach is more
efficient.
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