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Effective carbon dioxide (CO2) capture plays indispensable roles in closing the

global carbon cycle, serving the sustainable production of energy, and

achieving the grand 1.5 °C goal by 2050. Considering the diversity and

complexity of CO2 capture materials, machine learning has stepped into this

field years ago and become a powerful tool that promotes the screening and

design of involving parameters. From these perspectives, this critical review

firstly summarizes the technical backgrounds for the applications of ML-based

methods in CO2 capture. Then, through categorizing the materials into two

major groups, that is, adsorbents (containing metal organic frameworks,

carbonaceous materials, polymers, and zeolites) and absorbents (involving

ionic liquids, amine-based absorbents, and deep eutectic solvents), the

applications of this effective tool in relevant areas are scrutinized. The major

concerns remain to be further addressed are derived based on the above

discussions, namely 1) the development of consistent and integrated

databases, 2) the wise digitalization of inherent properties of materials, and

3) the validation of the accuracy of ML-derived results under practical scenarios.

The main purpose of this critical review is bridging the previous achievements

and further developments of ML-assisted design of CO2 capture techniques.
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Introduction

Fighting against climate change, with emphasis on the over-accumulated issue of

carbon dioxide (CO2) in the air, is one of the most predominant challenges facing carbon-

intensive energy industries and the environmental community in the 21st century (Guan

et al., 2022). Compared to preindustrial times before the 1750 s, the CO2 concentration in

the troposphere has increased from ~280 ppm to ~400 ppm, with an annual increase of

approximately 1 ppm (Pera-Titus 2014; Oschatz and Antonietti 2018). Notably, this

increasing trend is accelerating in the past decades, with the rate boosting from ~1.1% in

the 1990 s to ~3.0% in the 2000 s. The over-accumulated CO2 in the air is escorted by the

rise of Earth’s surface temperature by 0.6–0.7 C (Pera-Titus 2014). Although future trends
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are difficult to be specified due to unexpected geological activities,

the Paris Climate Agreement identifies that, to achieve the grand

1.5°C goal, a net-zero emission of CO2 must be realized by 2050,

because even assuming a preferred scenario, the CO2 will exceed

550 ppm until then (Wang et al., 2011). Besides, by converting it

back to energy storage materials (Wu et al., 2021), adopting it in

extracting residual oils from aquifers (Chen et al., 2022), etc., the

centralized control of CO2 also serves the overall benefits of

energy production in a depleting era of fossil fuels. From these

perspectives, it is of great urgency to develop advanced and

effective techniques for CO2 capture and collection from

industrial flue gas and ambient environment.

The up-to-date applications of CO2 capture technologies

generally involve an absorption process, with the addition of

amine-based solution like monoethanolamine (MEA),

diethanolamine (DEA), or methyl-diethanolamine (MDEA), to

convert CO2 into carbonate solids (Ghanbari et al., 2020).

However, the low selectivity of traditional amine-based

absorbents towards CO2 capture remains yet a critical issue

impeding the closing of carbon-cycle and the achievement of

net-zero CO2 emission (Haider and Kumar, 2020). Specifically

and firstly, for CO2 capture from industrial flue gas, the limited

selectivity makes traditional amine-based absorbents efficient for

the capture of components other than CO2, e.g., sulfur dioxide

(SO2) and nitrogen oxides (NOx), thus the separation of carbon-

laden energy storage products becomes relatively time-

consuming and expensive that requires extra steps (Rezaei and

Jones 2014). Secondly, for the direct CO2 capture (DAC) from

ambient environment, a critical technique to achieve the net-zero

emission of CO2, using amine-based absorbents, if not being

purposefully functionalized, is generally unpractical (Barzagli

et al., 2020). The advancements in CO2 capture with more

functional agents exhibiting higher selectivity thus still hinder

the world to be on the right track towards forming a batch of

available technologies applicable under all possible scenarios.

To realize a highly selective CO2 capture from industrial flue

gas or ambient environment, advanced materials including

modified amine absorbents (Pakzad et al., 2020; Gaikwad

et al., 2021; Li et al., 2021; Mehrabi et al., 2022), MOFs (Ding

et al., 2019), metal salts (Hu et al., 2019; Hu et al., 2021), zeolites

(Khoramzadeh et al., 2019; Bakhtyari et al., 2020), deep eutectic

solvents (Ali et al., 2016; Zarei et al., 2020), etc., have been

proposed to be alternatives to traditional CO2 capture agents.

The adjustment of physical and chemical properties of

absorbents or adsorbents is the most crucial process to make

them purposefully functionalized (Rahimi et al., 2021). However,

considering the complex composition of the properties that can

be designed, experimental methods based on a trial-and-error

logic are extremely time-consuming and hardly leverage all key

properties. To overcome this research gap and identify more

selective agents for CO2 separation, machine learning (ML) has

been emerging as an efficient way recently, because it can screen

tens of thousands of materials with a variety of physical and

chemical properties being adjustable (Fernandez et al., 2014;

Anderson et al., 2018; Zhu et al., 2020; Zhang et al., 2021a).

From the abovementioned perspectives, the prediction of the

physical and chemical properties of CO2 sorbents is a

fundamental towards the design of functionalized CO2

sorbents. Fortunately, using ML-based methods to characterize

the inherent properties like density (Abdollahzadeh et al., 2022),

viscosity (Bakhtyari et al., 2022), and pore structure (Jablonka

et al., 2020) of materials has been in a developed stage. With this

advancement, the foreseeable wide application of ML methods in

CO2 capture is expected to bring about revolutionary changes

that extend the material reservoir, boost the sorption capacity,

increase the CO2 selectivity, and reduce the operation cost. While

most previous works focused on the CO2 uptake capacity, the

CO2 selectivity, another critical factor influencing the

applicability of CO2 capture techniques, is much less

investigated and clarified, representing the bottleneck at the

current stage. Considering the effectiveness of ML in

identifying and proposing highly selective CO2 ab-/adsorbents,

the use of this method innovatively fuels the break of this

bottleneck, but well-constructed framework bridging its

previous achievements and further development in this

specific field is still lacking (Zhou K. et al., 2019).

