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Wireless Internet of Things (IoT) is widely accepted in data collection and

transmission of power system, with the prerequisite that the base station of

wireless IoT be compatible with a variety of digital modulation types to meet

data transmission requirements of terminals with different modulation modes.

As a key technology in wireless IoT communication, Automatic Modulation

Classification (AMC) manages resource shortage and improves spectrum

utilization efficiency. And for better accuracy and efficiency in the

classification of wireless signal modulation, Deep learning (DL) is frequently

exploited. It is found in real cases that the signal-to-noise ratio (SNR) of wireless

signals received by base station remains low due to complex electromagnetic

interference from power equipment, increasing difficulties for accurate AMC.

Therefore, inspired by attention mechanism of multi-layer perceptron (MLP),

AMC-MLP is introduced herein as a novel AMC method for low SNR signals.

Firstly, the sampled I/Q data is converted to constellation diagram, smoothed

pseudo Wigner-Ville distribution (SPWVD), and contour diagram of the spectral

correlation function (SCF). Secondly, convolution auto-encoder (Conv-AE) is

used to denoise and extract image feature vectors. Finally, MLP is employed to

fuse multimodal features to classify signals. AMC-MLP model utilizes the

characterization advantages of feature images in different modulation

modes and boosts the classification accuracy of low SNR signals. Results of

simulations on RadioML 2016.10A public dataset prove as well that AMC-MLP

provides significantly better classification accuracy of signals in low SNR range

than that of other latest deep-learning AMC methods.
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Introduction

AMC refers to the automatic and fast classification of unknown signal modulation

types by algorithms. AMC has been widely used in military and civil wireless

communications, which can efficiently manage spectrum resources. In the power

wireless Internet of Things (IoT), there are many types of wireless communication

terminals, diverse modulation methods, and complex electromagnetic environment of

wireless channels, which render AMC operation extremely difficult. AMC algorithm can
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not only be compatible with a variety of wireless communication

terminals, but also reduce the price of the system (Abdel-

Moneim et al., 2021). Traditional AMC methods can be

sorted into two categories, namely likelihood based (LB) and

feature based (FB) methods. As the name implies, LB algorithm is

based on likelihood, where different types of likelihood functions

are used to improve the classification accuracy. There are four

common likelihood functions: maximum likelihood (ML) (Wen

and Mendel, 2000), average likelihood ratio test (ALRT) (Huan

and Polydoros, 1995; Hong and Ho, 2003), generalized likelihood

ratio test (GLRT) (Panagiotou et al., 2000) and hybrid likelihood

ratio test (HLRT) (Hong et al., 2001). Due to the high space

complexity and time complexity of LB algorithm in condition of

too many modulation types and unknown parameters, the

classification accuracy is low when faced with the new

modulation mode, which cannot meet the requirements.

Many researchers are committed to the research of FB

algorithm: Nandi and Azzouz (1998) and Shen and Gao

(2014) proposed spectrum as the main classification feature,

but the classification accuracy drops sharply when it comes to

intra class modulation; Orlic and Dukic (2009), Mirarab and

Sobhani (2007) proposed a method to classify signals based on

statistical distribution features. However, there are also problems

such as computational complexity and dependence on prior

knowledge, and only a few modulation types with obvious

features can be identified; Yu et al. (2003), Zhou et al. (2017),

and Satija et al. (2015) proposed a method to classify using signal

transformation domain features, which has better classification

accuracy at high SNR and lower classification accuracy at low

SNR; Mobasseri (2000) proposed to use the constellation

diagram for classification, which achieved good results under

high SNR, but failed to classify newmodulationmethods. To sum

up, the traditional AMC classification method cannot to meet the

classification task of new modulation methods, and encounters a

problem of excessive space-time consumption.

With the development of artificial intelligence technology,

DL has been used in data processing and analysis, and is being

applied in the field of AMC. In recent years, DL has been widely

used to solve AMC problems. Convolutional neural network

(CNN) was first used to directly perform AMC on I/Q raw data.

Experiments show that its performance is significantly much

better than the classification method based on cyclic spectral

features (O’Shea et al., 2016). Long-Short TermMemory (LSTM)

neural networks are used to establish the characteristics of the

relationship between amplitude and phase of sequential I/Q data.

