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Due to the randomness and intermittency of wind, accurate and reliable wind

speed prediction is of great importance to the safe and stable operation of

power grid. In this paper, a novel hybrid wind speed forecastingmodel based on

EEMD (Ensemble Empirical Mode Decomposition), LSSVM (Least Squares

Support Vector Machine), and LSTM (Long Short-Term Memory) is proposed,

aiming at enhancing the forecasting accuracy of wind speed. The original data

series is firstly processed by EEMD and SE into a series of components with

different frequencies. Subsequently, a combined mechanism composed of

LSSVM and LSTM is presented to train and predict the high-frequency and

low-frequency sequences, respectively. Finally, the predicted values of all the

data sequences are superimposed to obtain the ultimate wind speed

forecasting results. In order to respectively illustrate the superiority of data

feature processing and combined prediction mechanism in the proposed

model, two experiments are performed on the two wind speed datasets. In

accordance with the four performance metrics of the forecasting results, the

EEMD-LSTM-LSSVM model obtains a higher accuracy in wind speed

prediction task.
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1 Introduction

In recent years, with the improvement of people’s environmental awareness,

renewable energy resources such as wind energy have attracted more and more

attention worldwide. Unlike traditional fossil fuels that results in environmental

pollution and global warming, wind energy, as a clean and pollution-free form of

practical renewable energy, has become a research hotspot around the world (Huang

et al., 2022). According to a wind report published by the Global Wind Energy Council,

more than 90 GW of new wind power capacity was installed in 2020, raising the total

installed capacity to 743 GW, up 14.3% from the previous year. In particular, China’s total

OPEN ACCESS

EDITED BY

Bin Zhou,
Hunan University, China

REVIEWED BY

Wei Yao,
Huazhong University of Science and
Technology, China
Chuan-Ke Zhang,
China University of Geosciences
Wuhan, China
Bo Yang,
Kunming University of Science and
Technology, China

*CORRESPONDENCE

Haoxuan Xu,
haoxuanxu@zuel.edu.cn

SPECIALTY SECTION

This article was submitted to Process
and Energy Systems Engineering,
a section of the journal
Frontiers in Energy Research

RECEIVED 14 September 2022
ACCEPTED 30 September 2022
PUBLISHED 09 January 2023

CITATION

Ai X, Li S and Xu H (2023), Wind speed
prediction model using ensemble
empirical mode decomposition, least
squares support vector machine and
long short-term memory.
Front. Energy Res. 10:1043867.
doi: 10.3389/fenrg.2022.1043867

COPYRIGHT

© 2023 Ai, Li and Xu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Brief Research Report
PUBLISHED 09 January 2023
DOI 10.3389/fenrg.2022.1043867

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1043867/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1043867/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1043867/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1043867/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1043867/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1043867&domain=pdf&date_stamp=2023-01-09
mailto:haoxuanxu@zuel.edu.cn
https://doi.org/10.3389/fenrg.2022.1043867
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1043867


installed capacity accounted for 38.5% of global wind power

capacity with the largest proportion (Wang et al., 2021). Despite

such surprising growth, the randomness, uncertainty and

intermittency of wind greatly affect the stable operation of

large-scale power grid-integrated systems (Sun et al., 2022).

An effective way to address this issue is to accurately predict

wind speed.

Recently, a lot of prediction methods have been proposed,

which are roughly divided into two categories, namely physical

methods and statistical methods (Liu et al., 2018a). The physical

methods, such as numerical weather prediction (NWP) and

weather researcher forecasting (WRF), approximately simulate

future wind speed using meteorological factors (atmospheric

pressure, temperature, density, etc.) for comprehensive

analysis (Xiao et al., 2018). One advantage of physical

methods is to predict wind speed directly from real-time data,

which, however, requires a large amount of physical information

with high precision, thus leading to significant economic cost.

As the data science increasingly develops, statistical methods

including conventional statistical models and artificial

intelligence (AI)-based statistical models, have been widely

regarded for time series forecasting (Hao and Tian, 2019).

