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A modified deep residual
network for short-term load
forecasting
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The electrical load has a prominent position and a very important role in

the day-to-day operations of the entire power system. Due to this, many

researchers proposed various models for forecasting load. However, these

models are having issues with over-fitting and the capability of generalization.

In this paper, by adopting state-of-the-art of deep learning, a modified deep

residual network (deep-ResNet) is proposed to improve the precision of short-

term load forecasting and overcome the above issues. In addition, the concept

of statistical correlational analysis is used to identify the appropriate input

features extraction ability and generalization capability in order to progress

the accuracy of the model. Two utility (ISO-NE and IESO-Canada) datasets

are considered for evaluating the proposed model performance. Finally, the

prediction results obtained from the proposed model are promising as well as

accurate when compared with the other existing models in the literature.

KEYWORDS

load forecasting, smart/ micro-grid, feature selection, ANN, artificial neural networks, short term

load forecasting, deep learning

1 Introduction

Estimating the electricity demand is vital to the growth and development of current
existing power systems. Making accurate projections of future loads over various time
horizons is essential to the steady and effective operation of decision makers, scheduling,
and allocating sources in power systems. Specifically, STLF is concerned with estimating
the subsequent future loads for a time-period ranging from a few minutes to a week
Kondaiah et al. (2022). In addition, a reliable and efficient STLF also assists utilities
and energy suppliers in meeting the difficulties posed by the increased penetration
of renewable energy sources and the progression of the electricity sector with more
complicated pricing techniques in future smart grids.

Researchers over the years have proposed various STLF methods. Some of the
models used for STLF include linear or nonparametric regression Ferraty et al. (2014),
support vector regression (SVR) Zhang and Guo (2020), autoregressive models
Taylor (2010), fuzzy logic approach Ali et al. (2021), etc. In addition, the references
Kondaiah et al. (2022); Kuster et al. (2017); Hippert et al. (2001) provide reviews and
assessments of the various available approaches. However, most of the suggested
models were over-parameterised, and the findings they offered were neither
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persuasive nor sufficient Hernández et al. (2014). Furthermore,
the construction of STLF systems via artificial neural networks
(ANN) has been one of the more conventional approaches to
tackling the forecasting challenge. In addition, increasing the
several input parameters, hidden nodes, or layers may increase
the size of ANN, but another critique is that networks are prone
to the issue of “overfitting” Velasco et al. (2018). Despite this,
other kinds and subcategories of ANN, such as radial basis
function (RBF) neural networks Cecati et al. (2015), wavelet-
based neural networks Liu et al. (2013), and extreme learning
machines (ELM) Li et al., 2016b, to mention a few, have been
suggested and used to STLF.

Moreover, Computer vision, natural language processing
(NLP), and speech recognition have been greatly influenced by
recent advances in neural networks (especially deep-ResNets)
Li et al. (2022). Mostly, Scientists are now incorporating
their knowledge of various applications into neural network
architectures instead of relying on pre-designed superficial
neural network configurations. The addition of other building
modules, such as convolutional neural networks (CNN)
Amarasinghe et al. (2017) and long short-termmemory (LSTM)
Wang et al. (2019), hasmade it possible for deep neural networks
to be very versatile and efficient. In addition, numerous training
methods have been suggested to train neural networks properly
with multiple layers without the gradients disappearing or
severe overfitting. Furthermore, the use of deep learning
models for STLF is a subject that has just recently gained
attention. For forecasting various loads, researchers have utilized
Restricted BoltzmannMachines (RBM) and feed-forward neural
networks with many layers Li C. et al. (2021); Rafi et al. (2021).
Nonetheless, as the number of layers rises, it becomes more
difficult to train thesemodels; hence, the number of hidden layers
is often somewhat limited, thereby limiting the performance of
the models. And also, numerous studies have indicated that
feature selection from input data impacting hourly load profile
might enhance prediction performance Zhang and Guo (2020);
Bento et al. (2019).

