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Due to the low inertia of the DC microgrid, the DC bus voltage is prone to drop or

oscillate under disturbance. It is also challenging to supervise the stability of a DC

microgrid since it is a highly nonlinear dynamic systemwith high dimensionality and

randomness. To tackle this problem, this paper proposes a newmethod using ANN-

aidednonlinear dynamic stability analysis formonitoring theDCbus voltage,which is

combined with two steps. The first step is to establish six corresponding nonlinear

accurate discrete iterative models of six switching modes of the PV-battery-load-

basedDCmicrogrid system, basedon thePoincarémap theory, in order to judge the

stability quantitatively with a promoted stability margin index. The second step is to

use artificial neural networks (ANNs) to forecast the operating mode of the system

when random changes occur in environmental circumstances and load power; this

will aid the first step in being efficient and adaptablewhile determining stability cases.

And the employed ANNs are trained with the datasets, including the circuit data,

ambient temperature, irradiance, and load power, which are generated by MATLAB/

Simulink simulation. Theoretical and simulation analyses are carried out under

different operating conditions to validate the proposed method’s efficacy in

judging the DC microgrid’s destabilizing oscillation and stable running.
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1 Introduction

The DC microgrid emerged due to the integration of DC distributed energy resources

(DERs), installation of battery storage systems (BSSs) and growing use of DC loads

(Ahmed et al., 2020). In addition, there has been a recent increase in research interest in it,

mostly because of its high transmission efficiency and good quality, requiring few power

conversion stages and no reactive power (Zolfaghari et al., 2022). However, the DC

microgrid utilizes numerous power electronic devices to interface energy sources and

consumers, resulting in low inertia, particularly when operated independently of the

primary power grid (Holari et al., 2021). This is manifested in variations in the behavior of

the microgrid’s interface inputs or outputs, such as random intermittent fluctuations in

the DERs and rapid changes in power loads, which can result in the DC bus voltage
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sagging or oscillating (Lu et al., 2015; Xia et al., 2019).

Furthermore, as the scale of the modern DC microgrids

continues to expand, the characteristics of high-

dimensionality, nonlinearity, and strong coupling have

become increasingly apparent (Zia et al., 2019), posing

substantial operational security changes. Therefore, it is clear

that a practical stability monitor approach that enables real-time

monitoring of the microgrid’s status and provides the basis for

online tuning controller parameters to achieve adequate adaptive

control could be valuable (Khodamoradi et al., 2019).

Stability monitoring methods for DC microgrids include

linear and nonlinear analysis methods. The linear analysis

method (Eberlein and Rudion, 2021) uses the averaged model

of linear approximation in the neighbourhood of the equilibrium

point to analyze small-signal stability. Nonetheless, the effective

range of the linearization region is frequently unclear, and the

DC microgrid contains distinct and complex nonlinear features

that are largely ignored, causing the stability calculations to be

grossly distorted. Thus, nonlinear stability analysis is more

appropriate for DC microgrids.

Nonlinear stability analysis is primarily based on nonlinear

models, including quadratic or cubic nonlinear models, piecewise

linear models, and discrete iterative models. According to the

Taylor expansion, quadratic or cubic nonlinear models (Wang

et al., 2018) retain partial nonlinear high-order terms at the

equilibrium point. Piecewise linear models (Marx et al., 2012) are

formed of a finite number of local linear models to approximate

the original nonlinear model. Discrete iterative models (Aroudi

et al., 2007) are characterized by a finite number of dynamical

models corresponding to a set of toggling switching conditions.

This is based on the Poincaré map theory of nonlinear dynamics,

which is suitable for discontinuous systems in control

engineering, such as power electronic circuits. As for a single

converter system, the models above can accurately reflect the

nonlinear characteristics to varying degrees. Researchers have

developed various stability analysis methods such as the

numerical simulation method (Seth and Banerjee, 2020),

Lyapunov direct method (Toro et al., 2021), Takagi-Sugeno

method (Mehran et al., 2009), saltation matrix (Wu et al.,

2020), trajectory sensitivities (Geng and Hiskens, 2019), and

Jacobian matrix eigenvalue analysis (Wang et al., 2020).

However, as the DC microgrids expand, the number of

electronic power conversion devices and the systems’ scale

will increase. Consequently, these approaches may encounter

numerous issues, such as extensive computation, slow calculation

rates, low conservative analysis results, complex subspace

division, difficulty solving the saltation matrix, and difficulty

deriving the Jacobian matrix.

Therefore, in light of DCmicrogrids with complex structures,

improved stability analysis methods are proposed according to

the Lyapunov theory in (Zhang et al., 2022) and (Xie et al., 2021)

for various DC microgrids. However, the offered solutions are

limited to specific equivalent models, challenging generalization

to other systems. Moreover, References (Ahmadi and Kazemi,

2020) and (Xia et al., 2020) present a nonlinear analysis

framework applicable to other DC microgrids. Nevertheless,

the modeling process is cumbersome and requires manual

screening of features to reduce order, which makes it difficult

to achieve flexible and accurate system monitoring. To address

this issue, data-driven methods utilizing artificial intelligence

technology are being developed, which primarily aim to classify

prediction models or fit stable regions in various scenarios.