This type of method can effectively mine historical

information and explain signal features (Aslam and Albassam,

2022). The conventional statistical models, like autoregressive

(AR) (Poggi et al., 2003) and AR-integrated moving average

(ARIMA) (Yunus et al., 2015), can predict wind speed on the

basis of historical data and characterize linear fluctuation trend,

but fail to adequately capture nonlinear features within wind

speed data. To avoid nonlinearity, the AI-based statistical models

have emerged continuously, including back-propagation neural

network (BPNN) (Sun andWang, 2018), support vector machine

(SVM) (Liu et al., 2016) and least squares support vector machine

(LSSVM) (Yuan et al., 2015). Among them, the structures of

neural network are difficult to determine and the calculation

process of traditional SVM is relatively complicated. In contrast,

as an improved effective technology, LSSVM, which requires

fewer parameters and owns higher convergence speed, has been

widely utilized for predicting wind speed. For example, Du et al.

(2018) proposed a novel robust hybrid system using LSSVM for

electrical power system forecasting, and verified the satisfactory

accuracy of the proposed hybrid model. The previous examples

demonstrated that traditional AI-based methods are capable of

extracting nonlinear and uncertain features of wind speed data

but more suitable for handling series forecasting issues with low

complexity.

To the best of our knowledge, the volatility and nonlinearity

of wind speed series are attributed to the interference of various

natural factors, thus shallow AI-based prediction models can

hardly learn the sophisticated features from massive historical

data, especially for the high-frequency sequence characterized by

randomness and short-term dependency. Because of the

hierarchical and distributed feature representations, deep

learning (DL) network possesses strong capability to predict

high-frequency sequence and robustness to parameters (Hu

and Chen, 2018). Deep learning methods including long

short-term memory (LSTM) (Shahid et al., 2021),

convolutional neural network (CNN) (Yu et al., 2020), deep

belief network (DBN) (Wang et al., 2016a), and gated recurrent

unit (GRU) (Li et al., 2022) have drawn much attention recently.

Liu et al. (2018b) proposed a deep learning framework based on

LSTM neural network for one-step forecasting of wind speed. In

terms of multi-step forecasting, Moreno et al. (2020) forecast

each component resulting from a two-stage signal decomposition

strategy by employing LSTM network. As described earlier, DL-

based LSTM neural network has been extensively used to forecast

highly complex wind speed series due to its remarkable ability of

learning and remembering both short and long-term features.

In recent years, it is widely recognized that hybrid or

ensemble models based on signal processing have achieved

admirable results in wind speed forecasting. Signal processing,

namely data decomposition and reconstruction, is regarded as a

key step to enhance the forecasting performance and efficiency of

time series. Among these decomposition strategies, ensemble

empirical mode decomposition (EEMD), as a modified version of

empirical mode decomposition (EMD), can effectively avoid

mode aliasing by adding normally distributed white noise into

raw signal. Wang et al. (2016b) have proved that the prediction

accuracy for wind speed can be improved by using EEMD.

Summarily, the aforementioned filter methods can

decompose an original data signal into multiple subseries with

various frequency-scales, making them more stationary and

regular for further prediction. Nevertheless, the computation

time of signal processing-based models will be inevitably

prolonged with the increase in the number of components. In

order to balance forecasting accuracy and economical cost,

entropy has been developed to calculate the time complexity

of data series as well as aggregate the decomposed components.

Due to the non-stationary nature of wind, wind data series

contains complex characteristic information. Although filter

methods can effectively reduce the volatility of wind series to

some extent, components with different frequencies have

different characteristics that can be matched with different

learning mechanism to adequately exert the advantages of

different models. Chen et al. (2022) used two different

predictors, namely LSTM and improved BPNN, to

respectively predict sequences with high-complexity and low-

complexity. Hu and Chen (2018) similarly proposed a LSTM-

based nonlinear combined mechanism to avoid the influence of

single model on the prediction results. Additionally, Fu et al.