Correspondingly, this review aims to prioritize the role of

selectivity in CO2 separation from other gas components, if

applicable, or discuss the future endeavors towards such a

sophisticated end. It firstly and briefly introduces the

technical backgrounds of ML methods. The technical

backgrounds primarily include four sub-sections, that is,

the collection of data, the featurization of descriptors, the
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evaluation of algorithms, and the training of models and the

prediction of performances. Then, the application of ML

methods in CO2 capture was summarized based on different

kinds of materials, which can be primarily divided into

adsorbents and absorbents. Adsorbents take advantage of

the abundant pores, large surface area and other properties to

capture CO2, including metal organic frameworks (MOF),

carbonaceous materials, polymers, and zeolites. Absorbents

capture CO2 by chemically reacting with it, including amine-

based absorbents and ion-liquid based materials. Finally, the

critical research gaps and future development of ML methods

in related areas are identified, aiming to provide a

dedicatedly constructed framework guiding the effective

use of ML techniques in mitigating climate change and

saving energy penalty before they step towards losing

control.

Technical backgrounds

Since its appearance in the 19th century, ML has been rapidly

evolving and widely used in the identification and proposal of

novel materials (Lu et al., 2017; Ramprasad et al., 2017; Wang

et al., 2022a; Zhang X. et al., 2022). The intelligent nature of ML

methods makes it not only an efficient tool to preprocess and

analyze data, but also an advanced way to learn and recognize

patterns. After the sorption behaviors of CO2 on a designated

group of materials are determined using appropriate ML

approaches, the CO2 separation performances of ab-/

adsorbents that have not been experimentally tested can be

predicted based on this recognized pattern. Generally, the

following steps represent a typical roadmap to process the

ML-based design of CO2 capture materials, that is, the

collection of data, the featurization of descriptors, the

evaluation of algorithms, the training of models, and the

prediction of performances (Chen et al., 2020) (as briefly

illustrated by Figure 1).

The collection of data. Firstly, for a ML-based task, sufficient

quantity and satisfactory quality of data, which can be collected

from published literatures or self-generated through theoretical

calculation or experimental test (Butler et al., 2018), are the most

critical factors influencing its feasibility. With approximately

40,000 referred results if using ‘CO2 capture’ and ‘CO2

separation’ as keywords for searching on the Web of Science,

it is totally possible for ML-based studies in related areas to

collect data from previous works. While the consistency of the

collected data is difficult to be well-controlled, e.g., different

works conducting the CO2 capture experiments under varied

conditions that may significantly change the performances, ML

may be an effective method to exclude the impacts of these

external factors, or even to identify the patterns of how these

factors influence the CO2 capture efficiency. In this case, these

external factors must be taken as necessary descriptors and

participate in the model training process. By processing

importance analysis, the model tells users whether these

external factors play crucial or marginal roles in the CO2

separation process (Guan et al., 2022). If a crucial role is

identified, the specific effects of experimental conditions can

be investigated in detail via ML-based approaches, and if a

marginal role is found, the experimental conditions can be

generally excluded in the subsequent prediction of CO2

capture performances. However, as the primary goal of most

ML-based explorations is examining potential materials instead

of practical operation conditions, self-generated data may be

preferred to ensure their integrity and consistency. The Grand

Canonical Monte Carlo (GCMC) method based on molecular

dynamics with the assistance of density functional theory (DFT)

calculation is a common roadmap to this end. This method is

generally applicable in the cases where porous materials that

physiosorbed CO2, e.g., MOF, are adopted (Dureckova et al.,

2019). Besides, databases like Materials Project (Jain et al., 2013),

Cambridge Structural Database (Groom and Allen 2014), Crystal

Open Database (Gražulis et al., 2009), etc., that contain tens of

thousands of known materials with necessary properties

specified, which is still unceasingly updating, also build an

indispensable bridge for the self-generation of data.

The featurization of descriptors. The featurization of

descriptors refers to a process where essential properties

FIGURE 1
A diagrammatic illustration on the process of ML.
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involved in CO2 capture are transferred into numerical values

(called descriptors) that are readable for computer. Generally, the

essential properties can be categorized into two subsets, that is,

external properties of experiments (e.g., the operation

temperature/pressure, the concentration of CO2, the dosage of

ab-/adsorbents, etc.) and intrinsic properties of materials

including their apparent compositions (e.g., elemental

composition, the ratio between active adsorbents and inert

supporters, etc.), physical characteristics (e.g., pore size,

surface area, etc.), and chemical characteristics (e.g., the

interaction pattern among different atoms, the charge of

active sites, the d-band center of active sites, etc.) (Ghiasi

et al., 2019; Burns et al., 2020; Shi et al., 2020; Gupta and Li

2022; Situ et al., 2022). The selection of properties is a subtle but

critical task that directly determines the performance of

modeling. The involved properties need to fully represent a

group of possible influential factors affecting the CO2 capture

performance, while redundant inclusion of properties may cause

deviation and overfitting. For example, the surface area and pore

volume of a material is generally interconnected, thus the

inclusion of both these two properties contain redundant

information that may result in overfitting. Although this

overfitting concern may be properly addressed with the use of

advanced algorithms, it is better to exclude excessively

interconnective data when featuring descriptors. Besides, it

should be noted that, while part of the abovementioned

features are numerical values in nature (e.g., the operation

temperature/pressure, the pore size, and surface area), other

features like the interactive pattern among different atoms

may be unreadable characteristics for computers in their

initial forms. For these properties, how to efficiently transfer

them into numerical value is still an open question nowadays.

Common methods include the use of topologically repeating

units, matrix, and/or function to represent the complex situation

(Behler and Parrinello 2007; Huang and von Lilienfeld 2016;

Barnett et al., 2020). In addition, there are numerically-in-nature

properties may proportionally correlate with those that are

difficult to be digitalized. A typical example is that the

FIGURE 2
Primary ML algorithms used in CO2 separation and their advantages (blue frame) and disadvantages (orange frame).
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interactive pattern among different atoms may be correlated with

the electronegativity of these atoms, hence users can replace the

hardly-digitalized characteristics by numerically-in-nature

features if their interconnective pattern is recognized to

improve the efficiency and avoid overfitting.