When using a fully connected network for classification, the

average classification accuracy of the proposed model is close to

90% under various SNR of 0–20 dB, and good experimental

results have been obtained (Rajendran et al., 2018). Some

researchers proposed to use the SCF to generate two-

dimensional profiles of modulated signals, and then use CNN

network for classification, which also achieved good classification

results under low SNR (Zhang et al., 2021). Hou et al. (2021)

transformed one-dimensional I/Q signals into SPWVD, and then

used CNN to extract features for AMC, which also achieved good

classification accuracy. Qiao et al. (2022) aimed to solve the

problem of low classification accuracy with low SNR. A denoizing

and a classification network were used for synchronous learning,

which effectively improved the classification accuracy and

performed better than the existing classification methods. In

the 0 dB SNR environment, the proposed multi-task CNN

method outperforms the traditional CNN method by 20%. Ke

and Vikalo (2022) designed a learning framework for LSTM

denoising encoder, which can automatically extract stable

robustness features from noisy signals according to amplitude

and phase, and use the learned robustness features for

modulation classification. This model is structurally compact,

easy to implement on low-cost embedded platforms, and can

effectively classify received wireless signals. Mao et al. (2021)

designed a multi constellation AMC framework, used CNN

network to extract deep features, weighted the attention of

feature vectors, and finally implemented AMC, which

achieved good classification results on the open dataset. Xu

and Darwazeh (2020) used Software Defined Radio (SDR) to

test the real environment and evaluate various performances,

providing specific test contents. Although DL method can

quickly and accurately classify modulation modes under high

SNR, due to the existence of electromagnetic interference of

power equipment, he low SNR of wireless channel results in

the low classification accuracy of DL method. The existing digital

modulation modes cannot be classified accurately using I/Q data

or using a single features map. It is necessary to study a DLmodel

that can resist noise and intra class modulation methods.

In recent years, self-attention mechanism has gradually

shifted from natural language processing to computer vision.

Vaswani et al. (2017) used the self-attention mechanism under

the transformer architecture to process natural language

sequences in parallel, significantly improving the processing

speed and accuracy, and obtained good experimental results.

Dosovitskiy et al. (2020) introduced the self-attention

mechanism into the field of computer vision and achieved

excellent performance on several benchmark datasets, such as

ImageNet, COCO and ADE20k. Compared with the traditional

CNN algorithm, self-attention can establish the global

relationship, which is different from the local relationship

established by CNN, and it has a great improvement in visual

application. Liu et al. (2021) and Tolstikhin et al. (2021), likewise

achieved good classification accuracy on public datasets using

MLP, proving that in addition to the transformer, MLP also

efficiently achieves image data classification tasks. The AMC is

qualified to classify signals in different spaces such as space-time

features, statistical features and time-frequency features and

unsuitable to classify existing modulated signals with a single

feature. Therefore, it is necessary to extract and fuse features of

multi-dimensional spatial information, and further use DNN

using self-attention mechanism for AMC.
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In the face of strong electromagnetic interference, in order to

improve the classification accuracy and robustness of AMC

algorithm, the modulated signal is characterized in

multimodal in this paper, which avoids the lack of

representation ability of a single feature. The modulated signal

is characterized from the space-time characteristics, time-

frequency characteristics and statistical characteristics

respectively. Therefore, the constellation diagram, SPWVD

and contour diagram of the SCF are used to represent the

modulation characteristics of the signal. Constellation diagram

can be used to classify the modulated signal in the space-time

domain. SPWVD can classify modulation types in time-

frequency domain. The SCF reflects the statistical

characteristics of the signal and is insensitive to interference.

It has good noise resistance and can keep the classification effect

in the low SNR range. To reduce the computational complexity,

we use the contour diagram of the SCF, and we use the above

three images in the production of the dataset.

Unlike the existing research, most DL modulation classification

schemes mainly select the characteristics of a single as the input of

the network or optimize the network structure for high-dimensional

mapping to improve modulation recognition performance, ignoring

the complementarity between features in different transformation

domains and different classifiers. Unlike the existing research,

instead of inputting the signal into the classifier, we preprocess

the data, including dataset construction of three feature diagram,

image synchronization denoising using Conv-AE, feature vector

extraction, construct global relationship construction using self-

attention, implement AMC after multimodal feature fusion and

verify the classification accuracy.