(2020) proposed a composite prediction method containing

KELM and ConvLSTM in the light for the frequency scales of

each component to further improve the generalization capability

and robustness of a single model. When it comes to data

sequences mixed with different frequency scales, combining

the strengths of different prediction models will be a
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promising way to achieve accurate prediction results. Thus, this

paper integrates signal analysis method and different predictors

together for wind speed forecasting.

Themain contributions in this paper are described as follows:

(a) A hybrid wind speed prediction model (EEMD-LSTM-

LSSVM) is proposed to overcome the disadvantage of

single prediction model by using EEMD, LSSVM, and

LSTM network.

(b) The original data signal is decomposed into a series of sub-

layers applying EEMD to extract the fluctuation features, and

then reconstructed into several frequency scales of sequences

using sample entropy (SE) to reduce workload.

(c) To avoid the influence of single method on forecasting

ability, a combined mechanism containing LSTM and

LSSVM is developed. The high-frequency sequences are

predicted by fitting into LSTM network, while remaining

sequences (low-frequency ones) are predicted by LSSVM.

(d) The superiority of the developed combined mechanism is

verified on two wind speed datasets by comparing single

benchmark models and hybrid benchmark models based on

BPNN, SVR, LSSVM, LSTM, and persistence model.

The remainder of this paper is arranged as follows: Section 2

describes hybird EEMD-LSTM-LSSVM model. In Section 3, two

experiments are conducted on two datasets and comparative

analysis is performed. Section 4 summarizes the conclusions and

future research directions.

2 The EEMD-LSTM-LSSVM model

2.1 Framework of EEMD-LSTM-LSSVM
model

The flow chart of the EEMD-LSTM-LSSVM model is

presented in Figure 1, which is generally described as follow:

(1) The EEMD is firstly employed to decompose the original

signal into different sub-layers with different complex

FIGURE 1
Flowchart of the EEMD-LSTM-LSSVM model.
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feature information, also known as intrinsic mode functions

(IMFs).

(2) To reduce the number of IMFs to be predicted, SE is used to

calculate the sample entropy value of every sub-layer, and

reconstruct it into several new high-frequency and low-

frequency components.

(3) Aiming at all components with different frequencies, LSTM

network is adopted to forecast the high-frequency sequences,

while LSSVM model to forecast low-frequency sequences.

(4) The final forecasting results of original data series are

obtained by superimposing the predicted values of all the

sequences. In order to measure the prediction accuracy of all

the experimental models, four performance evaluation

metrics are adopted in this paper.

2.2 Ensemble empirical mode
decomposition

As an effective signal-processing tool, EMD, proposed by

Huang et al. (1998), has been widely implemented for time-

frequency analysis. Its role is to adaptively decompose the

original nonstationary sequence into multiple subsequences

with different frequencies, also known as intrinsic mode

functions (IMFs). However, the disadvantages of separation

and intermittency results in the poor performance of

separating similar frequency components and thus modal

aliasing. To tackle this drawback and enhance the signal-

processing ability of EMD, a modified version EEMD was

introduced by Huang and Wu (2009) to effectively ameliorate

mode aliasing by adding normally distributed white noise into

raw non-stationary wind series. Great progress has been made on

EEMD, an improvement and optimization of EMD in operation

speed and computational efficient. In this paper, the difficulty in

accurate forecasting of wind speed is attributed to its nonlinearity

and non-stationarity. Accordingly, EEMD is employed to

decompose raw wind speed series to make prediction less

difficult and serve for subsequent aggregation.

2.3 LSTM-LSSVM-based combined
mechanism

The data sequences of different frequencies obtained from

EEMD and SE contain different characteristic information,

which can be substituted into different learning mechanisms

to avoid the influence of a single model on the forecasting

performance. Consequently, hybrid models based on the

combined mechanism are generally superior to single

prediction models. Here, LSTM and LSSVM models are used

to respectively predict high-frequency and low-frequency

sequences. In order to validate the feasibility of the combined

mechanism, two kinds of above sequences are selected from the

following datasets for comparative experiment. The comparison

results are shown in Table 1.