The evaluation of algorithms. There are generally three kinds

of ML - supervised learning, unsupervised learning, and

reinforcement learning (Kargbo et al., 2021). Supervised

learning refers to a ML scenario where both the input

descriptors and output values in the training set are given,

and the purpose of learning is correlating the input and

output data with relatively complex laws (Tabor et al., 2018).

As for unsupervised learning, unlabeled input descriptors were

involved, that is, the output values remaining unclarified in this

case, and the primary goal of learning in this case is recognize the

patterns of data (Chen et al., 2015). Finally, reinforcement

learning is a method that computer mimics the behaviors of

human and improves its own ability in the learning process

(Podryabinkin and Shapeev 2017). For CO2 capture, supervised

learning is the most common technique used in previous studies,

and it contains different algorithms, for which the performance is

case-dependent. The involved algorithms for exploring the CO2

separation performances of different materials mainly include

multiple linear regression (MLR), genetic algorithms (GA),

support vector machine (SVM), decision tree (DT), random

forest (RF), and neural network (NN) (with the advantages

and disadvantages of each algorithm specified in Figure 2).

For effective CO2 separation, the properties of the materials

and experiments might be used as the input features, and the

output values were CO2 capacity, capture efficiency, and/or

selectivity. Although the selectivity is the most concerned

issue in this review, the CO2 capacity and capture efficiency

are non-neglectable in most cases as they are the foundations for

an exceptional selectivity. To judge the accuracy of ML

simulations, loss functions are adopted with the assistance of

correlation coefficient (R2), mean absolute error (MAE), mean

square error (MSE), and root mean square error (RMSE)

(Doreswamy et al., 2020). For example, a RMSE value higher

than 0.80 is generally taken as a criterion to justify the

applicability of a ML algorithm, and that higher than

0.90 indicates an excellent accuracy. Algorithms with higher

accuracy was selected for a large-scale simulation, while

inherent reasons accounting for such an empirical superiority

may be complicated and unknown.

The training of models and prediction of performances. After

the algorithms are optimized, it is the time to process ML

learning and find the intrinsic correlations between input

properties and output values. The collected data are randomly

separated into two different groups namely training set and

testing set in the training process of models (the size ratio

between the training and testing sets generally ranges between

75%:25%–85%:15%), aiming to verify the generalization of the

applied algorithms. Multiple cross validation may be in further

need if the data size is relatively small (Lu et al., 2017). When,

typically, RMSEs of the training and testing processes larger than

0.90 and 0.80 are obtained, it demonstrates that the descriptors

adopted and the model used are suitable for the further

prediction of CO2 separation performances of untested

materials (Barnett et al., 2020). The prediction only requires

the input of unlabeled data with specified features and unknown

performance. Descriptors that are found to have negligible

influence on the performance based on the importance

analysis results can be excluded from the input set in the

performance prediction, if preferred. It is thus an efficient way

to exclude the impact of external factors and investigate the

influence of intrinsic characteristics of materials even no

consensus is reached among experimenters to provide data

generated under a consistent condition. A specific criterion is

expected to judge the suitability and applicability of CO2 ab-/

adsorbents under practical scenarios, which generally involves

the participation of the following parameters, that is, the CO2

capacity, the CO2 selectivity over other gas components, and the

plot of CO2 permeability versus its selectivity when a membrane

is used (as shown in Figure 3) (Barnett et al., 2020). Tens of

thousands of materials that have not been experimentally

synthesized and tested can be screened in this process with a

relatively high accuracy. Only the preferential materials as

indicated by the ML modeling might be synthesized in some

cases to further support the validation of the simulation (Zhang

Z. et al., 2022), thus significantly saving the time of conducting

time- and labor-consuming tests.

Application of ML in CO2 separation

The ML based screening and design of CO2 separation ab-/

adsorbents leverage its function in the case where complicated

material properties or process characteristics remain to be

adjusted. According to the function of materials, they are

categorized into two major parts namely adsorbents, including

metal organic frameworks (MOF), carbonaceous materials,

polymers, and zeolites, and absorbents, including ionic liquids

(IL), amine-based materials, and deep eutectic solvents (DES) (as

shown in Figure 4). It should be noted that the primary purpose

of this critical review is to explore the fundamentals and

applications of the ML-assisted methods in designing CO2

capture materials, but not to give a comprehensive

introduction to all available materials/techniques nowadays.

Adsorbents

Metal organic frameworks (MOF). MOFs are one of the

most explored groups for CO2 capture based on ML-based

methods. Critical reasons accounting for such popularity

include 1) wide interests - the huge reservoir, theoretically
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infinite, of available MOFs comprised of profoundly adjustable

parameters, 2) data availability - there are several databases like

Cambridge Crystallographic Data Centre (CCDC) and

Computation-Ready, Experimental (CoRE) containing

sufficient data of experimentally synthesized and hypothesized

MOFs, and 3) time and labor-saving technical roadmap -

compared with experimentally testing the CO2 adsorption

capacity of MOF, computational methods (e.g., GCMC)

generally spend much less time and labor costs to finish the

same job. As the key influential factors affecting the

physisorption, the pore sizes, surface areas, and void fractions

of MOFs, experimentally accessible or derived from theoretical

calculation with designated software (e.g., Zeo++), are generally

included in the training of ML models. Besides, the chemical

properties of MOFs are also important for the CO2 capture,

including the heat of adsorption, the atomic weight ratio of

different elements, the types of metal nodes, etc. Although the

digitalization of the chemical properties of MOFs is generally

more complex than that of the physical properties, a recent work

employed a GCNmethod to digitalize MOF structure and obtain

its chemical features efficiently (Wang et al., 2022b).

