AUTHOR=Yang Mao , Liu Dongxu , Su Xin , Wang Jinxin , Cui Yu TITLE=Ultra-short-term load prediction of integrated energy system based on load similar fluctuation set classification JOURNAL=Frontiers in Energy Research VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2022.1037874 DOI=10.3389/fenrg.2022.1037874 ISSN=2296-598X ABSTRACT=

Due to the strong coupling characteristics and daily correlation characteristics of multiple load sequences, the prediction method based on time series extrapolation and combined with multiple load meteorological data has limited accuracy improvement, which is tested by the fluctuation of load sequences and the accuracy of Numerical Weather Prediction (NWP). This paper proposes a multiple load prediction method considering the coupling characteristics of multiple loads and the division of load similar fluctuation sets. Firstly, the coupling characteristics of multivariate loads are studied to explore the interaction relationship between multivariate loads and find out the priority of multivariate load prediction. Secondly, the similar fluctuating sets of loads are divided considering the similarity and fluctuation of load sequences. Thirdly, the load scenarios are divided by k-means clustering for the inter-set sequences of similar fluctuating sets, and the Bi-directional Long Short-Term Memory (BI-LSTM) models are trained separately for the sub-set of scenarios and prioritized by prediction. Finally, the effectiveness of the proposed method was verified by combining the multivariate load data provided by the Campus Metabolism system of Arizona State University.