It can be intuitively observed from Table 1 that LSTM

outperforms LSSVM in the processing of sequences with

higher frequency, but inferior to LSSVM in the processing of

sequence with lower frequency. Thus, this paper puts forward the

combined mechanism of LSTM-LSSVM, whose strength is to

avoid the preference of single predictor to data feature processing

and minimize the prediction error (Hu and Chen, 2018).

3 Experiments and analysis

In this section, the two used wind speed datasets are firstly

described in Section 3.1, and then the forecasting accuracy of the

EEMD-LSTM-LSSVM model is to be demonstrated on two

comparative experiments using two datasets. All the employed

models are performed in MATLAB R2018a on a server equipped

with 2.31 GHz CPU and 16 GB RAM.

3.1 Data description

The original data series of wind speed used in this paper are

available on websites (https://www.kaggle.com/datasets). To

validate the effectiveness of the proposed model, two groups

of wind speed datasets containing 1,000 data points were selected

as the experiment data. Taking five consecutive wind speed data

as the input of models, each group of 1,000 data was constructed

into a data matrix of 995 rows and five columns, in which the first

80% was used as training sets and the remaining 20% as test sets,

as shown in Figures 2, 3. The statistics of two wind data series are

given in Table 2.

3.2 Experimental setting

In order to further verify the superiority of the proposed

model, two groups of comparative models were divided into

single benchmark models and hybrid benchmark models for

different purposes. Five single benchmark models, namely

persistence model, BPNN model, support vector regression

TABLE 1 Comparison of two prediction models using different
sequences.

Model MAE MSE RMSE MAPE

High-frequency LSTM 0.1976 0.0686 0.2619 0.5662

LSSVM 0.2403 0.0996 0.3156 0.6216

Low-frequency LSTM 0.0090 0.00017 0.0132 0.0009

LSSVM 0.0056 0.00004 0.0066 0.0005
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(SVR), LSSVM, and LSTM model, were used for the first

experiment, aiming to illustrate the superior capability of data

preprocessing to improve the forecasting accuracy of wind speed

by comparing themodel after preprocessing with other five single

models. The role of the second group of models was to investigate

the impact of such combined mechanism on the forecasting

performance of wind speed by comparing the multi-predictor

model with single predictor model. Four benchmark prediction

models, EEMD-BPNN, EEMD-SVR, EEMD-LSSVM, and

EEMD-LSTM, were used for the second experiment.

According to Peng et al. (2020) and Moreno et al. (2020), the

key parameters of the above employed models are set by the

trials, as listed in Table 3. Specifically, the two parameters for

EEMD algorithm, namely Nstd and NE, are set as 0.2 and

100 respectively, according to Sun and Wang (2018). For

BPNN model, the number of hidden neurons is 10, the

maximum training number is 2,000, and the target training

error is 0.005, according to Peng et al. (2020) and Cui et al.

(2021). In terms of LSSVM, one key parameter r is set to 200 and

another parameter δ to 12 by the trials (Yuan et al., 2015). The

FIGURE 2
Original wind speed dataset 1.

FIGURE 3
Original wind speed dataset 2.
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parameters for SVR model are also set by the trials. One hidden

layer with 200 neurons is adopted for LSTM model, with

500 epochs at most, according to Moreno et al. (2020). In

addition, four typical performance metrics, namely mean

absolute error (MAE), root mean square error (RMSE), mean

absolute percent error (MAPE) and coefficient of determination

(R2), are used tomeasure the prediction accuracy of the employed

models in this paper. The equations for these metrics are given as:

MAE � 1
N
∑N
i�1

∣∣∣∣yi − ŷi
∣∣∣∣

RMSE �

������������
1
N
∑N
i�1
(yi − ŷi)2

√√

MAPE � 1
N
∑N
i�1

∣∣∣∣∣∣∣∣yi − ŷi
yi

∣∣∣∣∣∣∣∣
R2 � 1 − ∑N

i�1(yi − ŷi)2∑N
i�1(yi − �y)2

where N is the number of test samples, �y is the mean value of test

samples, and yi and ŷi are the ith actual value and predicted value

respectively. Note that the greater the value of R2 is, the better the

forecasting performance is.