The application of ML in MOF-assisted CO2 capture dates

back to 2014 when its use was for the first time reported in related

areas (Fernandez et al., 2014). The SVM ML model was adopted

to screen and recognize the CO2 adsorption patterns and

behaviors over more than 32,000 types of MOFs. Specific

criteria were set to select the outperforming MOFs out under

different operational pressures, that is, MOFs with capacities

higher than 1 mmol g−1 at 0.15 bar and 4 mmol g−1 at 1.0 bar

were identified as superiorMOFs for CO2 capture. Based on these

criteria, a critical interatomic distance in the compact framework

ranging between 6 and 9 Å was found to be optimal for CO2

capture. An inferior interatomic distance compromised the

adsorption performance probably attributed to the incapability

to accommodate CO2, while an excessive distance might allow

CO2 to bypass the adsorbents instead. In 2016, the same research

group considered more than one kind of gas components and for

the first time investigated the selectivity towards CO2 over CH4 of

MOFs based on the DT and SVM ML models (Aghaji et al.,

2016). It was also found that, due to a similar reason as

abovementioned, moderate surface area, void fraction, and

pore diameter are both important to enhance the selectivity of

MOFs towards CO2 over CH4. A void fraction lower than

0.27 and a pore diameter lower than 6.6 Å were identified to

be two critical thresholds to achieve a CO2/CH4 selectivity of >10.
However, these two valuable works, despite shedding the initial

light on the application of ML in CO2 capture based on MOFs,

FIGURE 3
The plot of CO2 permeability versus its selectivity over (A) CH4 and (B) N2 of (Yuan Q. et al., 2021).

FIGURE 4
Different categories of materials used for ML-based CO2

capture study.
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are deficient in nature due to the omission of their chemical

properties.

To overcome such deficiency, the chemical features of MOFs

were originally considered in 2018 with the assistance of a

topological method (Anderson et al., 2018). The Coulomb

charge of MOFs, the most positive and most negative charges

in functional groups, the highest bond dipole moment of MOFs,

and the topology of functional groups are involved in the model

training (as shown in Figure 5A). Before introducing a crucial

chemical descriptor, i.e., the topology of functional group, into

the system, the authors first validated the applicability of such

descriptor. Specifically, the authors adopted DFT calculation to

obtain the binding energy of CO2 on different functional groups.

Then, it was found that the GCMC-derived CO2 adsorption

capacity of different MOFs was correlated with the binding

energy of CO2 on the functional groups these MOFs contain.

The result demonstrated that the features of functional groups

significantly influenced the CO2 adsorption capacity of MOFs,

thus they must be properly included, after digitalized, in the input

set to conduct the ML study. Gradient boosted machine and NN

are found to be the most accurate models to correlate these

descriptors, the abovementioned chemical together with physical

ones, with the CO2 capture performances of MOFs. The

simulation results showed that, although the chemical features

had been included in this study, the physical characteristics like

the pore size, void fraction, surface area, and density are still the

FIGURE 5
(A) Topological blueprints and connecting molecular building blocks used in the construction of the over 400 MOF designs, and (B) Relative
importance of material descriptors obtained from GBM training (S = selectivity, WC = working capacity, N = adsorption loading. FG = functional
group, VF = void fraction, HDBM = highest dipole moment, MPC =most positive charge, MNC =most negative charge, LPD = largest pore diameter,
PLD = limiting pore diameter, SE = sum of epsilons, GSA = gravimetric surface area) (Anderson et al., 2018).
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dominant influential factors affecting the working capacity of

MOFs towards CO2 capture in most cases (as shown in

Figure 5B). However, for the selectivity of CO2 over other gas

components like N2 or H2, the topology of functional groups in

MOFs did matter, indicating that the selectivity of MOFs might

be more sensitive to the chemical features of MOFs than the

capacity. Desired topological structures derived from the

simulation results were bcs, bcu, and fcu (as shown in

Figure 5A), while the inherent mechanisms accounting for

such superiority remains to be further explored.

With the physical and chemical descriptors for the MOF-

based CO2 capture being proposed, from then on, studies

started to investigate the performance of MOF under

practical scenarios. The performance of various MOFs for

CO2 separation in the presence of water vapor was examined

using a NN ML model (Zhang et al., 2021b). Both the

physical and chemical features were considered in this

case. The simulation results suggested that MOFs with

moderate surface area (1750 m2 g−1) and pore diameter

(14.2 Å) exhibited an optimized CO2 separation

performance if water vapor exists. The applicability of

MOFs in direct CO2 capture from air was explored based

on RF, NN, DT, and SVM ML models by co-considering the

influence of N2 and O2 (Deng et al., 2020). The heat of

adsorption was found to be the most important parameter

changing the CO2 capture performances of MOFs. It should

be noted that the heat of adsorption is a systematical

reflection of the chemical properties of MOFs, and the

specific chemical features influencing the capture

performance remains unspecified. The best-performing

MOF with a CSD code of NORGOS possessed a selectivity

of CO2 over N2 + O2 of 4712, much superior to the optimal

MOFs as identified by experimental pathways. This

significant outperformance further supports the unique

advantage of ML-based methods in screening and

designing CO2 capture agents, while the accuracy of the

adsorption capacity and CO2 selectivity are not necessarily

in accordance with their experimentally-determined ones.

To further consider the real-world conditions, an industrial

vacuum swing adsorption (VSA) system was adopted to

evaluate the CO2 separation performances of different

MOFs from industrial flue gas (Burns et al., 2020), aiming

to well-bridge the gap between material optimizations and

process designs. The MOF namely ppn-6-CH2DETA was

found to possess the highest selectivity towards CO2, which

exceeded 50,000 according to the GCMC calculation results.

However, IISERP-MOF2, UTSA-16, and zeolite NaA, rather

than ppn-6-CH2DETA, were identified to be preferred in

this case with parasitic energy of lower than 250 kWhe per

MT CO2 and productivities greater than those of pilot-scaled

zeolite-13X. These results implied that, in real-world

practices, in addition to the adsorption capacity and CO2

selectivity, there are more complicated factors to be included

to justify the applicability of MOFs for CO2 separation,

which remains yet to be fully clarified.

Carbonaceous materials. Activated carbons, attributed to its

porous structure and diversified active ligands, are used for the

capture of various environmental pollutants like CO2 (Li and

Xiao 2019; Sreńscek-Nazzal and Kielbasa 2019), volatile organic

compounds (VOCs) (An et al., 2019; Zhou T. et al., 2019; Li et al.,

2020), hazardous metals (Karnjanakom and Maneechakr 2019;

Yang et al., 2019; Zhang et al., 2021c), etc. The relatively low unit

price, the easy accessibility, the adjustable structure of pores, and

the potential to be regenerated make activated carbons promising

alternatives to amines for CO2 capture under real-world

conditions. Using carbonaceous materials to capture carbon

becomes a popular topic nowadays through synthesizing

activated adsorbents from biomass wastes. How to prioritizing

the effects of different influential factors, that is, the external

factors, the physical features of materials, and the chemical

characteristics of adsorbents, has become a debating topic

recently, and this was the time ML-based methods stepped

into this specific area years ago.