Furthermore, using a multi-sequence-LSTM-based network
architecture, Jiao et al. (2018), developed a framework for
commercial load forecasting. This approach accurately captures
the complex relationships among sequences. The contribution
of DNN in the actual load dataset was explored in reference
Chitalia et al. (2020), and it was shown that a wide variety of
activation functions could be employed to create reliable load
predictions. A model that is mainly focused on LSTM-RNN was
suggested in reference Kong et al. (2019) to forecast the short-
term residential load. This model is able to estimate the overall
load of a single home quite precisely. The residual network was
suggested in reference Kaiming et al. (2015). Applying DNNs
has become feasible according to this technique. A modified
residual network was presented by Chen et al. (2019). Here, the
network’s input would be the average value of the multi-layer
output rather than the output of the layer that came before it.

To avoid such complexity, a model for STLF is developed in this
paper with the assistance of the DNN. Also, we used a deep-
ResNet model to make our prediction and over-fitting methods
more reliable. The critical difference between the proposed and
other existing models is that in this approach, we don’t stack
several hidden layers over each other since this would lead to
severe over-fitting.

Consequently, in this proposed work, we have used the
state-of-the-art deep neural network (DNN) architectures and
implementation approaches to enhance the existing ANN
structures for STLF. A unique DNN model for estimating
the day-ahead (24-Hours) load has been suggested based
on the residual network (ResNet) topology introduced in
Chen et al. (2019); Kondaiah and Saravanan (2021) instead of
stacking numerous hidden layers. The most important vital
contributions of the work proposed in this paper are as follows.
First, an effective end-to-end model for STLF based on deep-
ResNets is proposed. The suggested model used an appropriate
feature extraction or selection method with adequate statistical
correlation analysis. The findings suggest that enhancing the
neural network topology may significantly improve predicting
performance. Second, the integration of the building blocks
with pre-existing methodologies for feature extraction and
selection is an essential process that has the potential to result
in significant improvements in accuracy. Furthermore, the
fundamental components of the model that has been described
are easily adaptable to other neural-network-based STLFmodels
already in existence. In addition, when compared to various
models, the suggested STLF model outperforms in terms of
precision and reliability. Concurrently, we utilised DNN to make
the prediction model more robust and to reduce over-fitting.
Typically, the output of an aggregated model of neural networks
is the combination of many individual models. One drawback
is that it takes a substantial amount of processing capacity to
execute. But, just a single training session is required for the
proposed approach in this paper.

According to the following outline, the rest of the paper is
organised as follows. First, the process of selecting appropriate
inputs from the dataset is described in Section 2. The details
of the proposed methodology are presented in Section 3. The
results of the proposed STLF model are described in Section 4.
Additionally, we compare the model performance with other
approaches. Finally, Section 5 concludes the paper with a
summary of the findings and suggestions.

2 Features selection for the model

Meteorological conditions or variables1 and the price
of electricity, as we all know, considerably influence

1 such as temperature, relative humidity, wind speed, and precipitation.
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TABLE 1 Pearson’s correlational coefficient variables.

Correlational coefficients

Range Relation

0.8 to 1.0 Extremely strong
0.6 to 0.8 Strong
0.4 to 0.6 Medium
0.2 to 0.4 Weak
0.0 to 0.2 Extremely weak
0.0 No relation
-0.0 to -1.0 Negative relation

electricity consumption Liu et al. (2018); Kwon et al. (2020);
Kim et al. (2020). However, because of the intricate relation
between those variables, it is difficult to characterise the
interactions between them. Therefore, there are additional
benefits to selecting several input parameters in general. On the
other hand, numerous variables might have certain drawbacks
Memarzadeh and Keynia (2021).

Consequently, Pearson’s correlation approach was used for
correlation analysis to find the association between input
parameters and the actual load. The relationship between the
various variables can be understood in detail based on the
correlation coefficients generated by this method Zhang and
Guo (2020). The following is the formula that is used while
calculating Pearson’s correlation:

Corr(xi,yj) =
n∑xiyj −∑xi∑yj

√n[x2i − (xi)
2][n∑y2j − (yj)

2]
(1)

Where Corr(xi,yj) denotes the relational degree between
input variables xi and actual load demand yj, and n represents
the total number of data points. The values of the reference
coefficients of the correlation (-1.0 to 1.0) are given in Table 1.