Decision trees (Vanfretti and Narasimham Arava, 2020),

support vector (Gomez et al., 2011), deep learning (Tian et al.,

2022), and artificial neural network (ANN) (Tan et al., 2019) are

relevant techniques. In references (Gomez et al., 2011; Tan et al.,

2019; Vanfretti and Narasimham Arava, 2020; Tian et al., 2022),

classical stability analysis methods are combined with intelligent

technologies to achieve intelligent stability monitoring via offline

training and online testing using massive datasets. Existing

research focuses mostly on the traditional power system, and

the intelligent stability monitoring approaches to DC microgrids

are relatively rare.

To monitor the performance of DCmicrogrids, an intelligent

nonlinear stability monitoring tool is urgently required. Poincaré

map is a conventional and effective stability analysis theory in

nonlinear dynamics (Tse and Di Bernardo, 2002; Moreno-Font

et al., 2009). However, as the number of power electronic

switches in the system increases, the iterative mapping order

becomes difficult to determine, which makes it challenging to

construct discrete iterative models and estimate stability

calculations. Consequently, driven by the intelligent

background, this paper proposes a voltage monitoring method

using the Poincaré map combined with an artificial neural

network for the PV-battery-load-based DC microgrid. The

neural network predicts the operation mode, which facilitates

discrete iterative modeling and Jacobianmatrix calculation under

varying input and output conditions. Thus, a stability margin is

provided to quantify the operational performance. A typical case

study is utilized to validate conclusions.

The remainder of this paper is structured as follows: Section 2

describes the structure and discrete iterative model of the DC

microgrid; Section 3 presents the ANN-aided nonlinear voltage

stability monitor method; Section 4 validates the proposed

approach in numerical simulations of real scenes; Section 5

reports the conclusions of this paper.

2 Structure and modeling of the DC
microgrid

2.1 Structure of the DC microgrid

Figure 1 depicts the structure of the conventional PV-battery-

load-based DC microgrid understudied, which comprises a PV

distributed generator (PVDG), a battery storage system (BSS),
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and a constant power load (CPL). The PVDG is linked to theDCbus

with its boost converter. And the BSS is also connected to the same

DC bus through a bidirectional dc/dc converter. As to the CPL, its

equivalent model (Rahimi and Emadi, 2009) is linked to the DC bus

with a buck converter. The model represents a real system to some

extent. A control system contains the corresponding cascaded-PI

reference voltage-current control for each device, which controls

corresponding switches to ensure the uninterrupted power flow.

And we refer to the cascaded-PI reference voltage-current control as

the PI control for short. Particularly, the PVDG side has amaximum

power point tracking (MPPT) controller and a PI controller, which

can ensure the PV arrays operate at the maximum power point in

any weather condition. The PI controller of BSS adjusts the

operational status of the bidirectional DC/DC converter to keep

the BSS charge/discharge working in a predefined state of the charge

band and simultaneously maintain the DC bus voltage stable. This

article assumes that the battery state can always meet the working

conditions. The PI controller of CPL ensures that loads of different

powers can work in the corresponding rated state.

2.2 Modeling of the DC microgrid

2.2.1 State equations
In nonlinear dynamics, the DC microgrid is considered a

discontinuous piecewise affine system whose structure is altered

when certain conditions change. The state space of the system

model is divided into a finite number of non-smooth continuous

subspaces, where the system model differs according to the

subspace. In the power electronic switch control system, the

partition of the subspace corresponds to the control law of the

state change of the switch. In the following discussion, it is

assumed that PVDG, BSS, and CPL remain in operation. To

simplify the calculation and algorithm, the corresponding boost,

buck, and bidirectional DC/DC converters of PVDG, BSS, and

CPL devices are set to have the same switching frequency, and the

start and end of a switching cycle are the same. Figure 2 depicts

the switching timing diagrams of the three converters.

Specifically, Sm =1 (m = a, b, c) presidents that the power

switch is turned ON, and Sm = 0 presidents that it is turned

OFF, where the subscript “m” is utilized to represent the variable

associated with corresponding devices of the DC microgrid

system, i.e. for the PVDC device (a), the BSS device (c), the

CPL device (c). Therefore, the stable operation modes are

classified into six types, including M1, M2, M3, M4, M5, M6,

based on the six different switching sequences of the three

switches. In Figure 2, t0, t1, t2, t3, and t4 are the switching

instants when the switch is flipped. Moreover, the system

structure and its corresponding state equation change 4 times

when the four switch conditions toggle in turn during one period

for each operation mode.

According to the four switch conditions toggling, the

piecewise state equations for each operation mode in one

period are as follows:

_x �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1x + B1, t0 ≤ t< t1
A2x + B2, t1 ≤ t< t2
A3x + B3, t2 ≤ t< t3
A4x + B4, t3 ≤ t< t4

(1)

where, x = [xpv, xbss, xcpl]T is the state variable vector for the PV-

battery-load-based DC microgrid system, which consists of the

PVDG state vector xpv = [vpv, ia, va, ξva]
T, the BSS state vector

xbss = [ib, vb, ξvb, ξib]
T, and the CPL state vector xcpl = [ic, vc, ξvc, ξic]

T.