To elucidate the influential importance of different types of

factors on the CO2 capture performance of activated carbons,

several representative descriptors belonging to external factors

(temperature and pressure), the physical features of materials

(surface area, micropore volume, mesopore volume, and ultra-

micropore volume), and the chemical characteristics of

adsorbents (the mass percentages of hydrogen, oxygen,

nitrogen, and carbon) were featured (Zhu et al., 2020) and

processed based on RF model. As shown in Figure 6, the

FIGURE 6
The relative importance of integrated influential factors at
different pressure ranges (TP, CC and p represented textural
properties, chemical compositions and pressure, respectively)
(Zhu et al., 2020).
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authors found that, within a low-pressure range (0–0.6 bar),

pressure primarily affected the CO2 capture performances of

activated carbons, while within a high-pressure range (0.6–1 bar),

the physical properties of activated carbons dominated. This

phenomenon is probably attributed to that 1) microporous and

ultra-microporous structures were dominated in these porous

carbon materials, and 2) at high pressure, CO2 adsorption on

porous carbons proceeded through pore-filling mechanism

rather than layer adsorption (Sevilla et al., 2013; Boyjoo et al.,

2017). Besides, the authors also found that under a relatively low

but unchanged pressure (<0.2 bar), the mesopore volume

significantly influenced the CO2 adsorption capability of

activated carbons, whereas the ultra-micropore volume took

this role over if the pressure increased to >0.6 bar. Although
the limited sample size of this studymight induce the deviation in

the judgement of the role of different features, this work still

offered valuable references that inspired further studies in related

areas.

In 2021, the CO2 capture performances of activated carbons

were simulated and studied by different tree-based ML algorithms

including gradient boosting decision tree (GBDT), light gradient

boosting machines (LGB), and extreme gradient boost (XGB)

(Yuan X. et al., 2021). GBDT was proven to marginally

outperform other 2 ML algorithms in the simulations, and the

importance of different types of descriptors follow the order

external factors > physical features > chemical characteristics,

FIGURE 7
Assisted design of high-performance polymer membranes (Barnett et al., 2020).

FIGURE 8
Polymer candidates for advanced CO2/CH4 gas transport performance identified through ML and their experimental performance (Barnett
et al., 2020).
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which was generally in line with previous studies. The CO2

adsorption behaviors of bio-derived N/O-enriched activated

carbons were also simulated by a NN-based algorithm, and

density functional theory (DFT) calculations were adopted as a

supportive method to identify the adsorption mechanism of CO2

(Rahimi et al., 2022). The role of different characteristics, that is,

pyridinic nitrogen (N-6), pyrolytic nitrogen (N-5), oxidized

nitrogen (N-X), graphitic nitrogen (N-Q), and the fraction of

N-6/N-X, of N-containing functional groups was identified,

evidencing that N-6, N-5, and N-X considerably functioned in

the CO2 capture. The CO2 capture by rice husk derived activated

carbons was studied by a NN-based algorithm, while only physical

properties like pore volumes and surface areas of activated carbons

were considered in this work due to the limited accessibility of data

(Palle et al., 2022). It can be clearly found that, for carbonaceous

materials, of which the derivation of CO2 capture performance

from theoretical calculation is relatively difficult due to the

structural complexity of activated carbons, the high-throughput

screening on their CO2 selectivity is unpractical at the current

stage. This limitation urges the further development of available

database that homogeneously describes the structural details of

activated carbons in the future.

Polymers. Polymer-based membranes have been widely used

in the selective separations of mixed gases like N2/O2 (Himma

et al., 2019), N2/H2 (Ockwig and Nenoff 2007), CO2/N2 (Liu

et al., 2016), and CO2/CH4 (Liu et al., 2018). Generally,

permeability and selectivity are two critical criteria that

determines the CO2 separation performances of membranes,

whereas these two criteria go against each other under real-

world conditions, that is, higher the permeability is, generally

lower the selectivity is achieved, and vice versa. However, it

should be noted that, although these two parameters

negatively correlate, and a ‘Robeson plot’ can be drawn based

on this correlation, the upper limit of this plot continuously

evolves with the dedications of scientists. The primary purpose of

the involvement of ML-based studies in this area is further

optimizing the upper limit of such ‘Robeson plot’. It requires

to screen and test the CO2 separation performances of a large

amount of polymer membranes, which significantly challenges

the time-consuming experimental pathways.

How to digitalize the features of polymers, which contains

complex ligands that may interact with each other in a twisted

manner, is a critical challenge facing the application of ML in

relevant fields. In 2020, Barnett et al. for the first time addressed

FIGURE 9
Effect of Temperature and pressure on CO2 adsorption (axial Z) on various types of zeolite (A) 13X, (B) 5A (C) SAPO-34 (D) SSZ-13 and (E) T-Type
(Raji et al., 2022).
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this issue by creating fingerprints for polymers based on

topological methods (Barnett et al., 2020) (as shown in

Figure 7). Specifically, the authors transformed each polymer

into a binary fingerprint using the Daylight-like fingerprinting

algorithm as implemented in RDKit. This topological-based

approach analyzes the various fragments of a molecule

containing a certain number of bonds and then hashes each

fragment to produce a binary fingerprint that computationally

represents the molecule. After a polymer’s repeat unit was read

into memory via a molfile, it was broken down into fragments

containing between 1 and 7 units (represented for n = 1 to n = 4 in

Figure 7), and the structure was hashed into a fingerprint with

2048 bits of information to encode all of the possible connectivity

pathways of the monomer. This process is repeated for each group

in themolecule to generate the full fingerprint. Each bit was treated

as a single feature in ourmodel, which allows us to study the effects

of various functional groups and their linkages on gas transport.