Correlation analysis was performed on the data from 1
January 2010, to 31 December 2014. This dataset consists of
different variables, such as, “the hourly temperature (Tem), wind
speed (WS), relative humidity (RH), precipitation (Pr) and solar
radiation (SR), air pressure (AP), and the actual load demand
(LD)”. There are several extremely interesting observations to be
made, as explained in Section 4.1.

3 Proposed methodology

Deep residual networks (deep-ResNet) are the foundation of
ourmodel for day-ahead load forecasting, which we presented in
this study. We begin by formulating the low-level fundamental
structure of the model, which consists of numerous layers
that are all completely related to one another, and process the
inputs of the model to create tentative predictions for the next
24 hours. After then, the preliminary projections are processed

by a comprehensive residual network. Following the presentation
of the topology of the ResNet, many adjustments are done in
order to further improve its capacity for learning.

3.1 Deep neural networks

Deep Neural Networks (DNNs) are ANNs with numerous
hidden layers between the input layer and the output layer
Ma (2021). The linear and non-linear associations between data
characteristics are modelled by using DNN. In modeled, the
propensity to overfit may be mitigated by using dropout, a
technique in which neurons are removed from the network in
either a random or a systematic manner Salinas et al. (2020).
Since their inception, DNNs havemade significant achievements
in a wide range of areas of study. According to Subbiah and
Chinnappan (2020), the field of deep learning exploded after
their original publication was released in 2006. Through the
use of the summation and product procedures, the non-linear
function that effectively represents the data is determined in
the neural networks. Figure 1 depicts an ANN-based DNN
structure. There are three layers in the DNN: an input layer,
a hidden layer, and an output layer. Each layer is made up of
neurons that do not communicate with each other. There are,
nevertheless, complete weighted connections between neurons
between layers. The fundamental formulae of DNN in classic
networks are as follows;

youtput = F(xinput) (2)

Where the input of the neuron is denoted by xinput and the
output of the neuron is denoted by youtput .

DNNs are able to extract highly abstracted characteristics
from training data because of their multiple hidden layers,
which provide this power. Since load profiles include nonlinear
features among the different components that determine the
morphologies of load patterns, it is possible to use DNN as
a prediction model under these circumstances. However, the
DNNs have two problems when they are being trained to do a
task: gradient explosion/vanish and network degeneration.

3.2 Deep residual networks

The aforementioned model is used in order to discover the
nonlinear connection that exists between the input data and the
output value. In general, the neural network’s learning capacity
improves as the model depth is increased. However, there is
a possibility that the performance of the deep learning model
would suffer in reality. The inherent quality of the data or the
challenging nature of the deep learning model might both be
to responsible for the deteriorating performance. For greater
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FIGURE 1
The structure of ANN-based DNN.

FIGURE 2
The basic structure of Residual Network (ResNet).

performance, Zhang et al. (2018) presented an approach that
used ResNet instead of stacking concealed layers. ResNet has a
unique structure in comparison to nested layers. It is essentially
the same as the framework suggested in Zhang et al. (2021),
which is often employed for the picture/image classification issue
but with a few key differences. In the ResNet building block, the
skip link/connection typically has input and output dimensions
that are the same, but in a residual block, the input (xinput) and
output (youtput) dimensions are different. A ResNet, as seen in
Figure 2, has two stacked levels and one skip link/connection.

Typically, a skip connection is an identical mapping when its
input and output are of the same dimension. For this case, the
output of the appropriate ResNet is as follows:

youtput = F(xinput) + xinput (3)

If the dimensions of the input and output are not the same,
then the skip connection act as a linear projection. In this case,
the associated ResNet produces an output with linear projection
(Lp) as follows:

youtput = F(xinput) + Lp ∗ xinput (4)

The skip connection signifies that the ResBlock/ResNet
learning ability is no weaker than that of the stacked layers when

both have the same number of hidden layers. The formula for
forward-propagation if n residual blocks are formed one after the
other is given as follows:

y (x) = xinitial +
n

∑
j=1

F(xj − 1) (5)

Where xinitial represents the very first input that the network
receives. In point of fact, the residual block builds an artificial
identity map by performing an addition that combines the input
and output of the neural unit in a straightforward manner.
Experiments have shown that the residual block is an effective
solution to the issue of deterioration that occurs in DNNs.
Sheng et al. (2021), explained the residual block, both from
the point of view of advancing propagation and backward
propagation [30].