Concretely, vpv is the output voltage of the PV arrays, im and vm (m =

a, b, c) are the current of the inductance Lm and the voltage of the

capacitance Cm in the corresponding converter, and ξvm and ξim are

the integrated outputs of the PI voltage and current loops,

respectively, as shown in Figure 1. A1, B1, A2, B2, A3, B3, A4, and

FIGURE 1
Structure of the PV-battery-load-based DC microgrid system.
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B4 are state matrices, changing with the operation mode varying,

and their detailed descriptions of six operation modes are given in

Table 1.

In Table 1, Am1, Bm1, Am2, and Bm2 (m = a, b, c) are the state

matrices for PVDG, BSS, and CPL devices. Concretely, Am1 and

Bm1 correspond to the power switch on with Sm =1, and Am2 and

Bm2 correspond to the power switch off with Sm = 0. And they are

expressed as follows:

Aa1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1/Cpv 0 0

1/La 0 −1/La 0

0 1/Ca −1/Cara 0

−kIva 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Aa2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 −1/La 0

0 1/Ca −1/Cara 0

−kIva 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Ba1 � Ba2 � [ ipv
Cpv

, 0,
vdc
Cara

, kIvav
ref
pv ]T

Ab1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 −1/Cbrb 0 0

0 −kIvb 0 0

−kIib −kpvbkIib
Rvb

−kIib
Rvb

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ab2 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1/Lb 0 0

1/Cb −1/Cbrb 0 0

0 −kIvb 0 0

−kIib −kpvbkIib
Rvb

−kIib
Rvb

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bb1 � Bb2 � ⎡⎣Vs

Lb
,
vdc
Cb

, kIvb v
ref
dc ,

kpvbkIvb v
ref
dc

Rvb

⎤⎦T

Ac1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−rc/Lc −1/Lc 0 0

1/Cc Pc/CbV
2
o 0 0

0 −kIvc 0 0

−kIic −kpvckIic
Rvc

−kIic
Rvc

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ac2 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1/Lc 0 0

1/Cc Pc/CbV
2
o 0 0

0 −kIvc 0 0

−kIic −kpvckIic
Rvc

−kIic
Rvc

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bc1 � [vdc
L
, − 2Pc

VoCo
, kIvcVo ,

kpvckIvcVo

Rvc
]T

Bc2 � [0,− 2Pc

VoCo
, kIvcVo ,

kpvckIvcVo

Rvc
]T

Where, kPvm, kIvm, kPim, kIim, Rvm (m = a, b, c) are proportional,

integral, damping coefficients of corresponding PI controllers, rm is

the line resistance between the equipment and the DCbus,Vs is the

output voltage of the batteries, Pc andVo are the output voltage and

power at the operating point of the CPL, and V ref dc is the

reference voltage of the DC bus, as shown in Figure 1.

It should be mentioned that while the matrices A1, B1, A2,

B2, A3, B3, A4 and B4 are direct sums of Am1, Bm1, Am2, and

Bm2, there remains still some coupling between the state

equations of the individual devices linked together with the

DC bus.

2.2.2 Discrete iterative model
In the nth switching cycle, let the initial conditions of state

variables at the beginnings of the nth and (n+1)th switching cycle

be marked as xn and xn+1. Based on the Poincaré map (Aroudi

et al., 2007), during one period, local maps Pk (k = 1, 2, 3, 4) can

be defined as the following forms:

P1: xn → xn+τ1: � φ1(τ1, xn)
P2: xn+τ1 → xn+τ1+τ2: � φ2(τ2, xn+τ1)
P3: xn+τ1+τ2 → xn+τ1+τ2+τ3: � φ3(τ3, xn+τ1+τ2)
P4: xn+τ1+τ2+τ3 → xn+1: � φ4(τ4, xn+τ1+τ2+τ3)

(2)

FIGURE 2
Switching sequence diagrams and six stable operation modes.

TABLE 1 State matrices of six operation modes.

M1 M2 M3 M4 M5 M6

A1 Aa1 ⊕ Ab1 ⊕ Ac1

B1 Ba1 ⊕ Bb1 ⊕ Bc1

A2 Aa1 ⊕ Ab1 ⊕ Ac2 Aa1 ⊕ Ab2 ⊕ Ac1 Aa1 ⊕ Ab1 ⊕ Ac2 Aa2 ⊕ Ab1 ⊕ Ac1 Aa1 ⊕ Ab2 ⊕ Ac1 Aa2 ⊕ Ab1 ⊕ Ac1

B2 Ba1 ⊕ Bb1 ⊕ Bc2 Ba1 ⊕ Bb2 ⊕ Bc1 Ba1 ⊕ Bb1 ⊕ Bc2 Ba2 ⊕ Bb1 ⊕ Bc1 Ba1 ⊕ Bb2 ⊕ Bc1 Ba2 ⊕ Bb1 ⊕ Bc1