In summary, the main contributions of this study are as

follows:

1. In the space-time domain, time-frequency domain and

statistical domain, use the multi-modal characteristics of

the constellation diagram, SPWVD and contour diagram of

SCF as the network input.

2. The design uses Conv-AE for synchronous denoising and low

dimensional feature extraction of feature maps, which is

helpful to improve the robustness of the model and

simplify the model parameters, thus simplifying the MLP

model, accelerating the model training and reasoning.

3. Use multimodal feature fusion method, use the

complementarities between feature maps, enhance the

communication between different transform domains,

improve the feature expression ability. Use MLP of self-

attention mechanism for classification

4. Study the classification accuracy changes of different types of

modulated signals in different additive white Gaussian noise

(AWGN) channels and compared with the reference method.

The rest of this paper is organized as follows. This paper

proposes a multimodal modulation classification modal based on

MLP self-attention mechanism, which is composed of constellation

diagram, SPWVD, SCF contour diagram data generation module,

Conv-AE feature denoising and extraction module, and MLP self-

attention classification module. We provide the architecture model

of the system, and then complete the algorithm analysis and dataset

generation of constellation diagram, SPWVD and SCF contour

diagram, is presented in detail in Section 2. Then, in Section 3,

we analyze the experimental process, simulation test and result

analysis to prove the effectiveness of our algorithm and its

superiority over the benchmark algorithm. Finally, a brief

conclusion is given in Section 4.

Materials and methods

In this section, we introduce the proposed AMC system design,

including the feature map generation module, the feature extraction

module based on Conv-AE, and the classifier structure of MLP

attention. The data set from RadioML 2016.10A (O’Shea andWest,

2016) is used in our experiment to generate feature maps.

System model

The proposed AMC model, shown in Figure 1, classifies

the modulation types of the Conv-AE eigenvectors of the

constellation diagram, SPWVD, and the contour diagram

of SCF. To reduce the noise influence and accurately

distinguish intra-and inter-class modulation modes, we first

sampled the unknown signal, and then generated the

constellation diagram, SPWVD, and the contour diagram

of the SCF, respectively. The purpose of this method is to

improve the representation of signal in different fields and

resist the influence of channel noise. Subsequently, CNN is

used to extract the feature vectors of the three feature maps,

after which the feature vectors are input into the MLP network

of the self-attention mechanism for classification. The

following four modulation types are most commonly used

in digital communication: the binary phase-shift keying

(BPSK), binary frequency-shift keying, Gauss frequency-

shift keying (GFSK), quadrature phase-shift keying (QPSK),

and 16 quadrature amplitude modulation (16QAM).

Constellation diagram

Generally, the received signal is expressed as Eq. 1.

x(t) � s(t)pc(t) + n(t) (1)

s(t) is the transmitted signal without noise, c(t) is the time-

varying pulse of the transmission wireless channel, and n(t) is the
AWGN of zero mean and variance σ2n in the wireless signal. x(t) is
the received signal, because of the mathematical and physical circuit
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design requires that we commonly use the I/Q format to represent for

the in-phase component and quadrature component, the received

signal samples xi � (Ii,Qi), including Ii � Ai cos(ϕi) and

Qi � Ai sin(ϕi), where Ai and ϕi are the instantaneous amplitude

and phase Angle of the received signal x(t), as shown in Eq. 2.

Ai �
������
I2i + Q2

i

√

ϕi � arctan(Qi

Ii
) (2)

The constellation diagram is a 2-D image representation of

scatterers drawn from baseband I/Q sampled data in the I/Q

coordinate system. The generated image is shown in Figure 2. It

is often used for modulation signal classification, as it can

efficiently characterize the modulation type and data order.

There is a good mapping relationship between the constellation

diagram and modulation type, especially at classification

accuracy. When the SNR is high, the modulation types are

efficiently classified; however, due to interference of noise in the

channel, it is difficult to identify high-order modulation signals

at low SNR. Therefore, the modulation classification method

using the constellation diagram is a difficult task in low SNR

environments.