3.3 A modified structure of deep residual
network

The proposed model is presented in this subsection; it is
based on the model structure shown in Figure 2. As a result
of its design, the proposed model can learn both deep and
superficial characteristics or features from the input data that
is fed into it. Furthermore, the ResBlocks structure enables that
the modified deep-ResNet learning capacity is equivalent to that
of a shallow ResNet. According to Zhang et al. (2018), there is
a way to expand the deep-ResNet by adding more shortcuts.
Although the formulations of the forward and backward
propagation of responses and gradients are somewhat different,
the network features are the same after adding the additional
shortcut links. In order to enhance ResNet learning capacity,
we make structural changes to the network. The convolutional
network designs suggested in Chen et al. (2019) and Kondaiah
and Saravanan (2021) served as inspiration for our proposal of
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FIGURE 3
The Proposed Structure of a modified deep-ResNet.

FIGURE 4
Time-Series load data from the two-utility dataset.

the modified deep-ResNet, the structure of which is seen in
Figure 3.

A sequence of ResNets is added to the model first (the
residual blocks on the right). The input of both side residual
blocks is the combination of load values regarding the calendar
variables with day type, and the temperature information,
respectively, unlike the implementation in Xu et al. (2020)
(except for the first side residual block, whose input is the input of
the network). This layer output is averaged across the outputs of
each of the primary residual blocks. Then the outputs are linked
to all of themajor remaining blocks in the following layers, much

FIGURE 5
Correlational Analysis between the input variables.

like the tightly connected network in Li Z. et al. (2021). After
averaging all connections from the blocks on the right and the
network output, the following major residual block is provided
as an input. As a result of the extra side residual blocks and
dense shortcut connections, it is anticipated that the network
representation capabilities and error back-propagation efficiency
would increase. In the next section of this study, we will evaluate
and contrast the performance of the proposed model.
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TABLE 2 Input Features for themodel.

Name of the input features Index of the variable(s)

Day_wise Week-Wise Month-Wise

Temperature (Tem) TemDay
h TemWeek

h TemMonth
h

Load Demand (LD) LDDay
h LDWeek

h LDMonth
h

Wind Speed (WS) WSDayh WSWeek
h WSMonth

h
Relative Humidity (RH) RHDay

h RHWeek
h RHMonth

h
Precipitation (Pr) PrDayh PrWeek

h PrMonth
h

TABLE 3 Additional input variables for the model.

Dummy Variables Code Indication Meaning

Seasonality (S) 1 spring
2 Summer
3 Antumn
4 Winter

Week-Index (WI) 0 Weekday
1 Weekend

Holiday-Index (HI) 0 Holiday
1 Non-Holiday

4 Results and discussion

The proposed model in this experiment is trained by the
Adam optimizer with default parameters, as mentioned in
Kondaiah and Saravanan (2021). The models are accomplished
by adopting Keras 2.2.4 with Tensorflow 1.11.0 as the backend
in the Python 3.6 environment. Note that adaptive adjustment of
the learning rate during the training process is used. The models
are trained on an Intel(R) Core(TM)- i5-3230M-powered Acer
laptop.Moreover, the generalizability of the developedmodelwas
investigated in two case studies with IESO-Canada and ISO-NE
datasets, respectively. Finally, the proposed model performance
was verified using real-time data. To train the model, 3 years of
data were used, which was taken around 1.5 h for 700 epochs.
When training all models, the total training duration is under
8 hours. “Mean absolute percentage error (MAPE), Root mean
square error (RMSE), and Mean absolute error (MAE)” are the
most significant indices when comparing the results of various
STLF models Li et al., 2016b. They are described as follows:

MAPE = 1
N

N

∑
n=1
(|

LoadActualn−LoadPredictedn
LoadActualn

| ∗ 100) (6)

RMSE = √ 1
N

N

∑
n=1
(LoadActualn − LoadPredictedn)

2 (7)

MAE = 1
N

N

∑
n=1
|LoadActualn − LoadPredictedn| (8)

Where N is the total number of input values,LoadActualn and
LoadPredictedn are the average values of the actual and predicted
load, respectively.