A3 Aa1 ⊕ Ab2 ⊕ Ac2 Aa1 ⊕ Ab2 ⊕ Ac2 Aa2 ⊕ Ab1 ⊕ Ac2 Aa2 ⊕ Ab1 ⊕ Ac2 Aa2 ⊕ Ab2 ⊕ Ac1 Aa2 ⊕ Ab2 ⊕ Ac1

B3 Ba1 ⊕ Bb2 ⊕ Bc2 Ba1 ⊕ Bb2 ⊕ Bc2 Ba2 ⊕ Bb1 ⊕ Bc2 Ba2 ⊕ Bb1 ⊕ Bc2 Ba2 ⊕ Bb2 ⊕ Bc1 Ba2 ⊕ Bb2 ⊕ Bc1

A4 Aa2 ⊕ Ab2 ⊕ Ac2

B4 Ba2 ⊕ Bb2 ⊕ Bc2
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where xn+τ1, xn+τ1+τ2, and xn+τ1+τ2+τ3 represent the ending state of
the corresponding switch condition, or the initial state of the next

condition, τk � tk − tk−1 (k = 1, 2, 3, 4)is the duration of one

corresponding switch condition, and φk is the state transition

vector function given as:

φ1(τ1, xn) � ϕ1(τ1)xn + ψ1(τ1)
φ2(τ2, xn+τ1) � ϕ2(τ2)xn+τ1 + ψ2(τ2)
φ3(τ3, xn+τ1+τ2) � ϕ3(τ3)xn+τ1+τ2 + ψ3(τ3)
φ4(τ4, xn+τ1+τ2+τ3) � ϕ4(τ4)xn+τ1+τ2+τ3 + ψ4(τ4)

(3)

where ϕk(τk) � eAkτk and ψk(τk) � ∫t

0
eAkτkdτkBk. It should be

noted that if matrix Ak is invertible, the matrix function

ψk(τk) � A−1
k (eAkτk − I)Bk, where I denote the identity matrix.

In the case of a singular Ak, ψk(τk) is expressed as follows:

ψk(τk) � (Iτk + Akτ2k
2

+ A2
kτ

3
k

6
+/)Bk

The global Poincaré map P from the nth to (n+1)th switching

cycle, can be defined as a composition of four different local

maps Pk:

P � P4+P3+P2+P1 (4)

where the mathematical symbol “+” represents a composite map

of two maps, its order is immutable, i.e., P2+P1 � P2(P1) is

different from P1+P2 � P1(P2).
Therefore, the discrete iterative map from xn to xn+1 during

one period is described as follows:

xn+1 � φ4(τ4,φ3(τ3,φ2(τ2,φ1(τ1, xn))))
� Φ(τ)xn +Ψ(τ) (5)

where

Φ(τ) � ϕ 4(τ4)ϕ 3(τ3)ϕ 2(τ2)ϕ 1(τ1)
Ψ(τ) � ϕ 4(τ4)ϕ 3(τ3)ϕ 2(τ2)ψ1(τ1) + ϕ 4(τ4)ϕ 3(τ3)ψ2(τ2)

+ϕ 4(τ4)ψ3(τ3) + ψ4(τ4)

3 ANN-aided nonlinear voltage
stability monitor method

3.1 Principle of nonlinear analysis

Based on the Poincaré map theory, observing the position of

the eigenvalues of Jacobian matrix JP at fixed point x* in relation

to the unit circle can be used to determine the nonlinear dynamic

behaviour of the DC microgrid system. In addition, the

eigenvalues can be determined from the eigenequation at the

fixed-point x*, which consists of the following:

det(JP − λI)|x�x* � 0 (6)
where λ is the eigenvalue of JP, and if all eigenvalues have a

modulus length less than 1, the system is stable; otherwise, the

system is unstable.

The Jacobian matrix JP is expressed as (Wang et al., 2020):

JP � Φ(τ) − zP
zt

(zσ
zt
)−1( zσ

zxn
) (7)

where

σ(τ, xn) �
K1(xref − P1(xp, tp1)) − h(t)
K2(xref − P2+P1(xp, tp1, tp2)) − h(t)
K3(xref − P3+P2+P1(xp, tp1, tp2, tp3) − h(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ (8)

where xref = [Vref
pv , 0, 0, 1, 0, V

ref
dc , 0, 0, 0, Vo]

T is the reference

vector, where Vref
pv is the output of MPPT controller, also the

reference input voltage of subsequent PI controller, and Vref
dv is

the reference voltage of the DC bus, as shown in Figure 1 h(t)= SL
+ (SU - SL) (t mod T)/T is T-period sawtooth signal of time that

are used to generate PWM switching trigger signals, SU and SL are

the high and low levels of the sawtooth signal respectively, and T

is the switching period. K1, K2, and K3 are the control parameter

column vectors that are the direct sum of one of Ka = [-kpva, 0, 0,

1],Kb = [kPib, kPibkPvb/Rvb, -kPib/Rvb, -1], orKc = [kPic, kPibkPvc/Rvc,

-kPic/Rvc, -1] with two zero vector 01×4, depending on which

mode the system is operating in, i.e.,

M1: K1 = 01×4 ⊕ 01×4 ⊕ Kc, K2 = 01×4 ⊕ Kb ⊕ 01×4, K3= Ka ⊕
01×4 ⊕ 01×4;