Each monomer was connected to at least nine other identical

repeat units to properly account for longer paths along the polymer

backbone. This fingerprinting technique is the simplest

representation of the polymer chemistry and structure that is

sufficient to capture trends observed in the experimental data.

Based on this novel method, the simulation results showed that

two polymers, that is, poly [(1,3-dioxoisoindoline-2,5-diyl) sulfonyl

(1,3-dioxoisoindoline-5,2-diyl)-1,4-phenyleneoxy-1,4-phenylene] (ID:

P432092) and poly [(1,3-dioxoisoindoline-2,5-diyl) sulfonyl (1,3-

dioxoisoindoline-5,2-diyl)-1,4-phenylenemethylene-1,4-phenylene]

(ID: P432095) lied well above the upper limit of the ‘Robeson plot’ for

CO2/CH4 separation (as shown in Figure 8). Both of these polymers

are polyimides containing sulfone groups. Besides, P432092 contains

an aromatic ether linkage, and each of these groups is highlighted

during the analysis of the ML data as being related to high CO2/CH4

selectivity. In addition to this revolutionary study, another work also

explored the permeability of different gas components through

polymer membranes (Yuan Q. et al., 2021), and identified that the

permeability followed the order O2 > CO2 > N2 > CH4 > He. Two

outperforming polymer membranes locating above the Robeson

upper limit 2008 were selected out, namely KAUST-PI-1 and

PIM-1, for the separation of CO2 and CH4.

Zeolites. Zeolites refer to a group of porous materials with the

general formula of Mn+1/n (AlO2)
-(SiO2)x·yH2O, where Mn+1/n is

either a metal ion or H+. Considering the porous and

functionalized nature of zeolites, they are widely used as

commercial adsorbents for gaseous pollutant removal from

FIGURE 10
Prominent cations (prefixed with “C”) and anions (prefixed with “A”) found in the dataset (Venkatraman and Alsberg, 2017).
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industrial flue gas (Ding and Yazaydin 2013; Sun et al., 2014;

Bakhtyari et al., 2020; Ma et al., 2021). Several models including

the Hybrid-ANFIS, PSO-ANFIS, and LSSVM had been proposed

for the prediction of the CO2 adsorption on various zeolites (Raji

et al., 2022). The accuracy of the models was assessed based on

calculating the MSE AARD, R2, and STD. According to the

results, it is shown that the all models are reliable and precise for

estimating the CO2 adsorption on various zeolites and applicable

methods for the design and analysis of the CO2 adsorption

processes. It can be concluded from Figure 9 that pressure

increment has a higher effect on the CO2 adsorption

performance than temperature. In Zeolite 5A, the effect of

temperature was more obvious than other zeolites. For zeolite

T type and ssz-13 in the temperature around 330 K, there can be

seen an optimal point for CO2 adsorption.

Absorbents

Ionic liquids (IL). IL generally refers to a group of subset

examples of molten salts fully comprised of abundant ions

(anions and cations) with melting point below 100 °C (Lei

et al., 2017; Zhang et al., 2021a; Zhang et al., 2021). Since the

last decade when IL was found to be a promising absorbent for

CO2 capture (Blanchard et al., 1999), this group of nonvolatile

and designable materials has been extensively explored for its

functionalized role in related fields (Zeng et al., 2017).

Purposefully and pertinently engineering the functional

ligands in IL is the key challenge for the further improvement

of CO2 selectivity over other gas components and the

applicability of IL-based CO2 technologies. The intrinsic

complexity of the synthetical and processing optimization

makes ML an emerging and effective method to such a

sophisticated end. The ways of data collection are categorized

into two types, that is, collecting from previous studies and

calculating based on theoretical methods. The former one

merits for its precision in performing data analysis and

processing, while the later one may contain a wider range of

material variety for CO2 capture.

In 2017, ML was for the first time used as a tool to investigate

the CO2 capture by ILs (Venkatraman and Alsberg, 2017), and

the performances of different ILs were collected based on

experimentally determined results (Lei et al., 2014). 185 ionic

liquids (68 cations, 65 anions) comprised of 10,848 solubility

measurements, which is widely inclusive, across different

temperatures and pressures were used as the fundamental

database for the model training and testing (Figure 10 showed

prominent cations (prefixed with “C”) and anions (prefixed with

“A”) found in the dataset). Both physical and chemical features,

including the HOMO/LUMO energies, polarizabilities,

superdelocalizabilities, charge partial surface areas (CPSA),

and various geometrical indices as derived from semi-

empirical MOPAC, were considered. The main goal of this

work was examining the accuracy of different ML algorithms

in fitting the CO2 capture capabilities of ILs, and found that

random forest was more suitable than decision tree and partial

least squares regression in this case, probably attributed to the

adaptability of random forest in learning datasets with

considerable diversity and deviation. However, the R2 as

obtained equaling to 0.71 was still far from satisfactory due to

such intrinsic complexity. A limited batch of ILs containing

several designated functional groups was hence studied, aiming

to attain more precise results within a specific IL scope (Mesbah

et al., 2018; Daryayehsalameh et al., 2021). It was identified that,

when only [Bmim][BF4] ILs was considered, a NN-based ML

model exhibited a much higher accuracy with R2 equaling to

FIGURE 11
A schematic of our algorithm to design an application-specific ionic liquid (Zhang et al., 2021).
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0.99 and 0.98 for the training and testing sets. The effects of

pressure and temperature on the CO2 capture performance of

[Bmim][BF4] ILs were predicted, indicating that a relatively high

pressure and low temperature might be beneficial for CO2

capture by [Bmim][BF4] ILs. Besides, by using a relative

sophisticated multi-layer NN-based model with group

contribution (GC) methods, a satisfactory precision was also

obtained for a wider scope of experimentally collected ILs with

more than 10,000 data points (Song et al., 2020).

While extensive ML-guided studies have been conducted to

study the laws of CO2 solubility in ILs, there are still two critical

issues remaining to be well-addressed, that is, 1) the predicament

between the scale of IL database and the prediction accuracy due

to the influence of diversified variables, and 2) the insufficient

understanding of the selectivity of CO2 over other gas

components because of the limited amounts of relevant

experimental results. To obtain an improved data

homogeneity, the theoretically derived mass-based

Absorption-Selectivity-Desorption index (ASDI) was adopted

to characterize the selectivity of approximately 1000 IL

systems towards CO2/N2 separation (Wang K et al., 2021).