4.1 Analysis of input data

4.1.1 Data pre-processing
The gathered dataset(s) may have multiple anomalies,

including missing values, incomplete data, noises, and raw
format Shi et al. (2018).The unprocessed data contains flaws and
contradictions that might lead to misunderstanding and indicate
a lack of proper data analysis.Therefore, the pre-processing stage
that is part of the data refining process is particularly crucial
for real-world datasets since it ensures the performance and
reliability of the system to find information from real-world data.
In most cases, the pre-processing data stage consists of many
fundamental sub-steps or phases that are applied to raw data
before they are refined.These phases and sub-steps are as follows:
1) Data-Cleaning, 2) Data-Transformation, 3) Data-Reduction,
4) Data- Discretization, respectively. These stages are primarily
employed in the pre-processing step to improve and evaluate
data in order to efficiently and accurately anticipate. As a result,
a variety of sub-phases may be effectively used based on the
data format, strategy, and input requirements for the suggested
methodology.

4.1.2 Description of the data
Two different public data sets are utilized in this work,

both of which contain hourly load and weather related data.
The first dataset is New England’s independent system operator
(ISO-NE)2 dataset Chen et al. (2019). The time range of this
dataset is from March 2003 to December 2014. The second
dataset is Canada’s Independent Electricity System Operator
(IESO)3 dataset El-Hendawi and Wang (2020). The time scope

2 https://class.ee.washington.edu/555/el-sharkawi.

3 http://reports.ieso.ca.
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TABLE 4 Themonth-wise estimation results (%MAPE) of the proposedmodel with othermodel(s) on the ISO-NE dataset.

Name of the Month Forecasted Results (%MAPE)

Name of the Model(s) Proposed Model

SIWNN WT_ELM_PLSR WT_ELM_MABC ResNetPlus
[Chen et al. (2010)] [Li et al. (2016c)] Li et al. (2016b) [Chen et al. (2019)]

January 1.60 – 1.52 1.619 1.423
February 1.43 - 1.28 1.308 1.252
March 1.47 – 1.37 1.172 1.032
April 1.26 – 1.05 1.340 1.212
May 1.61 – 1.23 1.322 1.245
June 1.79 – 1.54 1.411 1.331
July 2.70 – 2.07 1.962 1.523
August 2.62 – 2.06 1.549 1.329
September 1.48 – 1.41 1.401 1.321
October 1.38 – 1.23 1.293 1.133
November 1.39 – 1.33 1.507 1.361
December 1.75 – 1.65 1.465 1.373
Average 1.75 1.489 1.48 1.447 1.294

TABLE 5 Year-Wise forecasted results (%MAPE) of the proposed
model with other model(s) on the ISO-NE dataset.

Year Name of the model(s) Forecasted results
(%MAPE)

2010 RBFN-ErrCorr [Yu et al. (2014)] 1.80
RBFN-ErrCorr [Cecati et al. (2015)] 1.75
WT-ELM-PLSR [Li et al. (2016c)] 1.50
ResNetPluse [Chen et al. (2019)] 1.50
Proposed 1.308

2011 RBFN-ErrCorr [Yu et al. (2014)] 2.02
RBFN-ErrCorr [Cecati et al. (2015)] 1.98
WT-ELM-PLSR [Li et al. (2016c)] 1.80
ResNetPluse [Chen et al. (2019)] 1.64
Proposed 1.423

TABLE 6 Day-wise forecasted results (%MAPE) of the model on the
ISO-NE dataset.