3.3 Data decomposition and
reconstruction

As an adaptive signal analysis method, EEMD was firstly

used to decompose the original signal into nine sub-layers

including eight IMFs and one residual, and then SE was used

to calculate the sample entropy values of each IMF component.

The greater the SE value is, the higher frequency the time series

TABLE 2 The statistical information of two data sets.

Data set Samples Statistical information (m/s)

Max Min Mean Standard deviation

Data set 1 Entire data (995) 29.58 1.25 10.51 5.23

Train data (796) 29.58 1.25 10.61 5.40

Test data (199) 23.09 2.54 10.16 4.52

Data set 2 Entire data (995) 30.37 0.42 10.55 5.35

Train data (796) 30.37 0.42 10.76 5.41

Test data (199) 26.54 1.79 9.88 5.18

TABLE 3 Key parameter setting for each model.

Model Parameter Value

EEMD Nstd 0.2

NE 100

BPNN Number of hidden neurons 10

Maximum of epochs 2000

Goal error of training 0.005

LSSVM Regularization parameter r 200

Kernel bandwidth δ 12

LSTM Optimizer Adam

Number of hidden units 200

Initial learn rate 0.009

Learn rate drop period 125

Learn rate drop factor 0.2

Maximum of epochs 500

TABLE 4 EEMD subsequences and recombination.

IMFs SE value Result New subs

Data set 1 IMF1 1.8208 IMF1 Sub1

IMF2 1.0934 IMF2 Sub2

IMF3 0.6482 IMF3&IMF4&IMF5 Sub3

IMF4 0.5490

IMF5 0.4199

IMF6 0.1718 IMF6 Sub4

IMF7 0.0379 IMF7&IMF8&IMF9 Sub5

IMF8 0.0345

IMF9 0.0120

Data set 2 IMF1 1.7741 IMF1 Sub1

IMF2 1.2256 IMF2 Sub2

IMF3 0.6511 IMF3&IMF4&IMF5 Sub3

IMF4 0.5450

IMF5 0.4074

IMF6 0.1825 IMF6 Sub4

IMF7 0.0446 IMF7&IMF8&IMF9 Sub5

IMF8 0.0339

IMF9 0.0049

Frontiers in Energy Research frontiersin.org06

Ai et al. 10.3389/fenrg.2022.1043867

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1043867


has. In order to reduce workload and avoid excessive

decomposition, nine sub-layers were reconstructed into two

high-frequency and three low-frequency sequences according

to similar SE values, as presented in Table 4 and Figure 4.

3.4 Result analysis

In this section, the performance of EEMD-LSTM-LSSVM

model is to be proved by comparing with single benchmark

models and hybrid benchmark models respectively using two

wind speed datasets.

3.4.1 Comparative experiment Ⅰ: EEMD-LSTM-
LSSVM and single benchmark models

In order to demonstrate the impact of EEMD-based

preprocessing method in the proposed hybrid model, single

persistence model, BPNN, SVR, LSSVM, and LSTM models

are employed for comparison. The prediction results of the six

models applied on two datasets are presented in Table 5, where

the optimal result is highlighted in bold. Figure 5 shows the wind

speeds predicted by the six models. Figure 6 further displays the

line comparison between the actual data and the predicted data

obtained by EEMD-LSTM-LSSVM for two datasets.