SPWVD

For the modulated signal x(t), its Wigner–Ville Distribution

(WVD) is the Fourier transform of the instantaneous correlation

function of x(t), which is defined as Eq. 3:

Wx(t, f) � ∫+∞

−∞
x(t + τ

2
)x*(t + τ

2
)e−j2πfτdτ � ∫+∞

−∞
Rx(t, τ)e−j2πfτdτ (3)

where τ is the delay variable, t and f are the time and frequency

variables, respectively, and Rx(t, τ) is the instantaneous

correlation function of the signal x(t). WVD represents the

joint energy distribution of a signal in the time-frequency

domain, and has two important properties, namely, time- and

frequency-shift invariance.

To suppress the influence of cross terms, the pseudo

Wigner–Ville distribution (PWVD) is obtained by time-

domain windowing based on WVD. The windowed method

not only retains the excellent performance (better resolution)

of the original algorithm WVD but also eliminates some cross-

term interference.

PWVDx(t, f) � ∫+∞

−∞
h(τ)x(t + 1

2
τ)x*(t − 1

2
τ)e−j2πfτdτ (4)

h(τ) is a window function added to the time domain, which

is equivalent to a low-pass filter. It plays a smooth role in the

frequency domain, to reduce the cross-term interference of

multi-component signals in the frequency direction. However,

it also destroys the edge distribution and instantaneous frequency

characteristics of WVD.

SPWVD a one-time windowing process in the frequency

domain based on PWVD, and its definition is given by Eq. 5.

SPWVDx(t, f) � ∫∫ h(τ)g(v)x(t − v + τ

2
)x*(t − v − τ

2
)e−j2πfτdvdτ

(5)

Herein, h(τ)g(v) is the two window functions of Winger–Wiley

distribution in frequency domain and time domain, which

FIGURE 1
Schematic diagram of AMC system. Generation of three different feature maps was completed using the original baseband I/Q data. Conv-AE
was used for feature extraction, and the modulated signal classification at different SNR was completed using multimodal attention.
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realizes the double smoothing effect in time-frequency domain,

and the two window functions are both real even functions.

Compared with PWVD, the two window functions in SPWVD

definition are windowed in the time and frequency domain,

respectively, that is, filtering is carried out in time and frequency

domain at the same time to achieve the elimination of cross-term

interference to a large extent. x(t) is the analytic signal of r(t) as
given by Eq. 6:

x(t) � r(t) + jH[r(t)] (6)

whereH[·] represents the Hilbert transformation. The generated

image is shown in Figure 3.

Contour diagram of spectral correlation
function

Because the autocorrelation function Rx(t, τ) is periodic, its
Fourier series expansion is performed as Eq. 7.

Rx(t, τ) � ∑Rα
x(τ)ej2παt (7)

where Rx(t, τ) is called the cyclic autocorrelation function and

represents the cyclic autocorrelation strength of random process

x(t) at frequency α, which is defined as Eq. 8:

Rα
x(τ) ≜ lim

τ→∞
1
T0

∫T0
2

−T0
2

x(t + τ

2
)x*(t − τ

2
)e−j2παtdt (8)

where α is the cycle frequency. When α = 0, Rα
x(τ) is a

conventional autocorrelation function. Taking

the Fourier transform of the cyclic autocorrelation

function Rα
x(τ):

Sαx(f) � ∫∞

−∞
Rα
x(τ)e−j2πfτdτ (9)

Sαx(f) is the cyclic spectrum density function substituting Eq.

8 into Eq. 9, the cyclic spectral density function can be

expressed as:

Sαx(f) � lim
T0→∞

1
T0

XT0(t, f + α

2
)XT0

*(t, f − α

2
) (10)

where XT0(t, f) is the short-time Fourier transform of the

stochastic process x(t):

FIGURE 2
Constellation diagrams of modulated signals at SNR = 18 dB in RadioML 2016.10A dataset. (A) 8PSK, (B) BPSK, (C)CPFSK, (D)GFSK, (E) PAM4, (F)
QAM16, (G) QAM64, (H) QPSK.
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XT0(t, f) � ∫t+T0

t−T0

x(u)e−j2πfudu (11)

Eq. 10 shows that the cyclic spectral density value at a

frequency f in the spectrum of the stochastic process x(t)
can be obtained by the cross-correlation of two short-time

Fourier transform components above and below f with a

spacing of α/2. Therefore, the cyclic spectral density function

is also known as the spectral correlation function (SCF).