Day Index Year-wise forecasted MAPE (%)

2006 2010 2011

Weekdays 1.289 1.273 1.296
Weekends 1.296 1.387 1.279
Average 1.2925 1.3300 1.2875

of this dataset is from 1st January 2002 to 12th November 2021.
These datasets are time series, which are taken into account in
minutes, hours, or even days. Trend, cycle, seasonal variation,
and erratic fluctuations are the most common features of time
series data. In a time series context, a trend is an upward and
downward movement that depicts the long-term advancement
or deterioration. “Cycle” refers to the periodic oscillations that
take place around a trend level. In time series, seasonal variation

TABLE 7 Holiday(s)-wise forecasted results (%MAPE) of the model
on the ISO-NE dataset.

Name of the Holiday MAPEs (%)

2006 2010 2011

New Year 1.343 1.322 1.287
Martin Luther King 1.284 1.395 1.303
Jr.Day 1.333 1.364 1.329
Memorial Day 1.148 1.102 1.245
Independence Day 1.276 1.355 1.395
Labor Day 1.397 1.298 1.269
Veterans Day 1.265 1.226 1.313
Thanks Giving Day 1.309 1.361 1.268
Christmas Day 1.237 1.328 1.256
Pre-New year’s Day 1.348 1.332 1.301
Average 1.294 1.3083 1.2966

refers to the recurrence of time interval patterns that complete
themselves inside a year’s calendar and reoccur annually. Any
movement in a time series that does not follow the regular
pattern, known as an irregular variation, is unforeseen and
unexpected. For example, the data that we collected for the load
in the case study is presented as a time series that is denoted by
the hour, as depicted in Figure 4.

The 2-year load demand of both utilities is shown graphically
in Figure 4. As seen in Figure, the ISO-NE grid data shows a
repeating and cyclic load pattern. In addition to that, the seasonal
fluctuation may be noted as well. Nevertheless, the shape of
the curve remains the same throughout each year. Furthermore,
the IESO data also has the same repeating and cyclic load
pattern. This indicates that the load data are subject to annual
and seasonal changes. Additionally, the characteristics of load
data are as follows. From the hourly load demand as shown in
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TABLE 8 Themonth_wise estimation results (%MAPE) of the proposedmodel with othermodel(s) on the IESO-Canada dataset.

Name of the Month Forecasted Results (%MAPE) Proposed Model

Name of the Model(s)

WT-NN A novel WT_Ensemble
[El-Hendawi andWang (2020)] [Kondaiah and Saravanan (2022)]

January 1.504 1.354 1.254
February 1.618 1.266 1.218
March 1.888 1.339 1.252
april 1.763 1.634 1.229
May 1.406 1.354 1.255
June 1.961 1.799 1.233
July 1.638 1.323 1.232
August 1.627 1.512 1.232
September 1.508 1.236 1.216
October 1.434 1.273 1.223
November 1.757 1.554 1.238
December 2.024 1.692 1.227
Average 1.677333 1.444667 1.234083

Figure 4; observation reveals that the daily, weekly, and annual
patterns represent the most significant seasonal components of
load demand. Furthermore, daily load characteristics exhibit a
distinct seasonality pattern due to the same fluctuations in load
demand as the delayed load variables for seasonal components.
In terms of weekday consumption patterns, there is a lot of
overlap with weekend consumption patterns. In addition, the
workday has a more prominent peak demand than the weekend.
And also, the public holidays are characterised by a high
demand for electricity on weekends and special days. On the
other hand, the everyday power consumption is equivalent to
that of a special day. Due to various anthropogenic activities,
such as public sector celebrations and festivities, the demand
for power increases. There is a significant seasonal variation
in the amount of power used. Therefore, the observation
results reveal that the lagged load parameters exhibited a
substantial correlation and seasonal dependence on the actual
load.

4.1.3 Inputs selection for the model
As mentioned earlier the datasets consist of different

variables. The correlation analysis was performed on the
input data by using Eq. 1. As a result, there are several
extremely interesting observations to be made, as seen in
Figure 5.