Cyano-based ILs were found to be excellent solvents for

separating CO2 and N2, and Aspen Plus [EMIM][TCM] was

selected as best IL, the process of which led to 12.9% savings on

total annualized cost (TAC) compared to that of [EMIM][Tf2N].

Following this effective method, a subsequent study extended the

database of screened ILs to more than 400,000 by adopting the

Simplified Molecular Input Line Entry System (SMILES) that

sequences strings of symbols in ILs based on their graph theory

(Zhang et al., 2021) (a brief illustration on the technical roadmap

is shown in Figure 11). The ILs with sequencing number of

CCCc1n (CCOc2ccccc2)cc [n + ]1CCOC and CCCc1n (CCC)cc

[n + ]1CCOc1ccccc1 were found to exhibit superior

performances towards the CO2 separation from H2 or N2.

However, as the authors did not consider whether the

involved computationally derived structures can be

successfully synthesized via experiments, further validation on

the feasibility and applicability of these ILs needs to be conducted

in the future.

To leverage both the structural motif of MOFs and the

absorption ability of ILs, the CO2 capture performances of IL-

MOF composites were also scrutinized based on ML models

FIGURE 12
Regression plot for the absorption of CO2 prognostication by (A) LSSVM, (B) RBF-NN, (C) PSO-ANFIS, and (D) ANFIS (Dashti et al., 2021a).
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(Zhang Z. et al., 2022). The configurational-bias Monte Carlo

(CBMC) method was adopted to insert 1-aminopropyl

imidazolium bis(trifluoromethylsulfonyl) imine ([NH2-Pmim]

[Tf2N]) into different MOFs. GCMC was used to calculate the

adsorption capacity and CO2 selectivity of IL-MOF composites,

and the RF algorithm was taken to perform the ML process. It

was identified that the accessible volume (AV), the density (ρ),
and free volume (Vfree) are three major influential factors

affecting the CO2/N2 selectivity of IL-MOF composites.

Structure-performance relationship revealed that IL-MOF with

optimal AV (0.176–0.444 cm3 g−1), ρ (1.295–2.046 g·cm−3), and

Vfree (1724–4785 Å
3) result in decent CO2/N2 selectivity. [NH2-

Pmim][Tf2N]@ZIF-67, an IL-MOF composite exhibiting

moderate CO2 separation performance, was synthesized to

successfully verify the accuracy of the ML simulation.

However, it should be noted that, in this study, the authors

primarily investigated how the change of MOF characteristics

influenced the CO2 separation performances of IL-MOF

composites, while the features of ILs were skipped. Further

scrutinization on the synergetic effects between ILs and MOFs

are of great importance to make the performance prediction

more practical and precise.

Amine-based absorbents. Amine-based materials have been

widely commercialized for CO2 capture from large-scale

FIGURE 13
Optimized (A) HBA and (B) HBD structures with COSMO surfaces (Wang J et al., 2021).
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industrial processes, MEA, piperazine (PZ), and

N-methyldiethanolamine (MDEA) are the most studied

absorbents in previous works (Dutcher et al., 2015; Yamada

2021). The mechanism of amine-based CO2 capture technologies

generally involves the reaction between amine and CO2 to form

carbamate anion (NCOO−) and protonated amine (BH+). The

predominant merit of amine-based CO2 capture technologies is

its reversibility, that is, the feasible regeneration of spent

absorbents via relatively facile and cost-effective methods,

which significantly reduces the operation cost and makes the

commercialization preferred. Due to the lack of applicable

computational tools to obtain the absorption capacities of

amine-based materials, previous studies all relied on

experimental results to conduct ML studies in this field.

Under this circumstance, the complex effects of external

influential factors may become a major obstacle that impedes

the derivation of a highly consistent conclusion. Thus, ML based

methods, as an effective method to generalize parameters, began

to assist practitioners in designing the next-generation amine

absorbents, which may be applicable for highly selective CO2

capture.

As a widely adopted amine-based absorbents, PZ was taken as

the first example inML screening and prediction for its CO2 capture

performance (Yarveicy et al., 2018). More than 1000 data points

were collected from previous studies, and the reaction temperature,

CO2 partial pressure, and the concentration of PZ were featured as

descriptors to explore the influence of external factors on the CO2

separation performance of pZ. Four different algorithms including

NN, adaptive neuro-fuzzy inference system (ANFIS), SVM, and DT

were tested for their suitability and accuracy in this case. It was found

that the DT-based algorithm exhibited the highest accuracy with the

R2 reaching ~0.99. A conclusion was drawn that CO2 partial

pressure had the predominant impacts on the CO2 absorption

performance of PZ, followed by the concentration of PZ and the

reaction temperature. Under the optimal reaction condition, that is,

reaction temperature, the concentration of PZ, and CO2 partial

pressure equaled to 313.15 K, 1.913 mol L−1, and 7.51 kPa, the

absorption capacity of PZ towards CO2 was 0.86 mol CO2 per mol

pZ. Besides, the influences of reaction temperature, CO2 partial

pressure, and the concentration of amine on the CO2 absorption

performance of MEA, diethanolamine (DEA), and triethanolamine

(TEA) were also scrutinized (Ghiasi et al., 2019). It was surprisingly

found that for different amines, the dominant experimental

condition changed. Specifically, for MEA and TEA, the

importance of different experimental conditions followed the

order reaction temperature > partial pressure > the concentration

of amines, while for DEA, the order changed to partial pressure >
reaction temperature > the concentration of amines. Although

errors may exist due to the insufficiency of experimental data,

this work also gives valuable implications on the diversity of

amine design.