The FFT accumulation method (FAM) employed by Roberts

et al. (1991) is used, where the discrete smoothed cycle period

plot in the time domain is expressed as Eq. 12.

SαxN′
(n, f) � 1

N
∑N−1

n�0
[ 1
N′XN′(n, f + α

2
)XN′

*(n, f − α

2
)] (12)

In Eq. 12, N represents the total length of data, XN(n, f) is
the discrete short-time Fourier transform of random process

x(t), Eq. 13.

XN′(n, f) � ∑N−1

n�0
w(n)x(n)e−j2πnf

N′ (13)

wherew(n) is the window function used to truncate data (such as

Hamming window). FAM consists of three basic steps:

windowing the input sequence and applying N′ point short-
time Fourier transform to obtain spectral components with

frequency f, frequency shifting the output of short-time

Fourier transform to obtain two spectral components with an

interval of α/2 above and below f, and replacing the average

calculation in smoothing with P point Fourier transform. The

generated image is shown in Figure 4.

Conv-AE

To obtain the low-dimensional features of different

feature maps under various modulation modes, we use a

multi-layer Conv-AE, including a learnable convolution

kernel and activation function, to extract the low-

dimensional features of images. The structure of Conv-AE

is summarized in Table 1.

For three different feature maps, the same Conv-AE is

used for feature extraction. First, the feature map is input and

FIGURE 3
Smoothed pseudo Wigner–Ville distribution of modulated signals at SNR = 18 dB in RadioML 2016.10A dataset. (A) 8PSK, (B) BPSK, (C) CPFSK,
(D) GFSK, (E) PAM4, (F) QAM16, (G) QAM64, (H) QPSK.
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the convolution kernel is used to extract the features.

Maximum pooling is used to extract the evident features.

After multiple convolution and pooling operations, the

feature vectors are obtained. During the entire training

process, the input image and the reconstruction loss are

calculated.

FIGURE 4
Contour diagram of spectral correlation function of modulated signals at SNR = 18 dB in RadioML 2016.10A dataset. (A) 8PSK, (B) BPSK, (C)
CPFSK, (D) GFSK, (E) PAM4, (F) QAM16, (G) QAM64, (H) QPSK.

TABLE 1 Configuration of Conv-AE.

Stage Layer Output Kernel size

1 Input 3,256,256 Feature map

2 Conv2D-1 16,256,256 Number of filters: 16 Kernel Size (2 × 2)

3 Pool 16,128,128 Maxpooling2D: (2 × 2)

4 Conv2D-2 32,128,128 Number of filters:32 Kernel Size: (2 × 2)

5 Pool 32,64,64 Maxpooling2D: (2 × 2)

6 Conv2D-3 1,64,64 Number of filters: 1 Kernel Size: (1 × 1)

7 Flatten 1,64,64 Encoder Output

8 Conv2D-4 8,64,64 Number of filters: 8 Kernel Size: (2 × 2)

9 Up-Sampling 8,128,128 UpSampling2D: (2 × 2)

10 Conv2D-5 16,128,128 Number of filters: 16 Kernel Size: (2 × 2)

11 Up-Sampling 16,256,256 UpSampling2D (2 × 2)

12 Conv2D-6 32,256,256 Number of filters:32 Kernel Size: (2 × 2)

13 Conv2D-7 1,256,256 Number of filters: 1 Kernel Size: (2 × 2)

14 Output 3,256,256 Consistent with Input
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MLP classifier

To ensure the accuracy of the AMC method, we use the self-

attention mechanism in the model, the main idea of which was

derived by Liu et al. (2021). We improve the previous single feature

classification method and use the attention mechanism to enhance

the interaction of features between modules. In the subsequent

experimental process, MLP is compared with the traditional

methods. Vaswani et al. (2017) reported that the self-attention

mechanism is good at capturing the direct relationship of long-

distance features in the process of natural language processing,

which is different from the CNN method for capturing local

features. The self-attention mechanism takes the dk, and dv,

values of each patch as the Query and Key, respectively. The Key

is the label of each patch, which is used to distinguish the features

among them. The Query is used to find all the keys and determine

the best matching one. In the self-attention mechanism, we must

calculate the dot product of the key of each patch and the Query of

the remaining patch, and use the Softmax function for classification,

essentially converting the number vector into a probability vector,

and finally obtaining the weight.