Among the several climatic factors that affect electrical load,
the temperature is the one that has the most extraordinary
sensitivity. The warmer it is throughout the summer months
(June, July, and August), the greater the electrical grid demand is
expected. So, a positive relationship exists respectively between
the actual load and temperature. There is a negative correlation
between actual load and the relative humidity in the winter
months (December, January, February) and a positive correlation

FIGURE 6
The forecasted and actual load for 2nd August 2022.

in other months (June to September). This may be due to the
fact that the heating load is reduced in winter. At the same
time, the warming in summer increases load consumption for air
conditioners and other electrical-related machinery for cooling
purposes.Therewill be large increases in the power consumption
utilised for heating during the chilly winter with high relative
humidity; summer precipitation has a considerable negative
association with the actual load; because precipitation cools
the weather and reduces the need for refrigeration, this may
be the reason. In the winter and summer, wind speed has an
opposing influence on load; the temperature may have dropped
because of the strong wind. As heating loads rise in the winter,
air conditioners and fans must work harder, whereas cooling
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loads fall in the summer. In all seasonal months, solar radiation
and air pressure have negligible influence on load; several
research studies are confident that forecasting performance may
be enhanced by eliminating factors with marginal correlation
with load demand Zhang and Guo (2020). Because of the low
correlation between SR and AR, only the hourly-based (h)-Tem,
WS, RH, and Pr were selected as inputs for load forecasting in
this study. These are all listed in Table 2.

From the perspective of several research works, special
days4, seasonality, and normal working days have somewhat
distinct load series characteristics. For example, enhancing
predicting accuracy may be achieved by using separate systems
for special days and normal workdays Song et al., 2005; Fidalgo
and Peças Lopes, 2005[35,36]. For this consequence, dummy
variables were implemented (see Table 3) in order to partition
the data set into three distinct subgroups.

4.1.4 Performance analysis of the proposed
model
4.1.4.1 Case study 1: With ISO-NE dataset

The first case study uses the ISO-NE utility dataset. This
dataset from the New England utility contains previous load and
weather variables at a 1-h resolution. Also, it covers data between
1st March 2003 and 31st December 2014. Furthermore, this case
study is concerned with estimating the load for the year 2006.
Therefore, the complete details of the input, training, and test
data required for the proposed model are as follows to achieve
this objective.

The 2 years earlier to 31st December 2014, are utilised as
the test set and the training set. To be more explicit, there are
two beginning dates that are utilised for the training sets. These
starting dates are the first of March 2004 and the first of January
2010. We adjust the hyper-parameters by utilising the last ten
percent of the training set that contains this beginning date since
it is revealed in studies that are published in the literature. The
hyper-parameters are the same for the model that was trained
with 2 years of extra data.

ResNet is adopted for the proposed model, and then each
residual block is constructed with a hidden layer that has 20
nodes and typically uses an activation function as SELU5. The
block outputs have the same 24 elements size as their respective
inputs. Such a way that, the proposed network consisting of sixty
layers is created by stacking a total of thirty residual blocks. Five
different models are trained for each implementation with 600,
650, and 700 epochs respectively.

If we look at the contrast of the proposed model with others,
the day-based wavelet neural network (SIWNN) model shown

4 Saturday, Sunday, holidays.

5 Scaled exponential linear unit.

in reference Chen et al. (2010) is trained using data from 2003 to
2005, whereas themodels presented in references Li et al., 2016b,
Li et al. (2016a), and Chen et al. (2019) utilise data from March
2003 to December 2005 for their training. The month-wise
proposed model MAPE findings are shown in Table 4. There
is no specific reporting of the MAPEs for the whole year 2006
in reference number Li et al., 2016b. As is evident from the
information shown in the Table, the suggested model has the
lowest MAPE throughout the year 2006. Despite this, we are able
to draw the conclusion that the proposed model is capable of
high generalisation across a variety of datasets since the majority
of the hyper-parameters are not adjusted using the ISO-NE
dataset.

Using data from 2010 to 2011, we further evaluate the
proposed model generalisation capabilities. In this scenario, we
used the same model developed for the year 2006 and train it
using data collected between 2004 and 2009. The results of the
proposed model are summarized in Table 5 and compared with
the results of the othermodels discussed in Yu et al., 2014, Cecati
et al (2015), and Li et al (2016c), Chen et al (2019). According to
the obtained results, the suggested deep-ResNet model performs
better than the already available models in terms of the total
MAPE for both years It is significant to note that the proposed
model is implemented without even additional tuning, while all
previousmodels were tuned using the ISO-NE dataset during the
period of 2004–2009.