M2: K1 = 01×4 ⊕ Kb ⊕ 01×4, K2 = 01×4 ⊕ 01×4 ⊕ Kc, K3= Ka ⊕
01×4 ⊕ 01×4;

M3: K1 = 01×4 ⊕ 01×4 ⊕ Kc, K2 = Ka ⊕ 01×4 ⊕ 01×4, K3 = 01×4 ⊕
Kb ⊕ 01×4;

M4: K1 = Ka ⊕ 01×4 ⊕ 01×4, K2 = 01×4 ⊕ 01×4 ⊕ Kc, K3 = 01×4 ⊕
Kb ⊕ 01×4;

M5: K1 = 01×4 ⊕ Kb ⊕ 01×4, K2 = Ka ⊕ 01×4 ⊕ 01×4, K3 = 01×4 ⊕
01×4 ⊕ Kc;

M6: K1 = Ka ⊕ 01×4 ⊕ 01×4, K2 = 01×4 ⊕ Kb ⊕ 01×4, K3 = 01×4 ⊕
01×4 ⊕ Kc.

In combination with 5 and 7, there are:

zσ

zxn
� ⎡⎢⎢⎢⎢⎢⎣−K1ϕ1(τ1)

−K2ϕ2(τ2)ϕ1(τ1)
−K3ϕ3(τ3)ϕ2(τ2)ϕ1(τ1)

⎤⎥⎥⎥⎥⎥⎦ (9)

zσ

zt
� ⎡⎢⎢⎢⎢⎢⎣ −K1 _x

−
1 − _h1(t1) 0 0

−K2ϕ2(τ2)Δ _x1 −K2 _x
−
2 − _h2(t2) 0

−K3ϕ3(τ3)ϕ2(τ2)Δ _x1 −K3ϕ3(τ3)Δ _x2 −K3 _x
−
3 − _h3(t3)

⎤⎥⎥⎥⎥⎥⎦
(10)

zP
zt

� [ϕ3(τ3)ϕ2(τ2)Δ _x1 ϕ3(τ3)Δ _x2 _x−3 ] (11)

where

⎧⎪⎨⎪⎩
Δ _x1 � _x−1 − _x+1
_x−1 � A1P1(xp) + B1

_x+1 � A2P2(xp) + B2

,
⎧⎪⎨⎪⎩

Δ _x2 � _x−2 − _x+2
_x−2 � A2P2+P1(xp) + B2

_x+2 � A3P2+P1(xp) + B3

,

_x−3 � A3P3+P2+P1(xp) + B3, _x+3 � A1P3+P2+P1(xp) + B1

Furthermore, the eigenvalue modulo length obtained from

Eqn 6 can be used to reflect the system’s operating conditions and
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stability margins. Here, the proposed stability margin ε is

defined as:

ε � 1 − |λMax| (12)

where ε represents the degree of system stability, and λMax

represents the eigenvalue with the longest modulus. Define a

critical value εr > 0, which is the minimum value of the system

stability margin. A warning will be issued if the system stability

margin drops below the critical level. And if the system is stable,

1 > ε > εr, otherwise ε < 0.

3.2 Implementation of ANN

The above content illustrates the theoretical principle of

nonlinear analysis, which is dependent upon the system state.

In this section, ANNs is applied to complete the procedure of

multivariate classification to achieve the operating prediction

mode. Figure 3A shows our neural network structure, which is

fully connected and includes a 7-dimensional input layer, a 6-

dimensional output layer, and four hidden layers. Specifically, the

input vector [T, G, ipv, vpv, ib, ic, vdc] including ambient

temperature (T), solar irradiance (G), the output current and

voltage of PV arrays (ipv and vpv), the output current of battery

(ib), the running current of CPL (ic), and the DC bus voltage (vdc),

are the measured variables of the DC microgrid system, and the

output is the probability of the operating modes P(Mi) (i = 1, 2,

...,6). Moreover, the neural node structure is illustrated in

Figure 3B, which contains a linear and a nonlinear portion.

The hyperparameters of the linear portion include connection

weighs vector w[l,h] and a bias factor b[l,h] (l presents the serial

number of the hidden layers, and h presents the serial number of

neurons in one hidden layer). The nonlinear portion adopts

Rectified Linea Unit (ReLU) function as an activation function

f(u). The generic structure of the neural node can be stated as

follows:

r[l,h] � ∑p
k�1

w[l,h]
k xk + b[l,h] (13)

y[l,h] � f(r[l,h]) � f⎛⎝∑p
k�1

w[l,h]
k xk + b[l,h]⎞⎠ (14)

where r[l,h] is the input of the activation function f, y[l,h] is the

output of the hth neural node in the lth hidden layer, and p

presents the number of neurons in the previous layer.

Furthermore, the output of the full-connected ANNs is

converted into the form that fulfils Formula (15) by the

SoftMax algorithm, and its structure is shown in Figure 3C.