Attention(Q,K,V) � sof tmax(QKT��
dk

√ )V (14)

Multi-head Self-attention (I1 → I1′, I1″, I1‴)
Multi-head Self-attention (I2 → I2′, I2″, I2‴)
Multi-head Self-attention (I3 → I3′, I3″, I3‴)
The common multi-head self-attention mechanism in the

transformer allows the model to represent relationship

information between subspaces of different locations. In the

self-attention mechanism, the Query, Key, and Value are

generated according to different patches. The self-attention

mechanism can learn the interaction between itself and other

parts, and predict the correlation between the input and output.

This feature can be used for modulation classification. In the

example used in this study, the feature vectors of the graph are

respectively used as input to generate self-attention, including

generating the Key, Query, and Value, after which the cross-

attention mechanism (Tan and Bansal, 2019; Golovanevsky et al.,

2022) is used to generate the relationship between the three

feature graphs. Bi-directional, cross-modal attention can be

performed in each multi-head attention module. Attention

output between the three groups of feature maps is based on

the attention layers that characterize the features, which can be

manipulated as the following modules:

Concat (cross-attention (I1′, I1″, I1‴ → I1′, I1″, I1‴), cross-

attention (I1′, I1″, I1‴ → I3′, I3″, I3‴))
Concat (cross-attention (I2′, I2″, I2‴ → I2′, I2″, I2‴), cross-

attention (I2′, I2″, I2‴ → I3′, I3″, I3‴))
Concat (cross-attention (I3′, I3″, I3‴ → I3′, I3″, I3‴), cross-

attention (I3′, I3″, I3‴ → I2′, I2″, I2‴))
Finally, the full connection without attention mechanism

of network connection is used to produce a dense layer of

output. This method uses the attention mechanism to

complete the most advanced algorithm of AMC in MLP,

meets the requirements of multi-type, fast and accurate

classification of wireless IoT base station, and has a very

high practical significance for improving the

communication capability in low SNR environment.

Loss function

The loss function of this model is mainly composed of two

parts, namely, the reconstruction loss of Convolution-AE and

the classification loss of MLP. The total loss of the algorithm is

expressed as the weighted combination of two terms as

follows:

Ltotal � (1 − μ1)Lclassif ication + μ1LConv−AF (15)

where μ1 is the hyperparameter controlling the weight loss of

classification and auto-encoder reconstruction. In engineering

practice, occasionally large μ1 severely interfere with the

classification accuracy and convergence speed of the model. In

general, the mean-squared error is used to calculate the

reconstruction loss of the autoencoder, and the cross entropy

loss is used to calculate the classification loss.

LConv−AE � 1
N

∑N
i�1

(yi − f(xi))2 (16)

In the above Eq. 16, yi andf(xi) represent the true and predicted
values of the i sample respectively, and n represents the number

of samples.

Lclassif ication � 1
N

∑
i

Li � − 1
N

∑
i

∑M
c�1

yic log(pic) (17)

In the above Eq. 17,N represents the size of batch,M represents

the number of classes, yic is a sign function, taking the value of

0 or 1, if the true class of the sample is equal to 1, 0 otherwise, pic

TABLE 2 Description of RadioML 2016.10A parameters.

Parameter Value

Sampling frequency 200 kHz

Sampling rate offset standard
deviation

0.01 Hz

Maximum sampling rate offset 50 Hz

Carrier frequency offset standard
deviation

0.01 Hz

Maximum carrier frequency offset 500 Hz

Sample length 128

SNR Range –20 to 18 dB

Modulations BPSK, QPSK, BPSK, GFSK, CPFSK, PAM4,
QAM16, QAM64
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is the predicted probability that the observed sample i belongs to

category c type.