It can be clearly observed form Table 5 and Figures 5, 6 that

the EEMD-LSTM-LSSVM model proposed in this paper is

obviously superior to five single benchmark models, with the

MAE, RMSE, MAPE, and R2 values of 0.9775, 1.2712, 0.1127,

and 0.9196 for dataset 1 and with the MAE, RMSE, MAPE, and

R2 values of 0.8720, 1.0921, 0.1132, and 0.9523 for dataset 2,

respectively, which suggests that the hybrid prediction model

based on data preprocessing is more reliable to extract different

characteristic information. Among the five compared models,

LSTM model performs the best especially for dataset 2, which

FIGURE 4
Sequence diagram of IMFs aggregation (A) Dataset 1. (B) Dataset 2.

TABLE 5 Performance metrics of six models on experiment Ⅰ.

Dataset 1 Dataset 2

MAE RMSE MAPE R2 MAE RMSE MAPE R2

Persistence 3.1536 4.2552 0.3468 0.0991 3.0819 3.8675 0.3825 0.4016

BPNN 2.9501 3.7575 0.3669 0.2975 3.0079 3.6693 0.4447 0.4613

SVR 2.9203 3.7602 0.3403 0.2965 2.9071 3.6102 0.4064 0.4786

LSSVM 2.8843 3.7399 0.3459 0.3040 2.9690 3.6391 0.4324 0.4702

LSTM 2.8844 3.6851 0.3561 0.3243 2.8885 3.5409 0.4183 0.4984

Proposed 0.9775 1.2712 0.1127 0.9196 0.8720 1.0921 0.1132 0.9523

The bold values mean the best results among all the comparative models.
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indicates that DL-based prediction methods outperform

traditional models.

3.4.2 Comparative experiment Ⅱ: EEMD-LSTM-
LSSVM and hybrid benchmark models

The second experiment is devoted to verify the

superiority of combined mechanism of two predictors to

EEMD-BPNN, EEMD-SVR, EEMD-LSSVM, and EEMD-

LSTM. Table 6 shows the performance metrics of five

hybrid models, and Figure 7 further displays the 3D bar

graphs of forecasting results using two datasets

respectively. In addition, Figure 8 shows the wind speeds

forecast by the five models.

As can be clearly seen from Table 6 and Figures 7, 8,

whether dataset 1 or dataset 2, the EEMD-LSTM-LSSVM

model favorably ranks among the four hybrid compared

models, which demonstrates the superiority of combined

mechanism for two predictors to improve the accuracy of

forecasting results. Additionally, the employed hybrid

models on experiment Ⅱ have obvious advantages in four

performance metrics over the single benchmark models on

experiment Ⅰ. Thus, it can be reasonably concluded that data

preprocessing strategy has obvious influence on the

forecasting performance.

3.4.3 Summary of experiment Ⅰ-Ⅱ
Based on the results of experiment Ⅰ-Ⅱ, the conclusions can be

drawn as follows:

(1) The combined EEMD-LSTM-LSSVM model based on

EEMD, LSSVM, and LSTM network not only is capable

to more effectively forecast wind speed than other

FIGURE 5
The line chart of forecasting results on experiment Ⅰ (A) Dataset 1. (B) Dataset 2.
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FIGURE 6
Predicted results obtained by EEMD-LSTM-LSSVM (A) Dataset 1. (B) Dataset 2.

TABLE 6 Performance metrics of five models on experiment Ⅱ.

Dataset 1 Dataset 2

MAE RMSE MAPE R2 MAE RMSE MAPE R2

EEMD-BPNN 1.4805 1.8815 0.1746 0.8239 1.2553 1.5806 0.1819 0.9000

EEMD-SVR 1.6078 1.9726 0.1967 0.8064 0.9053 1.1240 0.1243 0.9495

EEMD-LSSVM 1.0273 1.3856 0.1194 0.9045 0.8837 1.0980 0.1158 0.9518

EEMD-LSTM 1.0084 1.2887 0.1148 0.9174 0.8824 1.1058 0.1148 0.9511

Proposed 0.9775 1.2712 0.1127 0.9196 0.8720 1.0921 0.1132 0.9523

The bold values mean the best results among all the comparative models.