P(Mi) � eyi∑C
i�1eyi

for i � 1, 2, ..., C (15)

where Mi represents the operation mode, and P(Mi) is the

probability of each operating state, yi is the input of the output

layer, as well as the output of the full connected layers, and C =

6 represents total six operation modes, namely six outputs of

the ANNs. The SoftMax algorithm is to normalize the values of

the output layer lie in the range (0, 1) and the sum of the values

equal 1, as expressed in Formula (16), so that these output

values can be interpreted as probabilities, where the highest

probability is most like the best candidate label (Maxwell et al.,

2017).

⎧⎪⎨⎪⎩
P(Mi) ∈ [0, 1]∑
i

P(Mi) � 1 (16)

Moreover, together with the Cross-Entropy Loss, SoftMax

Cross-Entropy Loss is arguably one of the most commonly used in

classification tasks using neural network (Liu et al., 2016). So, it is

used as the loss function of the system, as follows:

FIGURE 3
The structure of the designed ANNs. (A) The detailed
structural information of the neural network. (B) The neural node
structure. (C) The structure of SoftMax in the output layer.
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Loss � 1
N

∑
j

Lj � − 1
N

∑
j

∑C
i�1
sji log(P(Mi)) (17)

where Loss is the loss function,N is the number of samples, i and j

present each sample, and sji is a symbol function that can take

either 0 or 1. Specifically, when the jith output value is the best

candidate label, sji is 1, and others is 0.

Above all, the framework of the proposed ANN-aided

nonlinear voltage stability monitor method is illustrated in

Figure 4. The proposed method consists of two parts. The

first step is the nonlinear stability analysis algorithm. It is

based on the Poincaré map theory in nonlinear dynamics,

according to the model demonstrated in Section 2.2 and the

formula of calculating the stability margin ε derived in Section

3.1, to write the algorithm to evaluate the system’s stability

quantitatively. In the second step, the ANNs are used to

predict the operating mode of the DC microgrid. To aid the

first step in efficient computation, when environmental

conditions and CPL change randomly, the results predicted by

the ANNs are passed on to it. To be more specific, the data set [T,

G, ipv, vpv, ib, ic, vdc] generated by MATLAB/Simulink simulation

is divided into training and test sets. Then the ANNs are trained

and tested, and the predicted operating mode results are fed to

stable calculations. We should point out that this paper calculates

stability for a specific system state and does not consider the

changing process between the two states.

4 Simulation results

To evaluate the effectiveness of the proposed voltage stability

monitor method, throughout this section, we produce a

comprehensive introduction to neural network hyper-

parameters tuning, and then combine the nonlinear stability

analysis with the proposed stability margin to quantitatively

analysis and predict the system’s operating state. The specific

control and circuit parameters of the PV-battery-load-based DC

microgrid system are shown in Table 2.

To begin with, the inputs and outputs of the ANNs are gathered

to be trained by measured variables, including ambient temperature

(T), solar irradiance (G), the output current and voltage of PV arrays

(ipv and vpv), the output current of battery (ib), the running current of

CPL (ic), the DC bus voltage (vdc), and the manually labelled

corresponding operation modes (Mi, i =1,2, . . . ,6). To simulate

the random and intermittent disturbances of the DC microgrid, the

variations of the inputs and outputs of the system, including ambient

temperature, solar irradiance (Sidi et al., 2015) and various

FIGURE 4
The framework of the proposed ANN-aided nonlinear voltage stability monitor method.

TABLE 2 Parameters of PV-battery-load-based DC microgrid system.

PV-Distributed Generation (PVDG)

Rated Maximum Power - PN 6.9 kW

Filters - La, Ca, Cpv 300μH, 220μF, 220 μF

Line Resistance - ra 200 mΩ
PI Controller - kPa, kIa 1.5, 0.1

Battery Storage System (BSS)

Nominal Voltage - Vb 192 V

Filters - Lb, Cb 200μH, 220 μF

Line Resistance - rb 100 mΩ
PI Controller- kPvb, kIvb, kPib, kIib, Rvb 0.001, 1, 0.01, 1, 1

Constant Power Load (CPL)

Nominal Voltage - Vo 220 V

Filters - Lc, Cc 200μH, 300 μF

Line Resistance - rc 100 mΩ
PI Controller - kPvc, kIvc, kPic, kIic, Rvc 1, 0.02, 0.1, 0.2, 1

Frontiers in Energy Research frontiersin.org07

Sun et al. 10.3389/fenrg.2022.1045809

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1045809


consumed power loads, are set to generate 600 groups of

environmental states. For each state, ten groups are collected and

marked to ensure the accuracy of the data collection. As the

nonlinear dynamic stability analysis method in this paper is a

steady-state analysis, a simulation duration of 5 s is chosen, ten

sets of data are initially sampled at intervals of 0.2 s between 3 and

5 s, and one set of the sampled datasets is selected as the final original

datasets to guarantee that all the data sets are in the stable or unstable

states. Moreover, stratified sampling (Qian et al., 2009) is employed

to keep the distribution of data consistent as much as possible to

ensure that each category within a dataset is adequately represented

in the sample, and the datasets are divided into 85% training sets and

15% test sets.