Simulations and discussions

In this section, we test the performance of the model. We use

the public dataset to construct the feature image dataset, and

further conduct parameter adjustment and performance test of

the algorithm to obtain the final test results. The model is further

compared with the existing algorithms, and finally the

experimental results are compared and analyzed.

Description of experimental dataset

We use the RadioML 2016.10A public dataset for model

performance measurement. It includes 11 modulation types. The

software defined radio is used for I/Q dual-channel sampling, and

the lengthof a single data is 128.The SNR level of the signal ranges from

–20 dB to 18 dB, where the step size is 2 dB, and there are

220,000 samples in total. The noise added by the channel is white

Gaussiannoise, and the specific data are shown in the followingTable 2.

Experimental procedure

First, the open dataset of RadioML 2016.10A is read, and

eight kinds of digital signals are selected: 8BPSK, QPSK, BPSK,

GFSK, CPFSK, PAM4, QAM16, and QAM64 were classified in

different SNR environments. Contour diagrams were

generated using the baseband data of I/Q, SPWVD, and the

SCF, based on 20 different SNR samples, ranging from –20 dB

to 18 dB, each with 128 samples length. Each signal has

1000 samples and a total of 160,000 I/Q sampling data. By

generating three different feature maps, the total number of

samples is 480,000. We use 70% of the samples as the training

set, and the remaining samples as the test set. After the data set

was made, three different feature maps were input into Conv-

AE for feature extraction, and the three Conv-AE shared

parameters. The optimal feature vector was found through

the input and reconstructed loss function, and the following

step was input into attention-MLP for classification. The

classification loss was calculated, and the parameters were

optimized by back propagation. The optimization of the whole

model was achieved by the overall optimization of Conv-AE

and attention-MLP. The dropout rate of the fully connected

layer is set to 0.2, and the hyperparameter μ1 is set to 0.1 under

supervised conditions. The training data set epochs is 128, and

the learning rate is 0.001. We used 70%, 20% and 10% of the

dataset for training, validation and testing, with an Adam

Optimizer applied.

Model testing

We used the RadioML 2016.10A dataset to compare and verify

the algorithms mentioned in the reference ALRT (Hong and Ho,

2003), GLRT (Panagiotou et al., 2000), HLRT (Hong andHo, 2003),

CNN (O’Shea et al., 2016), MT-CNN (Qiao et al., 2022), SPWVD

-CNN (Hou et al., 2021), LSTM-AE (Ke and Vikalo, 2022), LSTM

(Rajendran et al., 2018) and SOTA (Zhang et al., 2021). The

precision curves of various algorithms are shown in Figure 5.

Figure 5 shows the modulation classification of several likelihood

functions. Due to the uncertain calculation caused by too many

unknown parameters and modulation types, GLRT, HLRT and

ALRT, the three likelihood modulation classification methods,

cannot perform good modulation classification even when

10 dB–18 dB. When the SNR ranges from –20 dB to 10 dB, the

modulation classification can hardly be carried out. The LSTM

modulation classification method, whose algorithm only focuses on

the relationship between one-way data, cannot identify the features of

high capture dimension, and the single feature faces difficulty to identify

the spatial representation of the approximate modulation mode,

especially when the SNR is less than –10 dB, showing almost no

difference in the classification accuracy with the likelihood estimation

method.Due to the innate local feature extraction, theCNNmodulation

classificationmethod cannot extract global features. Compared with the

LSTMmethod, it exhibits great improvement when SNR is –10 dB and

below. Moreover, when SNR ranges from –10 dB to 2 dB, the

classification accuracy is gradually improved with the increase in

SNR. When SNR is more than 2 dB, the classification accuracy does

not improve significantly.

The classification accuracy of MT-CNN and LSTM-AE has

little difference within the SNR from –20 dB to 10 dB range, but

FIGURE 5
Classification accuracy of our proposed model vs existing
models on RadioML 2016.10A dataset.
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LSTM-AE is more compact than MT-CNN’s model, with fewer

parameters and lower computational complexity, which is

conducive to deployment on low-cost platforms. The

classification accuracy of SPWVD-CNN model has little

difference with other models in the SNR from–20 dB to –4 dB

range, but it is significantly higher than the MT-CNNmodel in the

SNR from –4 dB to 18 dB range, but lower than AMC-MLP. The

essential reason is that the representation ability of a single feature is

insufficient.