Furthermore, the proposedmodel generalization capabilities
were investigated on the load estimation in weekday/end(s)
and holiday(s) wise during the years 2006,2010, and 2011
respectively. For this case, we used the same model developed
for estimating the load of the year 2006. The suggested model
results are summarised in Table 6 and Tables 7. However, the
suggestedmodel has slightly differentMAPE values in the results
of the year 2010. The reason may be the model was confused
while at the training period due to the variance in the data.
From these results, the suggested model performs better in
estimation and has minimal MAPE. It is significant to note that
the proposed model is implemented without even additional
tuning.

4.1.4.2 Case study 2: With IESO-Canada dataset
The secondary intention of this research is to investigate

the generalizability of the developed model. For this purpose,
we train the prediction model with the IESO-Canada dataset
by adopting the significant number of the hyper-parameters of
deep-ResNet optimized for the New England utility dataset. Take
into consideration that the methodology utilized here is quite
similar to case Study 1. This case study’s primary goal is to
forecast 2006s load like the prior scenario. As a result, the training
set consists of data collected before 12 November 2021, while the
test set consists of data collected 2 years before that date.

In Table 8, we validated the performance of the proposed
model with that of the models presented in El-Hendawi and

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1038819
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Kondaiah and Saravanan 10.3389/fenrg.2022.1038819

Wang (2020) and Kondaiah and Saravanan (2022). From the
information shown in the table, it can conclude that the suggested
model is more effective than the other prediction models. In
addition to being more efficient than competing models, the
presented model has less MAPE. If additional data is supplied
to the training set, the model test loss may be decreased even
more.

4.1.4.3 Case study 3: Testing of the proposedmodel using

real-time data
In this context, to verify the proposed model using real-time

data, we have forecasted the load for the next day from the IESO-
Canada utility dataset. For this purpose, the model was trained
and tested with the data taken from the same dataset as per
the procedure followed in the second case study. Furthermore,
a significant number of hyper-parameters were adopted by the
optimizedmodel in that same case study. As result, the forecasted
and actual load for 2nd August 2022 was shown in Figure 6, and
the (%) MAPE is only 1.19045.

5 Conclusion

A model for STLF based on a modified version of a DNN
was suggested in this paper. By utilizing a statistical correlation
approach, the appropriate inputs to the model were chosen. The
efficacy of the proposed model was evaluated with different test
scenarios on the ISO-NE and IESO-Canada utility datasets. The
suggested model has been proved to be better regarding the
accuracy of its forecasts based on comparisons with othermodels
already in existence.

The MAPE (%) using the modified deep-ResNet method
for ISO-NE data is 1.294, which is comparatively less to other
models available in the literature. Simillarly, the MAPE (%) for
IESO-Canada data is 1.234083, which is also less and the same
is represented in Table 8. These results shows the effectiveness of
the proposed model (deep-ResNet). Also, in case 3, the model
was tested with real-time data, and the error MAPE is 1.19045%

There is still a considerable amount of work to be done as
future work. We have considered the basis of the possibility of

DNNs here, but there are probably many different architectures
of these networks that could be combined with the model
to improve its performance. However, it is also possible to
explore further research on the technique of probabilistic load
forecasting with DNN. Additionally, the model accuracy can
be improved by considering a more significant number of
meteorological factors.
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Nomenclature

ANN Artificial Neural Network

CNN Convolutional Neural Network

deep−ResNet Deep Residual Network

DNN Deep Neural Network

ELM Extreme Learning Machine

IESO−Canada Independent Electricity System Operator-
Canada

ISO−NE Independent System Operator-New England

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

NLP Natural Language Processing

RBF Radial Basis Function

RBM Restricted Boltzmann Machine

ResNet Residual Network

RMSE Root Mean Square Error

STLF Root Mean Square Error

SVR Support Vector Regression
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