Because we are dealing with relatively small datasets with

six classes, the choice of hyper-parameters is harder and more

important. For training the networks, the stochastic gradient

descent (SGD) optimizer is utilized, and we set weight decay of

2 × 10–5 of SGD, which is equivalent to L2 regularization, to

improve the model’s generalization capacity (Loshchilov and

Hutter, 2017). There are several hyper-parameters that need

to be fine-tuned, i.e., number of hidden layers, number of

neurons, and learning rate. So, three-fold cross-validation is

used to set them. We consider the number of hidden layers (l),

FIGURE 5
Loss of training process, and Accuracy of test datasets, for the number of hidden layers l ∈ {2, 4, 8, 12} with different ANNs, for learning rate η =
0.001.

TABLE 3 (Loss, Accuracy) for varying number of hidden neurons (u = [u1, u2, u3, u4]) and learning rate (η).

η
[u1, u2, u3, u4]

0.1 0.01 0.001 0.0001

[20, 50, 80, 20] (1.2037, 0.03333) (0.6649, 0.5222) (0.01342, 0.8778) (0.06319, 0.8000)

[50, 100, 150, 40] (1.2037, 0.03333) (0.06039, 0.7889) (0.002705, 0.9667) (0.01745, 0.9333)

[100, 500, 250, 50] (1.2037, 0.03333) (0.03869, 0.9222) (0.0006942, 0.9778) (0.001710, 0.9778)

[200, 800, 600, 100] (1.2037, 0.03333) (0.0001658, 0.9778) (0.0002747, 0.9778) (0.009430, 0.9778)

FIGURE 6
Variation of input and output conditions of the studied DC
microgrid system. (A) Variation of solar irradiance and ambient
temperature. (B) Variation of CPLs.
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the number of neurons (u), the learning rate (η), with

momentum of 0.8, 2000 epochs, and other default

parameters throughout.

We introduce the multi-labelAccuracymeasure, as defined in

(Read et al., 2011), (Read and Perez-Cruz, 2014), to report the

performance of ANNs with different hyper-parameters as

follows:

Accuracy � 1
N

∑N
i�1

∣∣∣∣yi ∧ ŷi
∣∣∣∣∣∣∣∣yi ∨ ŷi
∣∣∣∣ (18)

where yi is the true set of labels, and ŷi is the predicted set of

labels. ∧ and ∨ are the bitwise AND and OR functions,

respectively, i.e. |{0, 1, 0} ∨ {0, 0, 1}| = 2, and |{0, 1, 0} ∧ {0,

0, 1}| = 0. N is the number of test examples. Accuracy ∈ [0, 1]

denotes that the better correctness of the prediction, the closer

Accuracy is to 1.

The results in Figure 5 show the Loss and Accuracy to

evaluate the performance of a varying number of hidden

layers l ∈ {2, 4, 8, 12}, and, i.e. ANNs = {100, 50} denotes the

first hidden layer has 100 hidden units and the second has

50 hidden units. Having two hidden layers results in an

accuracy of 0.8889, adding two more gives 0.9667, and neural

networks with eight hidden layers also produce 0.9967.

Appending more hidden layers up to 12 totally has no effect

on Accuracy and even reduces it. The changing trend of Loss is

opposite to Accuracy, which means the lower Loss, the higher

Accuracy. It can be found that a deeper neural network may not

be best. Thus, we choose an optimal number of hidden

layers l = 4.

There are other hyper-parameters available to be tuned: the

number of neurons in hidden layers (u = [u1, u2, u3, u4]) and

learning rate (η), where u1~ u4 denote the number of neurons in

the corresponding layer. The results of (Loss, Accuracy) for

varying number of hidden neurons and learning rate η ∈ {0.1,

0.01, 0.001, 0.0001} are listed in Table 3. Using a learning rate of

0.1 leads to an accuracy of 0.03333 in all the four hidden neuron

conditions, reducing it to 0.01 produces a higher accuracy, and

η = 0.001 reaches an accuracy of 0.9778. Further, dropping the

learning rate to 0.0001 has no benefit on accuracy and could

actually make it worse. So, 0.01 is selected as the appropriate

learning rate. More hidden neurons may improve accuracy;

FIGURE 7
The dynamic variation of stability margin during conditions changing.

FIGURE 8
System Dynamics during conditions changing. (A) Dynamic
of DC bus voltage. (B) Dynamic of BSS current.
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however, to avoid the over-fitting of complex networks, accuracy

of 0.9667 could be sufficient for our need, which is verified in the

following simulation. Therefore, the search procedure shows that

the ANNs with 100, 500, 250, and 50 neurons in corresponding

hidden layers are the better choice.

The trained ANNs are then used to assist in calculating the

nonlinear stability margin to monitor the DC bus voltage when

both input and output conditions of the system change

simultaneously. This paper simulates a real DC microgrid

system by integrating fluctuations in solar radiation and

ambient temperature of the photovoltaic panel and variations

in the power consumption of the CPLs. Figures 6A,B depicts the

variation of input and output conditions, and the variation of

solar irradiance and ambient temperature in Figure 6A

corresponds to the reference (Sidi et al., 2015). To study the

effect of the irradiance and temperature variations throughout

the day on the operation of the DC microgrid system, we

compressed the data in the time range of a day into 6 s to

facilitate simulation.