The SOTA method uses a 2-D section graph of SCF for

modulation and generation, and employs CNN for noise

reduction. When deep neural networks is use for classification, it

shows a considerably high classification accuracy. Especially when

SNR is above –6 dB, the statistical characteristics of SCF itself show

evident classification accuracy when fighting noise interference.

After the CNN noise reduction, the features are extremely

evident, and the overall energy absorption is relatively excellent.

However, this also demonstrates the single use of features, which still

has evident shortcomings at low SNR.

Conv-AE has strong data reconstruction and feature extraction

abilities. We use the approximation between input and output to

compare the reconstruction ability of AE, and use the middle low-

dimensional feature vector to represent the features of the original

image. The higher the approximation between input and output, the

stronger the coding ability of AE. This experiment also showed that

CNN in Conv-AE has a strong feature grabbing ability, which has a

natural advantage compared with other AE.

This experiment also proves thatMLPhas the same capability as the

transformer,which cannot only be used for computer vision but also for

radio frequency signal classification after optimization (Figure 5). This is

because using the low-dimensional feature vectors extracted by AE as

the input of MLP can significantly reduce the network scale, training

time, and future inference timeon the edge comparedwithdirectly using

MLP. The setting of the loss rate of the fully connected layer further

FIGURE 6
Accuracy confusion matrix of AMC-MLP algorithm with different SNR. (A) SNR = 18 dB, (B) SNR = 0 dB, (C) SNR = −10 dB, (D) SNR = −20 dB.
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reduces the scale of the network and preliminarily realizes the

compression of the network model.

Analysis of results

In this experiment, as Figure 6 shows, we compared with the latest

AMC algorithm (Zhang et al., 2021) to study the overall classification

accuracy variation trend of the model composed of Conv-AE and

attention-MLP under the supervised condition of different SNR

environments in the range of –20 dB–18 dB. AMC-MLP of the

overall classification accuracy is higher than the existing

classification method, especially in –20 dB–8 dB range, has obvious

advantages, highlight the model of classification accuracy in low SNR

environment. Through the classification confusion matrix of AMC-

MLP under different SNR, the classification advantages of the new

model can be clearly seen. In the SNR environment of 0 dB–18 dB, the

AMC-MLP model can maintain good classification accuracy and

robustness. In the SNR environment of –20 dB–0 dB, the

classification accuracy of AMC-MLP model is greatly reduced by

noise interference, but it has been greatly improved compared with

SOTA model. The reason is that using the use of a variety of

characteristics of attention ability greatly improve obviously against

noise, better solve the complex electromagnetic environment in power

energy system environment, AMC-MLP meets the requirements of

fast and diverse modulation classification methods for base stations. It

is very suitable for deployment on Xilinx Zynq UltraScale+™MPSoC.

Themulti-core architecture has significant advantages. The FPGA core

uses a two-stage pipeline for baseband I/Q data sampling and feature

map conversion. Then, the internal bus is used to transfer the low-

dimensional feature data to Mali-400MP2 GPU for MLP acceleration,

and the internal quad-core ARM is used to manage the model.

Conclusion and future work

We used the AMC method combining Conv-AE and attention-

MLP.We employed Conv-AE for low-dimensional feature extraction

of multi-feature maps and attention-MLP for AMC classification

under attention. The method was verified by experiments and

compared with the traditional AMC method. Under the condition

of high SNR, AMC-MLP can not only obtain better classification

performance, but also obtain higher classification accuracy under the

condition of low SNR. The model has simple structure, few

parameters, high robustness, and can maintain high classification

accuracy and real-time performancewhen reasoning, whichmeets the

requirements of power wireless Internet of things.

The following are suggestions for future researches. First, novel

modulation type classification methods, such as orthogonal frequency

division multiplexing, should be investigated to improve the

generalization and robustness of the model. Second, hard and soft

compute of resources in IoT systems are limited; hence, it is necessary to

focus on lightweight and low-power classification methods used in IoT

terminals. Finally, most existing algorithms are trained based on

supervised learning, which requires a large amount of labeled data as

the basis. Therefore, it is necessary to propose semi-supervised or few-

shot samples modulation classification methods in AMC research.
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