FIGURE 7
Result comparison of five models on experiment Ⅱ (A) Dataset 1. (B) Dataset 2.
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comparative models, but also largely improves the accuracy

of forecasting results.

(2) The forecasting accuracy of processing-based models is

obviously higher than that of other single models,

implying that data preprocessing algorithms included in

the combined model can greatly contribute to better

forecasting performance.

(3) By integrating the high-frequency ability of LSTM and low-

frequency ability of LSSVM model, the combined LSTM-

LSSVM predictor can remarkably improve the forecasting

accuracy, which further verifies the effectiveness of the

developed combined mechanism in improving the

prediction accuracy and ability.

(4) For both two datasets, the values of four performance metrics

obtained by single benchmark models are all worse than

those of four metrics obtained by hybrid models, suggesting

that the hybrid model has great advantages over the

single one.

4 Conclusion

Accurate wind speed prediction plays a vital role in the security

and stability of wind power grid-connected system. This paper

proposed a novel combined prediction model based on EEMD,

LSSVM, and LSTM neural network. To make data sequence more

stable and certain, EEMDwas first employed to decompose original

signal data into a series of sub-layers. At the same time, in order to

reduce workload and accumulated error, sample entropy was used

to reconstruct the IMF components according to the SE values of

sub-layers to obtain new subsequences with different frequencies.

Since the subsequences of different frequencies contain different

characteristic information, two prediction models, namely LSSVM

and LSTM neural networks, were selected to respectively train and

forecast high-frequency and low-frequency components. The

ultimate predicted values were obtained by superimposing all the

predicted values of two models. To investigate the impacts of signal

processing method and combined mechanism on the forecasting

FIGURE 8
The line chart of forecasting results on experiment Ⅱ (A) Dataset 1. (B) Dataset 2.
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accuracy respectively, two group different models, namely single

benchmark models and hybrid benchmark models, were compared

using two wind speed datasets.

By analyzing experiment results, conclusions can be drawn as

follows: 1) Whether dataset 1 or dataset 2 with volatility and

uncertainty, experiments Ⅰ-Ⅱ indicated that the proposed hybrid

EEMD-LSTM-LSSVM model can obtain a satisfactory

forecasting performance in terms of four performance metrics.

2) Compared with single models, the superior ability of

decomposition-based models has been evidenced, that is, the

hybrid model based on signal processing method has significant

influence on improving the forecasting performance. 3) The

proposed model in this paper respectively trains and predicts

high-frequency and low-frequency sequences mainly based on

two different prediction models, and the combined mechanism

of different predictors adopts different learning methods and

training rules for different feature sequences to improve the

prediction accuracy.

Despite the above mentioned interesting conclusion, the

practical inspirations of this paper are worth mentioning. To

the best of our knowledge, wind power generation has served for

smart grid, smart microgrids, smart buildings and smart homes,

and has a significant impact on electricity supply. However, the

difficulty in wind power generation is attributed to unsatisfied

wind speed forecasting results restricted by the nonlinearity and

non-stationarity of wind speed data. In other words, wind speed

prediction has become an important component of wind power

generation and simultaneously affects the reliability and stability

of wind farm and wind power grid connection system. As a result,

the hybrid model proposed in this paper not only improves the

accuracy and stability of wind speed prediction, but also has

significant reference value for the scheduling, management and

optimization of wind farms. For future research, there are two

directions remaining to be explored. On the one hand,

meteorological factors related to wind power generation, such

as temperature, humidity and wind direction, have influence on

wind speed, making it interesting to incorporate these

meteorological factors instead of single wind speed time series.

On the other hand, it is a promising subject to design advanced

intelligence optimization algorithms to search for the key

parameters of deep learning network so as to further improve

forecasting accuracy.
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