The dynamic of the calculated stability margin ε under

varying input and output conditions is depicted in Figure 7.

This figure shows that overall when the solar radiation and

ambient temperature gradually vary, the calculated stability

margin ε varies slightly. In contrast, a quick shift in CPL will

have a major impact on the stability margin ε. In practice, the

linked load’s power consumption frequently fluctuates

abruptly, indicating that the change in CPL’s power

consumption significantly impacts on system stability. At

0–0.5s and 5.5~6s, the CPL is 0kW, which implies that the

system output is zero, and the stability margin is about 0.87,

which is relatively the largest, indicating that the system is most

stable at this time. When the loads of 4kW and 10 kW are

connected respectively at 0.5s and 1s, the stability margins

decrease to around 0.59 and 0.032, respectively. In the period of

1–2 s, the stability margin falls to about 0.032, and the DC bus

voltage waveform fluctuates by 2.5% in amplitude. In addition,

we calculate that under the same climatic conditions for 1–2 s

when the constant power load was 9.6kW, the DC bus voltage

fluctuated by about 2.5%, and the stability margin was 0.091. To

ensure that the bus voltage fluctuates by less than 2.5%, we have

set the critical value stability margin at 0.1. The access load is

then reduced to 6kW, and the stability margin increases at 2 s.

Additionally, when solar radiation drops sharply, the stability

margin will increase sharply, such as at 2.3 s, as the stability

margin jumps from 0.37 to 0.52. After that, the access load

grows abruptly to 12 kW at 4 s, leading the stability margin to

decrease to approximately -0.13 and the system to lose stability.

Finally, the system resumes steady operation at 5s and 5.5s

FIGURE 9
Zoomed dynamic of DC bus voltage during conditions changing.
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when the load is gradually lowered to 6 kW and 0kW, and ε is

correspondingly increased to around 0.32 and 0.87. From the

preceding analysis, it can be concluded that the DC microgrid’s

stability declines with rising CPL, and there is a critical CPL

value.

The corresponding time domain simulation is conducted to

further verify the correctness of the proposed voltage stability

monitoring method, and Figures 8A,B depicts the dynamic

waveforms of the DC bus voltage and the BSS charging and

discharging current. In this figure, the time-domain waveforms

of the DC bus voltage and BSS current vary in response to the

weather conditions input to the system and the power consumed

by the CPL, which appears to be operating steadily throughout

the process. However, these dynamic waveforms appear to not

match the stability margin calculation. Therefore, the typical

states I ~ VI, in which the system is in different degrees of

stability, are selected and marked in Figure 7 and Figure 8.

Figure 9 shows the zoomed waveforms corresponding to the

DC bus voltage during the appropriate state.

In Figure 9, the amplified waveforms of states I and II are

both stable, and the DC bus voltage fluctuation amplitude in

state II is larger than that in state I, which corresponds to the

variation of the stability margin in Figure 7. In state III, the

fluctuation range of the DC bus voltage is greater, and it

contains some harmonics. The stability margin is below

critical stability margin of εr = 0.1 and close to 0, indicating

that the system is in a critical stability state. In addition, it shows

that the critical stability margin is set at a reasonable value, and

an early warning should be given to alert of potential instability.

The DC bus voltage continues to fluctuate in state IV under the

disturbance of CPL. However, the waveform fluctuates less due

to the sudden drop in solar irradiance, which is consistent with

the calculation result of the stability margin. As a result of the

sudden increase in CPL, the DC bus voltage of state V exhibits

constant-amplitude oscillations, at which time the stability

margin is less than 0, and the system is unstable. Lastly,

when the CPL is reduced, the DC bus voltage waveform of

state VI ceases to oscillate. However, this may be due to the

previous oscillation as the bus voltage has some glitches at this

time, but it is overall stable. In conclusion, the time domain

waveform results demonstrate the precision of the proposed

voltage stability monitoring method.

5 Conclusion

This paper proposes a voltage monitoring method using

ANN-aided nonlinear dynamic stability analysis for the DC

microgrid. In the proposed method framework, the trained

neural network generates the predicted operating mode of the

DC microgrid, which is then input into the nonlinear analysis

algorithm based on the Poincaré map theory to calculate the

stability margin. Moreover, this method makes the theoretical

analysis of Poincaré mapping flexible and convenient, thereby

solving the problem that the iterative mapping order is

difficult to determine as the number of power electrons

rises. A thorough introduction to neural network hyper-

parameters tuning is provided. The theoretical and

simulation analyses further verify the accuracy of the

proposed analysis method. In the case study, it is found

that when the solar irradiance and ambient temperature of

the PVDG or the CPL change greatly, the stability margin

varies from close to 1 to a negative value, which indicates that

changes in the behaviour of the input and output interfaces

could cause the DC microgrid to be unstable, such as

oscillations in the bus voltage. Also, this nonlinear

intelligent approach can be extended to other relatively

small-scale power electronics-dominated power systems to

monitor their stability. As for the larger system, the

approximate modeling or more complex neural networks

may be considered to utilized in the future study.
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