Subsequent studies further extended the variety of

descriptors and amines to provide more generalized guidance

for absorbent optimization. In addition to reaction temperature,

the pressure of flue gas, the flow rate, the pressure of re-boiler,

reboiler duty, and condenser duty were also considered to further

approximate the practical scenarios (Shalaby et al., 2021). An

optimized operation condition was obtained to be flow rate =

4.01 mol s−1, temperature = 319.7 K, the pressure of flue gas =

103.5 kPa, reboiler pressure = 160.0 kPa, reboiler duty =

153,600 W, and condenser duty = 8600 W. It could be found

that the optimal reaction temperature as obtained under a

relatively complex condition did not deviate from that

obtained under simple conditions. Besides, the CO2 capture

performance of a novel group of amine-based absorbents, that

is, amino acid salt (AAs), were also recently explored by ML-

based methods (Pakzad et al., 2020; Dashti et al., 2021a; Mehrabi

et al., 2022). In these studies, the intrinsic features of amines,

covering the molecular weight of AAs, hydrogen bond donor

count, hydrogen bond acceptor count, rotatable bond count, and

heavy atom count, were for the first time co-considered with the

external influential factors. Different algorithms including SVM,

NN, ANFIS, and particle swarm optimization-ANFIS (PSO-

ANFIS) were adopted to perform the simulation, among

which the NN-based one exhibited the highest accuracy (as

shown in Figure 12). The rotatable bond count and the

molecular weight of AAs were identified to be the

predominant factors influencing the CO2 capture performance

of AAs.

Deep eutectic solvent (DES). DES is a new generation of IL

analogues sharing similar physicochemical properties as IL, such

as negligible vapor pressure, high chemical/thermal stability and

easily tunable character. Compared to ILs, DESs offer two

advantages: 1) DESs can be prepared easily by mixing a

hydrogen bond acceptor (HBA) with a hydrogen bond donor

(HBD), avoiding complex synthesis and purification steps for ILs;

2) A large number of cheap and renewable compounds can act as

the HBA (e.g., ammonium and phosphonium salts) or HBD (e.g.,

organic alcohols and acids), making DESs more affordable and

sustainable over ILs. Using DES for CO2 capture was extensively

investigated in recent years, and ML-based methods were

adopted to screen different DESs for their CO2 absorption

performances (Dashti et al., 2021b; Wang K et al., 2021).

A typical example to design DESs CO2 absorbents with the

assistance of ML-based methods was the application of a random

forest derived ML model for performance description (Wang J

et al., 2021). Before conductingML studies, the structures of HBA

and HBD of EDSs were first optimized using Gaussian software

package (as shown in Figure 13). The red part and the blue part

represent positive COSMO charge density and negative charge

distribution, respectively. In order to generate the desired

COSMO-RS-derived descriptors, the obtained COSMO files

are directly imported into the COSMOthermX software to

output the σ-profiles of HBAs and HBDs. The qualitative

analysis from multiple linear regression shows that the

variables, including the descriptors of HBAs and HBDs, molar
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ratio of HBA to HBD as well as the temperature and pressure, are

efficient input parameters for predicting CO2 solubility in DESs.

The importance of the involved variables in the QSPR model is

ranked as pressure > HBA type > HBD type > HBA:HBD molar

ratio > temperature.

Outlooks and conclusions

In the past 5 years, due to the rapid development of

artificial intelligent and the explosion of material database,

ML has stepped into the CO2 separation area as an effective

and efficient tool for ab-/adsorbent screening and design.

Various ML algorithms including but not limited to MLR,

RF, NN, DT, and SVM demonstrated their powers in this

process where time-consuming and costly experiments were

skipped. The CO2 capture performances of several types of

materials were simulated and scrutinized by ML-based

methods. Novel materials that might serve the future

benefits of carbon capture and sustainable energy

conversion were proposed, parts of which proceeded far

ahead of the current synthetical techniques. These

achievements fully reflect the huge potentials of ML in

improving CO2 capture technologies, while the following

issues may be the primary concerns to be well-addressed in

the future to uncover these potentials.

The first issue is the establishment of consistent and

integrated databases that make the influence of

microcosmic descriptors more explorable. In previous

studies, different scientists generally conducted experiments

under varied conditions, and such variety made the effect of

the intrinsic properties of materials hard to be identified. In

this case, the explorers must firstly take the experimental

conditions into consideration to train a reasonable model.

However, the inclusion of external factors only contributes

marginally to the rationally design of materials. Besides, it is

noted that the criteria used to judge the CO2 capture

performance was different in different works, and the

typical criteria used included the CO2 capacity, the

selectivity of CO2 over other gas components, and the CO2

removal efficiency. In a specific work, there were only one to

two criteria being adopted, which further impedes the

generation of integrated data in ML studies. Thus, it is

suggested that a consistent experimental condition will be

adopted for a same type of materials, and an integrated testing

on its CO2 capture performances involving diverse criteria,

especially the CO2 selectivity, is highly preferred.

The second issue is the development of effective methods

to digitalize the structural properties of materials. Although

the CO2 adsorption over a wide variety of materials has been

investigated, it is found that the descriptors used in most

works were primarily the textural and compositional

properties of materials. A sophisticated method to digitalize

and visualize the complex interactions among atoms and

ligands in the materials remains yet to be well-developed,

while such inherent properties may play predominant roles in

CO2 capture, especially in cases where CO2 is chemisorbed by

sorbents like solid-state metal salts, which have hardly been

investigated by ML-based pathways due to the lack of

digitalized methods to feature their properties. To this end,

topological method may be an extremely useful tool. However,

due to the interdisciplinary nature to achieve the digitalization

of such complex features, it was rarely applied in previous

studies. Overcoming this critical challenge requires the

participation and dedication of more interdisciplinary

talents with both computer science and material science

backgrounds in the future.

The third issue is the validation of the accuracy of ML-

derived results. Despite the effectiveness ML displaying in

designing CO2 capture agents, it must be admitted that

experimental verifications had rarely been adopted to

justify the performances of these agents. The evidence of

the accuracy of ML-based studies stuck in a non-rigorous

cycle where the CO2 performance was obtained from

calculation, and a similar calculation process was

conducted to test its validation. While self-consistent

results could be generated on this basis, they may be far

from the real outcomes obtained under practical scenarios.

This is why this review urges the attention to the selectivity of

CO2 because no practical condition can ignore the influence of

interfering gas components. Besides, this challenge also

identifies the importance to conduct experimental

verification on the ML-derived results. Otherwise, the

application of ML in CO2 will only be a costly activity

rather than a beneficial pathway towards the mitigation of

climate change in the future.
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